JPH04181625A - Thermal fuse - Google Patents

Thermal fuse

Info

Publication number
JPH04181625A
JPH04181625A JP30989490A JP30989490A JPH04181625A JP H04181625 A JPH04181625 A JP H04181625A JP 30989490 A JP30989490 A JP 30989490A JP 30989490 A JP30989490 A JP 30989490A JP H04181625 A JPH04181625 A JP H04181625A
Authority
JP
Japan
Prior art keywords
thermal fuse
flux
temperature
fusible alloy
rosin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30989490A
Other languages
Japanese (ja)
Inventor
Tomohiro Tadokoro
智宏 田所
Yasuo Tsukada
康雄 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Original Assignee
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Semiconductor Manufacturing Co Ltd, Kansai Nippon Electric Co Ltd filed Critical Renesas Semiconductor Manufacturing Co Ltd
Priority to JP30989490A priority Critical patent/JPH04181625A/en
Publication of JPH04181625A publication Critical patent/JPH04181625A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fuses (AREA)

Abstract

PURPOSE:To improve the reliability of a thermal fuse with the operating temperature of the thermal fuse unchangeable even after the long time use of the thermal fuse at high temperature by applying a flux, composed of disproportional rosin, to the surface of the fusible alloy of the thermal fuse. CONSTITUTION:A Sn-Pb-In system alloy is used for a fusible alloy 3, the fusible alloy 3 is housed and sealed in an insulating case 5, and moreover a flux 4a composed of disproportional rosin is applied to the surface of the alloy 3 to form a thermal fuse. The flux 4a in which the disproportional rosin is thus used is thermally stable, and the deterioration of the flux 4a is little and the operating temperature of a thermal fuse is stable even after the long time use of the thermal fuse at high temperature. This can increase the reliability of the thermal fuse.

Description

【発明の詳細な説明】 Ll上囚札且分肚 この発明は、電気機器等の温度過昇を防止する温度ヒユ
ーズに関し、特に可溶合金型温度ヒユーズの改良に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a temperature fuse for preventing excessive temperature rises in electrical equipment, and more particularly to improvements in fusible alloy type temperature fuses.

従来些改鼾 従来の典型的な可溶合金型温度ヒユーズを第2図に示す
。図において、1,2は銅等の良導電性かつ良熱伝導性
を有する材料よりなり、表面に半田メツキ等を施したリ
ード線で、これらリード線1.2の先端間に特定温度で
溶融する可溶合金3が溶接等により接合されている。4
は可溶合金3の酸化を防止するために可溶合金3の表面
に塗布されたフラックスである。5はセラミック等の絶
縁材料よりなる絶縁ケースで、この絶縁ケース5内に可
溶合金3を収納し、絶縁ケース5と各リード線1,2間
がエポキシ樹脂等の封口樹脂6,7によって封止されて
いる。
A typical conventional fusible alloy type temperature fuse is shown in Figure 2. In the figure, 1 and 2 are lead wires made of a material with good electrical conductivity and good thermal conductivity, such as copper, and whose surfaces are soldered, etc., and the ends of these lead wires 1 and 2 are melted at a specific temperature. The fusible alloy 3 is joined by welding or the like. 4
is a flux applied to the surface of the fusible alloy 3 to prevent the oxidation of the fusible alloy 3. Reference numeral 5 denotes an insulating case made of an insulating material such as ceramic. The fusible alloy 3 is housed in the insulating case 5, and the space between the insulating case 5 and each lead wire 1, 2 is sealed with sealing resin 6, 7 such as epoxy resin. It has been stopped.

