JP3602357B2 - Polymer electrolyte fuel cell system - Google Patents
Polymer electrolyte fuel cell system Download PDFInfo
- Publication number
- JP3602357B2 JP3602357B2 JP36610698A JP36610698A JP3602357B2 JP 3602357 B2 JP3602357 B2 JP 3602357B2 JP 36610698 A JP36610698 A JP 36610698A JP 36610698 A JP36610698 A JP 36610698A JP 3602357 B2 JP3602357 B2 JP 3602357B2
- Authority
- JP
- Japan
- Prior art keywords
- hot water
- fuel cell
- combustor
- cell system
- water tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、固体高分子型燃料電池(PEFC)における諸エネルギーを効率的に利用するようにしてなる固体高分子型燃料電池システム(装置)に関する。
【0002】
【従来の技術】
図1はPEFCの一態様例を説明するための概略図である。図1中、1は高分子電解質膜、2はカソード電極(正極=空気極又は酸素極)、3はアノード電極(負極=燃料極又は水素極)であり、高分子電解質膜1は相対するこの正負両電極2、3間に当接して配置されている。また4はカソード電極側集電体、5はアノード電極側集電体であり、それぞれ正負の電極2及び3に当接されている。
【0003】
カソード電極側集電体4の電極2側には酸素又は空気供給用の溝が設けられ、アノード電極側集電体5の電極3側には燃料ガス供給用の溝が設けられ、正極側集電体4の溝は酸素又は空気供給管6に、負極側集電体5の溝は燃料供給管7に連通している。8は正極側集電体4に当接して設けられたカソード端子板、9は負極側集電体5に当接して設けられたアノード端子板であり、電池の作動中にこれら端子板を通して電力が取り出される。
【0004】
10は左部枠体、11は右部枠体であり、これら両枠体10、11により高分子電解質膜1からカソード端子板8及びアノード端子板9までの電池本体を被って固定されている。これら両枠体10、11間には、高分子電解質膜1からカソード端子板8及びアノード端子板9までの電池本体の周縁部を囲ってパッキン12が設けられている。以上は、電池本体が単一の場合である。この電池本体を二つ以上積み重ねても構成されるが、基本的には以上の単一の電池本体の場合と同様である。
【0005】
PEFCは、作動時に温度80〜100℃程度に維持する必要があるため、電池冷却水により冷却される。冷却水は左部枠体10及び右部枠体11の内面に設けられた溝(閉じた通路)に連通し、カソード端子板8及びアノード端子板9の背面から間接的に冷却し、自らは温められるので熱交換器で冷却され、PEFCへ循環される。また、熱交換器で電池冷却水を間接的に冷却し、自らは温められた水は温湯として利用される。
【0006】
ところで、PEFCにおける燃料水素は100%の利用率は難しく、このため未利用の余剰水素や余剰空気が排出される。従来、この余剰水素は、そのまま放散させるか、燃焼させて排気されており、有効に利用されていない。また固体高分子電解質膜は耐熱性上100℃程度が限度であり、このため上記のように電池冷却水により冷却する必要があるが、このため電池冷却水を介した熱の有効利用を図ることが考えられる。図2〜図4はこれらの態様例を示す図である。
【0007】
図2は、電池冷却水の熱を間接熱交換器により温湯用に利用する場合であり、温湯用の熱が不足する場合には、ボイラからの熱も利用され、貯湯槽から給湯される。しかし、この態様ではPEFCから出る余剰水素を大気中に放出することになるので、その分ロスとなる。図3は、余剰水素をPEFCへリサイクルさせて利用する態様である。しかし、この態様ではリサイクルのためのエネルギーロスが伴い、また余剰水素の全部をリサイクルすることはできないので、この場合にもその分ロスとなる。
【0008】
図4は余剰水素を改質器にリサイクルして利用する態様である。改質器は基本的には燃焼部と改質部とから構成され、都市ガス等の炭化水素ガスが燃焼部による加熱により改質部で水素リッチのガスに改質されるが、余剰水素はその燃焼部における燃料として利用される。しかしこの態様では改質器を付設する場合にしか適用できなし、また余剰水素の全部をリサイクルすることはできないので、この場合にもその分ロスとなり危険で環境汚染になってしまう。
【0009】
以上、何れの態様でもそれぞれ欠点があるのに加え、余剰水素を図3〜図4のようにリサイクルして利用するにしても、余剰水素の全部をリサイクルすることはできないので、その分ロスとなり、同じくPEFCから排出される余剰空気の熱も無駄になる。また、PEFCの電池冷却水を介して熱の有効利用を図るにしても、PEFCの設置箇所としてのビルや工場等で常時所要温湯を得るには、給湯追い焚き設備が必要であり、その分コストアップ、サイズアップになってしまう。
【0010】
【発明が解決しようとする課題】
本発明は、PEFCにおける余剰燃料や余剰空気、或いは電池冷却水の熱を利用しようとする場合において考えられる以上のような諸欠点がなく、それらのエネルギー利用効率を可及的に高めてなる固体高分子型燃料電池システムを提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明は、(1)固体高分子型燃料電池に燃焼器を併置し、該電池からの余剰燃料ガス及び余剰空気を該燃焼器に通して燃焼させ、燃焼ガスの熱を給水の加熱に利用するようにしてなることを特徴とする燃料電池システムを提供する。
【0012】
本発明は、(2)固体高分子型燃料電池に燃焼器を併置し、該電池からの余剰燃料ガス及び余剰空気を該燃焼器に通して燃焼させ、給水を燃焼ガスで加熱し、且つ、給水を電池冷却水との間接加熱により加熱するようにしてなることを特徴とする燃料電池システムを提供する。
【0013】
本発明は、(3)固体高分子型燃料電池に燃焼器及び貯湯槽を併置し、該電池からの余剰燃料ガス及び余剰空気を燃焼器に通して燃焼させ、燃焼ガスを貯湯槽に導入して貯湯槽中の温水を加熱するようにしてなることを特徴とする燃料電池システムを提供する。
【0014】
本発明は、(4)固体高分子型燃料電池に燃焼器及び貯湯槽を併置し、該電池からの余剰燃料ガス及び余剰空気を燃焼器に通して燃焼させ、燃焼ガスを貯湯槽中に直接吹き込むようにしてなることを特徴とする燃料電池システムを提供する。
【0015】
本発明は、(5)固体高分子型燃料電池に燃焼器を収容した貯湯槽を併置し、該電池からの余剰燃料ガス及び余剰空気を燃焼器に通して燃焼させ、燃焼熱及び燃焼ガスにより貯湯槽中の温水を加熱するようにしてなることを特徴とする燃料電池システムを提供する。
【0016】
本発明は、(6)固体高分子型燃料電池に燃焼器を収容した貯湯槽を併置し、該電池からの余剰燃料ガス及び余剰空気を該燃焼器に通して燃焼させ、燃焼熱により貯湯槽中の温水を加熱するとともに、燃焼ガスを貯湯槽中に直接吹き込むことを特徴とする燃料電池システムを提供する。
【0017】
本発明は、(7)固体高分子型燃料電池に燃焼器を収容した貯湯槽を併置し、該電池からの余剰燃料ガス及び余剰空気を燃焼器に通して燃焼させ、燃焼熱及び燃焼ガスにより貯湯槽中の温水を加熱するとともに、貯湯槽中に配置した間接熱交換器に電池冷却水を循環させて貯湯槽中の温水を加熱するようにしてなることを特徴とする燃料電池システムを提供する。
【0018】
本発明は、(8)固体高分子型燃料電池に燃焼器を収容した貯湯槽を併置し、該電池からの余剰燃料ガス及び余剰空気を燃焼器に通して燃焼させ、燃焼熱により貯湯槽中の温水を加熱するとともに、貯湯槽中に電池冷却水を循環させる間接熱交換器を配置し、貯湯槽中の水を該間接熱交換器及び燃焼ガスとの間接熱交換器に順次通すようにしてなることを特徴とする燃料電池システムを提供する。
【0019】
【発明の実施の形態】
PEFCの燃料ガスとしては、純度99.99%と云うような高純度の水素が用いられる。水素は水の電解、石炭やコークスのガス化、液体燃料のガス化、ガス体燃料の変成、コークス炉ガスの液化分離、メタノールやアンモニアの分解など各種の方法で得られるが、本発明においてはその由来を問わず何れも使用される。このうち、容易に入手でき安価でクリーンであることなどから、天然ガスや都市ガス等の炭化水素ガスを改質して得られた水素を主成分とする改質ガスが特に有利に使用される。
【0020】
本発明においては、PEFCからの余剰水素及び余剰空気を別途併置した燃焼器に供給して燃焼させ、その燃焼熱を水の加熱に利用する。その利用の仕方としては、その燃焼ガスを間接熱交換又は直接熱交換により利用する。間接熱交換では間接熱交換器を介して行われ、直接熱交換は水を収容した貯湯槽中に燃焼ガスを直接吹き込むことで行われる。
【0021】
また、本発明においては、燃焼器を貯湯槽中に配置することにより、燃焼器で発生する熱の放逸を防ぎ、その発生熱の実質上全部を水の加熱に利用することができる。ビルや工場、その他の施設におけるPEFCの設置箇所で多量の温湯が必要な場合や冬期などで所定量の温水を得るのに必要な熱が不足する場合には、PEFCへ供給する燃料ガスの量を増やすか、或いは燃料ガスの1部をバイパスさせて燃焼器に供給することにより対処することができる。さらに、本発明においては、PEFCにおける電池冷却水の熱を水の加熱に利用する。
【0022】
【実施例】
以下、実施例に基づき本発明をさらに詳しく説明するが、本発明がこれら実施例に限定されないことはもちろんである。