上記の温度ヒユーズを電気機器内に組込み、この温度ヒ
ユーズを介して電気機器に通電すると、電気機器が正常
に動作しているとその温度上昇も低く、可溶合金3が図
示状態を保持し、継続して通電される。万一、電気機器
の短絡等により、電気機器の温度が過昇すると、第3図
に示すように可溶合金3が溶融し、各リード線1,2の
先端部に凝集して球状物3 a + 3 bとなり、リ
ード線1゜2間が非導電状態となって、電気機器への通
電が停止される。この通電停止によって電気機器の温度
が低下しても、可溶合金の球状物3 a r  3 b
はリード線1. 2の先端部に保持されたままであり再
び通電されることはないので、電気機器の温度過昇によ
る焼損あるいは火災を防止することができる。
When the above-mentioned temperature fuse is incorporated into an electrical device and electricity is supplied to the electrical device through this temperature fuse, the temperature rise is low when the electrical device is operating normally, and the fusible alloy 3 maintains the state shown in the figure. Continuously energized. In the unlikely event that the temperature of the electrical equipment rises excessively due to a short circuit or the like, the fusible alloy 3 melts and aggregates at the tips of the lead wires 1 and 2, causing spherical particles 3. a + 3 b, the lead wires 1 and 2 become non-conductive, and power to the electrical equipment is stopped. Even if the temperature of the electrical equipment decreases due to this power discontinuation, the spherical objects of the fusible alloy 3 a r 3 b
is lead wire 1. 2 and is not energized again, it is possible to prevent burnout or fire due to excessive temperature rise of the electrical equipment.

上記可溶合金3の分断9球状化は、溶融した可溶合金が
その表面張力のために起こるものである。
The above-mentioned fragmentation 9 of the fusible alloy 3 occurs due to the surface tension of the molten fusible alloy.

この場合、上記溶融前の可溶合金3の表面に酸化被膜が
存在すれば、これが可溶合金より高い融点を持つ外皮と
なるため、可溶合金内部が溶融状態になっても分断1球
状化は困難である。従って、可溶合金表面に生成する酸
化物を溶解除去する働きをするフラックス4を塗布して
おり、従来がら精製ロジンをフラックスとして使用して
いる。
In this case, if there is an oxide film on the surface of the fusible alloy 3 before melting, this will form an outer skin with a higher melting point than the fusible alloy, so even if the inside of the fusible alloy is in a molten state, it will be divided into spheres. It is difficult. Therefore, a flux 4 is applied that functions to dissolve and remove oxides generated on the surface of the fusible alloy, and purified rosin is conventionally used as the flux.

−■が ′ よ+  ; ところで、上記従来の温度ヒユーズを可溶合金3の融点
より低く、極めてそれに近い温度雰囲気中で長時間使用
した場合、フラックス4による酸化被膜の溶解除去反応
が活発に行われ、併せてフラックス4の熱による分解も
進行するために、フラックス4が劣化し、溶融した可溶
合金が分析法−状化しにくい状態となり、温度ヒユーズ
の動作する温度が可溶合金3の融点より高温側へ変化す
るという欠点があった。
By the way, when the above-mentioned conventional temperature fuse is used for a long time in an atmosphere at a temperature lower than or very close to the melting point of Fusible Alloy 3, the reaction of dissolving and removing the oxide film by Flux 4 actively takes place. At the same time, the thermal decomposition of the flux 4 also progresses, so the flux 4 deteriorates and the melted fusible alloy becomes difficult to form in the analysis method, and the temperature at which the temperature fuse operates reaches the melting point of the fusible alloy 3. There was a drawback that the temperature changed to a higher temperature side.

そこで本発明は、高温で長時間使用した後の動作温度の
変化が小さい温度ヒユーズを提供することを目的とする
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a temperature fuse that exhibits small changes in operating temperature after being used at high temperatures for long periods of time.

ジンより熱的に安定である不均化ロジンを使用すること
を特徴とする。
It is characterized by the use of disproportionated rosin, which is more thermally stable than rosin.

岨 上記のロジンを用いたフラックスは熱的に安定しており
、温度ヒユーズを高温で長時間に渡って使用した後にも
、フラックスの劣化はわずかであり、温度ヒユーズの動
作温度が安定する。
The flux using the above-mentioned rosin is thermally stable, and even after the temperature fuse is used at high temperatures for a long period of time, there is only slight deterioration of the flux, and the operating temperature of the temperature fuse is stabilized.

・ 災胤阻 以下、この発明の実施例について第1図を参照して説明
する。
- Disaster Prevention Hereinafter, embodiments of the present invention will be described with reference to FIG. 1.

図において、フラックス4a以外は第2図と同様である
ため、同一部分には同一参照符号を付してその説明を省
略する。
In the figure, the parts other than the flux 4a are the same as in FIG. 2, so the same parts are given the same reference numerals and the explanation thereof will be omitted.