【0023】
《実施例1》
図5はPEFCに燃焼器を併置し、PEFCからの余剰燃料ガス及び余剰空気を燃焼器に通して燃焼させ、燃焼ガスの熱を給水の加熱に利用する例である。PEFCの燃料極からの余剰水素及び空気極からの余剰空気を燃焼器に通して燃焼させ、その燃焼ガスを熱交換器に導入し、給水と熱交換させて加熱する。加熱された給水は、温水として利用される。PEFCの電池冷却水はポンプを介して閉回路により循環させ、熱交換器を介して給水を加熱し温水を得ることができる。PEFCが例えば100℃で作動される場合、そのための温度制御は上記閉回路の途中に設けられた熱交換器に供給する水量を調節することにより行われる。
【0024】
図5の例では、燃焼器の燃焼ガスによる給水加熱と、電池冷却水による給水加熱をパラレルに行うが、図6は両加熱を直列に行う例である。給水をPEFCの電池冷却水との熱交換により加熱した後、熱交換器を介して燃焼器からの燃焼ガスで加熱する。図5〜6中、T1は温水の温度検知器であり、ここで検知された温水温度の如何により給水量を増減することができる。
【0025】
《実施例2》
図7〜8は、図5〜6の例において、PEFCへ供給する燃料ガスの一部を燃焼器へバイパスさせるようにした例である。燃料ガスを燃焼器へ積極的に加え、熱量をコントロールし、より多量の温水を得る必要がある場合や冬期などのように所定量の温水を得る上で熱が不足する場合などに適用することができる。燃料ガスの一部をバイパスさせて燃料極からの余剰水素とともに燃焼器に供給する。図7〜8中、T1は温水の温度検知器であり、その温度の如何によりバイパスからの燃料ガスを増減することができる。燃料ガスの一部を燃焼器へバイパスさせる構成は、以下の全ての実施例においても必要に応じて適用される。
【0026】
《実施例3》
図9は、PEFCに燃焼器と貯湯槽を併置し、PEFCからの余剰燃料ガス及び余剰空気を燃焼器に通して燃焼させ、燃焼ガスを貯湯槽に導入して貯湯槽中の温水を加熱する例である。燃焼ガスは貯湯槽に導入され、ここで熱交換器を介した間接熱交換により貯湯槽中の温水を加熱した後、排出される。図10は上記間接熱交換に代えて、燃焼ガスを貯湯槽中に直接吹き込むことにより貯湯槽中の温水を加熱する例である。燃焼ガスの直接吹き込みにより燃焼ガスが保有する熱をより有効に回収することができる。
【0027】
図9〜10の何れの場合にも、貯湯槽中の温水は、電池冷却水との間接熱交換器に導いてさらに加熱し温水として利用するが、温水の必要量に応じて一部を貯湯槽へ戻すようにしてもよい。また、温度検知器Tlにより電池冷却水との熱交換後の温水温度を検知し、PEFCへの燃料ガス量を増減することができる。これらの点は、下記実施例4(図11〜12)についても同様である。
【0028】
《実施例4》
図11〜12はPEFCに燃焼器を収容した貯湯槽を併置し、PEFCからの余剰燃料ガス及び余剰空気を該燃焼器に通して燃焼させ、燃焼熱及び燃焼ガスにより貯湯槽中の温水を加熱する例である。燃焼器を貯湯槽内の水中に配置することにより、燃焼熱がより完全に回収される。図11は燃焼器での燃焼ガスの熱を間接熱交換により回収する場合である。図12は燃焼器での燃焼ガスを貯湯槽内の水中に直接吹き込む場合であり、これにより間接熱交換器を省略しシンプル化を図ることができる。
【0029】
《実施例5》
図13〜14は、PEFCに燃焼器を収容した貯湯槽を併置し、PEFCからの余剰燃料ガス及び余剰空気を該燃焼器に通して燃焼させ、燃焼熱及び燃焼ガスにより貯湯槽中の温水を加熱するとともに、貯湯槽中に配置した間接熱交換器に電池冷却水を循環させて貯湯槽中の温水を加熱する例である。電池冷却水は貯湯槽中に配置した熱交換器に循環し、貯湯槽中の温水を加熱する。
【0030】
図13は燃焼器での燃焼ガスの熱を間接熱交換により回収する場合、図14は燃焼器での燃焼ガスを貯湯槽内の水中に直接吹き込む場合である。図14の直接吹き込みの場合には間接熱交換器を省略しシンプル化を図ることができる。図13〜14の何れの場合にも、貯湯槽中の温水を給水ポンプを介した導管により貯湯槽へ循環させることができる。
【0031】
《実施例6》
図15は、PEFCに燃焼器を収容した貯湯槽を併置し、PEFCからの余剰燃料ガス及び余剰空気を該燃焼器に通して燃焼させ、燃焼熱により貯湯槽中の温水を加熱するとともに、貯湯槽中に電池冷却水を循環させる間接熱交換器を配置し、貯湯槽中の水を該間接熱交換器及び燃焼ガスとの間接熱交換器に順次通すようにした例である。
【0032】
貯湯槽中の水は、ポンプP、導管を介して電池冷却水との間接熱交換器、燃焼器からの燃焼ガスとの間接熱交換器に順次通すことにより加熱される。その際、余剰の温湯は適宜貯湯槽へ戻される。貯湯槽には温水の消費量に応じて給水される。本実施例は図6又は図8における熱交換器を全て貯湯槽内に沈めた場合に相当している。燃焼器、熱交換器及び配管は全て貯湯槽内に配置されているので、PEFCから得られる諸エネルギーをほぼ完全に利用し回収することができる。
【0033】
【発明の効果】
本発明によれば、PEFCからの余剰水素及び余剰空気を燃焼器で燃焼させ、その熱を効率的に利用することができる。また、PEFCへ供給する燃料ガスの量を増やすか、或いは燃料ガスの一部を燃焼器にバイパスさせることにより、温水の需要量の変動や冬期などに対応させることができる。また、併せてPEFCにおける電池冷却水の熱利用効率を可及的に高めることができる。
【図面の簡単な説明】
【図1】PEFCの一態様例を説明するための概略図。
【図2】PEFC電池冷却水の熱を温湯用に利用する例を示す図。
【図3】PEFC余剰水素をPEFCへリサイクルして利用する例を示す図。
【図4】PEFC余剰水素を改質器にリサイクルして利用する例を示す図。
【図5】本発明の実施例を示す図。
【図6】本発明の他の実施例を示す図。
【図7】本発明の他の実施例を示す図。
【図8】本発明の他の実施例を示す図。
【図9】本発明の他の実施例を示す図。
【図10】本発明の他の実施例を示す図。
【図11】本発明の他の実施例を示す図。
【図12】本発明の他の実施例を示す図。
【図13】本発明の他の実施例を示す図。
【図14】本発明の他の実施例を示す図。
【図15】本発明の他の実施例を示す図。
【符号の説明】
1 高分子電解質膜
2 カソード電極(正極=空気極又は酸素極)
3 アノード電極(負極=燃料極又は水素極)
4 カソード電極側集電体
5 アノード電極側集電体
6 酸素又は空気供給管
7 燃料(通常は水素)供給管
8 カソード端子板
9 アノード端子板
10 左部枠体
11 右部枠体
12 パッキン
T1 温度検知器
P ポンプ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polymer electrolyte fuel cell system (apparatus) that efficiently utilizes various energies in a polymer electrolyte fuel cell (PEFC).
[0002]
[Prior art]
FIG. 1 is a schematic diagram for explaining an example of one embodiment of PEFC. In FIG. 1, 1 is a polymer electrolyte membrane, 2 is a cathode electrode (positive electrode = air electrode or oxygen electrode), 3 is an anode electrode (negative electrode = fuel electrode or hydrogen electrode), and the
[0003]
A groove for supplying oxygen or air is provided on the
[0004]
[0005]
Since the PEFC needs to be maintained at a temperature of about 80 to 100 ° C. during operation, it is cooled by battery cooling water. The cooling water communicates with grooves (closed passages) provided on the inner surfaces of the
[0006]
By the way, it is difficult to use 100% of the fuel hydrogen in the PEFC, so that unused surplus hydrogen and surplus air are discharged. Conventionally, this surplus hydrogen has been discharged as it is or burned, and has not been used effectively. In addition, the solid polymer electrolyte membrane is limited to about 100 ° C. in terms of heat resistance. Therefore, it is necessary to cool the solid polymer electrolyte membrane with the battery cooling water as described above. Can be considered. 2 to 4 are diagrams showing examples of these aspects.