使用した温度ヒユーズの寸法は、リート線1゜2の外径
寸法: 1.Omm 、可溶合金3の外径寸法=1.1
mm、長さ+ 5.0mm 、絶縁ケース8の外径寸法
+ 3.5mm 、厚さ: 0.75+nm、長さIO
,Ommである。封止樹脂にはエポキシ樹脂を用いた。
The dimensions of the temperature fuse used were the outer diameter of a 1°2 Riet wire: 1. Omm, outer diameter dimension of fusible alloy 3 = 1.1
mm, length + 5.0 mm, outer diameter of insulation case 8 + 3.5 mm, thickness: 0.75 + nm, length IO
, Omm. Epoxy resin was used as the sealing resin.

可溶合金3には融点130℃の5n−Pb−In系合金
を用いた。
As the fusible alloy 3, a 5n-Pb-In alloy having a melting point of 130°C was used.

フラックス4aには不均化ロジンを使用した。Disproportionated rosin was used for flux 4a.

この温度ヒユーズを125℃のエアオーブン中で100
0時間加熱した後、取り出し動作温度の測定を行った。
This temperature fuse was heated to 100°C in an air oven at 125°C.
After heating for 0 hours, the temperature at which the sample was taken out was measured.

動作温度はエアオーブン中で0.1Aの電流を流し、1
℃/分の温度上昇速度にて加熱し測定した。
The operating temperature was 0.1A current in an air oven, 1
The measurement was performed by heating at a temperature increase rate of °C/min.

試料数10個で実施した結果、動作温度の平均値は13
θ、6°Cであり、可溶合金3の融点よりわずかにo、
e℃だけ上昇した。
As a result of conducting with 10 samples, the average value of the operating temperature was 13
θ, 6°C, slightly lower than the melting point of Fusible Alloy 3,
It rose by e℃.

上記実施例に対し、フラックスとして従来がら使用して
いる精製ロジンを用いたほがは実施例と同じとしたもの
で、同様な試験を実施したところ、動作温度の平均値は
132.8°Cであり、可溶合金3の融点より 2.8
°C上昇した。
For the above example, the same test was conducted using purified rosin, which has been conventionally used as a flux, and the average operating temperature was 132.8°C. From the melting point of fusible alloy 3, 2.8
°C rose.

以上の比較から明らかなように、不均化ロジンを使用し
たフラックス4aを用いることにより、長時間に渡る高
温加熱後の温度ヒユーズの動作温度の変化が小さくなる
As is clear from the above comparison, by using the flux 4a using disproportionated rosin, the change in the operating temperature of the temperature fuse after long-term high-temperature heating is reduced.

災血阻2 マタ、フラックスには必要に応じてアミンのハロゲン化
水素酸塩や有機アミン塩酸塩などの活性剤を少量添加し
てもよい。
If necessary, a small amount of an activator such as an amine hydrohalide or an organic amine hydrochloride may be added to the flux.

この実施例では、フラックスの活性が強力となり、長時
間に渡る高温加熱後の温度ヒユーズの動作温度がより安
定するという利点がある。
This embodiment has the advantage that the activity of the flux is stronger and the operating temperature of the temperature fuse is more stable after long periods of high temperature heating.

なお、本発明は上記実施例に示したアキシャル型の温度
ヒユーズだけでなく、ラジアル型の温度ヒユーズや、絶
縁基板上に可溶合金層を形成したチップ型温度ヒユーズ
等、各種の可溶合金を用いた温度ヒユーズに適用できる
ものである。
The present invention is applicable not only to the axial type temperature fuse shown in the above embodiments, but also to various types of fusible alloys, such as radial type temperature fuses and chip type temperature fuses in which a fusible alloy layer is formed on an insulating substrate. This can be applied to the temperature fuse used.

髪肌立対策 以上説明したように、この発明はフラックスに不均化ロ
ジンを用いたことにより、温度ヒユーズを高温で長時間
使用した後の動作温度の変化を小さくでき、温度ヒユー
ズの信頼性を向上させる効果がある。
Measures against hair texture As explained above, this invention uses disproportionated rosin as the flux, which reduces the change in operating temperature after the temperature fuse is used at high temperatures for a long time, and improves the reliability of the temperature fuse. It has the effect of improving

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の温