[0007]
FIG. 2 shows a case where the heat of the battery cooling water is used for hot water by an indirect heat exchanger. If the heat for the hot water is insufficient, the heat from the boiler is also used and the hot water is supplied from the hot water storage tank. However, in this embodiment, surplus hydrogen emitted from the PEFC is released into the atmosphere, resulting in a corresponding loss. FIG. 3 shows an embodiment in which surplus hydrogen is recycled and used in PEFC. However, in this embodiment, energy loss for recycling is involved, and it is not possible to recycle all of the surplus hydrogen.
[0008]
FIG. 4 shows an embodiment in which surplus hydrogen is recycled and used in a reformer. The reformer is basically composed of a combustion section and a reforming section, and hydrocarbon gas such as city gas is reformed into a hydrogen-rich gas in the reforming section by heating by the combustion section. It is used as fuel in the combustion section. However, this embodiment is applicable only to the case where a reformer is attached, and it is not possible to recycle all the surplus hydrogen. In this case, the loss is correspondingly lost and the environment is polluted.
[0009]
As described above, in addition to the disadvantages in each of the embodiments, even if surplus hydrogen is recycled and used as shown in FIGS. 3 and 4, the entire surplus hydrogen cannot be recycled. Also, the heat of the excess air discharged from the PEFC is wasted. Further, even if the heat is effectively used through the battery cooling water of the PEFC, a hot-water supply reheating facility is necessary to always obtain the required hot water in a building or a factory as a place where the PEFC is installed. Cost and size increase.
[0010]
[Problems to be solved by the invention]
The present invention does not have the above-mentioned drawbacks in the case of using the heat of surplus fuel, surplus air, or battery cooling water in a PEFC, and has a solid-state material that increases their energy use efficiency as much as possible. It is an object to provide a polymer fuel cell system.
[0011]
[Means for Solving the Problems]
According to the present invention, (1) a combustor is provided side by side with a polymer electrolyte fuel cell, and excess fuel gas and excess air from the battery are passed through the combustor to burn, and heat of the combustion gas is used for heating feed water. A fuel cell system is provided.
[0012]
According to the present invention, (2) a combustor is provided in parallel with a polymer electrolyte fuel cell, excess fuel gas and excess air from the battery are passed through the combustor and burned, and feed water is heated with the combustion gas, and Provided is a fuel cell system characterized in that feed water is heated by indirect heating with battery cooling water.
[0013]
According to the present invention, (3) a combustor and a hot water tank are juxtaposed to a polymer electrolyte fuel cell, and excess fuel gas and excess air from the cell are passed through the combustor to burn, and the combustion gas is introduced into the hot water tank. And heating the hot water in the hot water storage tank.
[0014]
According to the present invention, (4) a combustor and a hot water tank are juxtaposed to a polymer electrolyte fuel cell, and excess fuel gas and excess air from the battery are passed through the combustor to burn, and the combustion gas is directly stored in the hot water tank. A fuel cell system characterized by being blown.
[0015]
According to the present invention, (5) a solid polymer fuel cell is provided with a hot water tank containing a combustor, and excess fuel gas and excess air from the battery are passed through the combustor to be burned, and the combustion heat and the combustion gas are used. Provided is a fuel cell system characterized by heating hot water in a hot water storage tank.
[0016]
The present invention provides (6) a hot water tank containing a combustor in a polymer electrolyte fuel cell, and the excess fuel gas and excess air from the battery are passed through the combustor and burned, and the hot water tank is heated by combustion heat. Provided is a fuel cell system characterized by heating warm water therein and blowing combustion gas directly into a hot water storage tank.
[0017]
According to the present invention, (7) a solid polymer fuel cell is provided with a hot water tank containing a combustor, and excess fuel gas and excess air from the battery are passed through the combustor to be burned, and the combustion heat and the combustion gas are used. A fuel cell system characterized by heating hot water in a hot water tank and circulating battery cooling water through an indirect heat exchanger arranged in the hot water tank to heat the hot water in the hot water tank. I do.
[0018]
According to the present invention, (8) a solid polymer fuel cell is provided with a hot water tank containing a combustor, and excess fuel gas and excess air from the battery are passed through the combustor to be burnt, and the combustion heat is applied to the inside of the hot water tank. An indirect heat exchanger that heats the hot water and circulates the battery cooling water in the hot water storage tank is arranged so that the water in the hot water storage tank is sequentially passed through the indirect heat exchanger and the indirect heat exchanger with the combustion gas. A fuel cell system characterized by comprising:
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
High-purity hydrogen having a purity of 99.99% is used as a fuel gas for PEFC. Hydrogen can be obtained by various methods such as electrolysis of water, gasification of coal or coke, gasification of liquid fuel, conversion of gaseous fuel, liquefaction and separation of coke oven gas, decomposition of methanol and ammonia, etc. All are used regardless of their origin. Among them, a reformed gas containing hydrogen as a main component obtained by reforming a hydrocarbon gas such as natural gas or city gas is particularly advantageously used because it is easily available, cheap and clean. .
[0020]
In the present invention, surplus hydrogen and surplus air from the PEFC are supplied to a separately provided combustor for combustion, and the combustion heat is used for heating water. The combustion gas is used by indirect heat exchange or direct heat exchange. Indirect heat exchange is performed through an indirect heat exchanger, and direct heat exchange is performed by directly blowing combustion gas into a hot water storage tank containing water.
[0021]
Further, in the present invention, by disposing the combustor in the hot water storage tank, dissipation of heat generated in the combustor can be prevented, and substantially all of the generated heat can be used for heating water. When a large amount of hot water is required at the place where PEFC is installed in buildings, factories, and other facilities, or when the heat required to obtain a predetermined amount of hot water is insufficient in winter, etc., the amount of fuel gas supplied to PEFC Or by bypassing part of the fuel gas and supplying it to the combustor. Further, in the present invention, the heat of the battery cooling water in the PEFC is used for heating the water.
[0022]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but it goes without saying that the present invention is not limited to these Examples.
[0023]
<< Example 1 >>
FIG. 5 shows an example in which a combustor is juxtaposed with a PEFC, and excess fuel gas and excess air from the PEFC are passed through the combustor and burned, and heat of the combustion gas is used for heating feedwater. Excess hydrogen from the fuel electrode and excess air from the air electrode of the PEFC are burned by passing through a combustor, and the combustion gas is introduced into a heat exchanger, where it is heated by exchanging heat with feed water. The heated water supply is used as hot water. The battery cooling water of the PEFC is circulated through a closed circuit through a pump, and the supply water is heated through a heat exchanger to obtain hot water. When the PEFC is operated at, for example, 100 ° C., temperature control for that is performed by adjusting the amount of water supplied to a heat exchanger provided in the middle of the closed circuit.
[0024]
In the example of FIG. 5, heating of feed water by combustion gas of the combustor and heating of feed water by battery cooling water are performed in parallel, but FIG. 6 shows an example in which both heatings are performed in series. After heating the feed water by heat exchange with the battery cooling water of the PEFC, the feed water is heated by the combustion gas from the combustor via the heat exchanger. In FIGS. 5 and 6, T1 is a hot water temperature detector, and the amount of water supply can be increased or decreased depending on the detected hot water temperature.
[0025]
<< Example 2 >>
FIGS. 7 and 8 are examples in which a part of the fuel gas supplied to the PEFC is bypassed to the combustor in the example of FIGS. Actively add fuel gas to the combustor to control the amount of heat and apply it when it is necessary to obtain more hot water or when there is insufficient heat to obtain a predetermined amount of hot water such as in winter. Can be. A part of the fuel gas is bypassed and supplied to the combustor together with surplus hydrogen from the fuel electrode. In FIGS. 7 and 8, T1 is a temperature detector for hot water, and the fuel gas from the bypass can be increased or decreased depending on the temperature. The configuration in which a part of the fuel gas is bypassed to the combustor is also applied to all the following embodiments as necessary.
[0026]
<< Example 3 >>
FIG. 9 shows a configuration in which a combustor and a hot water tank are arranged in a PEFC, excess fuel gas and excess air from the PEFC are passed through the combustor and burned, and the combustion gas is introduced into the hot water tank to heat hot water in the hot water tank. It is an example. The combustion gas is introduced into the hot water storage tank, where the hot water in the hot water storage tank is heated by indirect heat exchange through a heat exchanger and then discharged. FIG. 10 is an example in which the hot water in the hot water tank is heated by directly blowing the combustion gas into the hot water tank instead of the indirect heat exchange. The heat of the combustion gas can be more effectively recovered by direct injection of the combustion gas.
[0027]
In any of FIGS. 9 to 10, the hot water in the hot water storage tank is led to an indirect heat exchanger with the battery cooling water to be further heated and used as hot water. You may make it return to a tank. Further, the temperature detector Tl detects the temperature of the hot water after heat exchange with the battery cooling water, and can increase or decrease the amount of fuel gas to the PEFC. These points are the same for the following Example 4 (FIGS. 11 to 12).
[0028]
<< Example 4 >>
11 to 12 show that a hot water tank containing a combustor is arranged in a PEFC, and the excess fuel gas and excess air from the PEFC are passed through the combustor to be burned, and the hot water in the hot water tank is heated by the combustion heat and the combustion gas. This is an example. By placing the combustor in the water in the hot water tank, the combustion heat is more completely recovered. FIG. 11 shows a case where the heat of the combustion gas in the combustor is recovered by indirect heat exchange. FIG. 12 shows a case where the combustion gas in the combustor is directly blown into the water in the hot water tank, whereby the indirect heat exchanger can be omitted and simplification can be achieved.
[0029]
<< Example 5 >>
FIGS. 13 and 14 show that a hot water tank containing a combustor is arranged in a PEFC, and excess fuel gas and excess air from the PEFC are passed through the combustor and burned, and hot water in the hot water tank is burned by combustion heat and combustion gas. This is an example of heating and circulating battery cooling water through an indirect heat exchanger arranged in a hot water tank to heat hot water in the hot water tank. The battery cooling water circulates through a heat exchanger arranged in the hot water tank to heat the hot water in the hot water tank.
[0030]
FIG. 13 shows the case where the heat of the combustion gas in the combustor is recovered by indirect heat exchange, and FIG. 14 shows the case where the combustion gas in the combustor is directly blown into the water in the hot water storage tank. In the case of the direct injection shown in FIG. 14, the indirect heat exchanger can be omitted, and simplification can be achieved. 13 and 14, the hot water in the hot water tank can be circulated to the hot water tank by a conduit via a water supply pump.
[0031]
<< Example 6 >>
FIG. 15 shows that a hot water tank containing a combustor is provided in a PEFC, and excess fuel gas and excess air from the PEFC are passed through the combustor to burn the hot water in the hot water tank by combustion heat. This is an example in which an indirect heat exchanger for circulating battery cooling water is arranged in the tank, and water in the hot water storage tank is sequentially passed through the indirect heat exchanger and the indirect heat exchanger with the combustion gas.
[0032]
The water in the hot water storage tank is heated by sequentially passing through a pump P and an indirect heat exchanger with battery cooling water via a conduit, and an indirect heat exchanger with combustion gas from a combustor. At that time, the excess hot water is appropriately returned to the hot water storage tank. Water is supplied to the hot water storage tank in accordance with the consumption of hot water. This embodiment corresponds to a case where all the heat exchangers in FIG. 6 or 8 are submerged in a hot water tank. Since the combustor, heat exchanger, and piping are all disposed in the hot water tank, various types of energy obtained from the PEFC can be used and recovered almost completely.
[0033]
【The invention's effect】
According to the present invention, surplus hydrogen and excess air from the PEFC can be burned in the combustor, and the heat can be used efficiently. In addition, by increasing the amount of fuel gas supplied to the PEFC, or by bypassing a part of the fuel gas to the combustor, it is possible to cope with fluctuations in the demand amount of hot water and winter. In addition, the heat utilization efficiency of the battery cooling water in the PEFC can be increased as much as possible.
[Brief description of the drawings]
FIG. 1 is a schematic diagram illustrating an example of an embodiment of a PEFC.
FIG. 2 is a diagram showing an example in which heat of PEFC battery cooling water is used for hot water.
FIG. 3 is a diagram showing an example in which PEFC surplus hydrogen is recycled and used in PEFC.
FIG. 4 is a diagram showing an example in which PEFC surplus hydrogen is recycled and used in a reformer.
FIG. 5 is a diagram showing an embodiment of the present invention.
FIG. 6 is a diagram showing another embodiment of the present invention.
FIG. 7 is a diagram showing another embodiment of the present invention.
FIG. 8 is a diagram showing another embodiment of the present invention.
FIG. 9 is a diagram showing another embodiment of the present invention.
FIG. 10 is a diagram showing another embodiment of the present invention.
FIG. 11 is a diagram showing another embodiment of the present invention.
FIG. 12 is a diagram showing another embodiment of the present invention.
FIG. 13 is a diagram showing another embodiment of the present invention.
FIG. 14 is a diagram showing another embodiment of the present invention.
FIG. 15 is a diagram showing another embodiment of the present invention.
[Explanation of symbols]
1
3 Anode electrode (negative electrode = fuel electrode or hydrogen electrode)
4 Cathode-side current collector 5 Anode-side current collector 6 Oxygen or air supply pipe 7 Fuel (usually hydrogen) supply pipe 8 Cathode terminal plate 9
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36610698A JP3602357B2 (en) | 1998-12-07 | 1998-12-07 | Polymer electrolyte fuel cell system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36610698A JP3602357B2 (en) | 1998-12-07 | 1998-12-07 | Polymer electrolyte fuel cell system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000215901A JP2000215901A (en) | 2000-08-04 |
JP3602357B2 true JP3602357B2 (en) | 2004-12-15 |
Family
ID=18485945
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP36610698A Expired - Lifetime JP3602357B2 (en) | 1998-12-07 | 1998-12-07 | Polymer electrolyte fuel cell system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3602357B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10196614T1 (en) * | 2000-09-14 | 2003-10-30 | Toshiba Kk | Solid polymer fuel cell system |
JP2002289212A (en) * | 2001-03-26 | 2002-10-04 | Toshiba Corp | Fuel cell cogeneration system |
JP2002367643A (en) * | 2001-06-12 | 2002-12-20 | Toshiba Corp | Fuel cell power generating system |
JP5166660B2 (en) * | 2001-07-19 | 2013-03-21 | 三菱重工業株式会社 | Combined power generation system |
JP2005158501A (en) * | 2003-11-26 | 2005-06-16 | Ebara Ballard Corp | Catalyst combustion device and fuel cell cogeneration system |
KR100911055B1 (en) * | 2007-10-19 | 2009-08-06 | (주)퓨얼셀 파워 | Heat Recovery Apparatus of Fuel Cell System |
JP2011054515A (en) * | 2009-09-04 | 2011-03-17 | Toshiba Corp | Pure hydrogen fuel cell system |
-
1998
- 1998-12-07 JP JP36610698A patent/JP3602357B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2000215901A (en) | 2000-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7170630B2 (en) | System for high temperature reversible electrolysis of water comprising a hydride tank combined with an electrolyser | |
KR101978330B1 (en) | Fuel Supply System For Fuel Cell | |
KR100813245B1 (en) | Electric generating system of fuel cell | |
KR20180036859A (en) | Renewable energy hybrid system with reversible SOFC/SOEC | |
JP2006507639A (en) | Thermal energy control in electrochemical fuel cells | |
JPH11214021A (en) | Solid electrolyte type fuel cell power generating apparatus | |
US7560181B2 (en) | Fuel cell system and method of operating the same | |
US20110123886A1 (en) | Method and arrangement to enhance the preheating of a fuel cell system | |
JP3602357B2 (en) | Polymer electrolyte fuel cell system | |
JP4154680B2 (en) | Fuel cell power generator that injects steam into the anode exhaust gas line | |
CN114765266A (en) | SOFC (solid oxide fuel cell) combined heat and power system capable of improving heat efficiency and optimizing water management | |
KR100778207B1 (en) | Fuel cell system using waste heat of power conditioning system | |
KR102076982B1 (en) | Heat supplying system utilizing heat produced by fuel cell and operating method thereof | |
KR101080311B1 (en) | Fuel cell system having separate type auxiliary burner and driving method threrof | |
JP4660889B2 (en) | Fuel cell power generation system and operation method thereof | |
JP3961198B2 (en) | Waste heat fuel cell | |
KR20040011289A (en) | Device for heating fuel/air of fuel cell | |
JP2002083607A (en) | Polyeletrolyte type fuel cell cogeneration system | |
KR102548739B1 (en) | Fuel cell system having high thermal efficiency | |
KR200489607Y1 (en) | Circulation system for supplying a fuel cell with water | |
US12126061B1 (en) | Ammonia-based solid oxide fuel cell (SOFC) system in which temperature rise using heating element is applied, and operation method therefor | |
WO2023126625A1 (en) | Fuel cell system | |
JP3939333B2 (en) | Hot water system | |
US20240332571A1 (en) | Ammonia-based solid oxide fuel cell (sofc) system in which temperature rise using heating element is applied, and operation method therefor | |
GB2614325A (en) | Fuel cell system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040629 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040823 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040921 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040922 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071001 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081001 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091001 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101001 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111001 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121001 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121001 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131001 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |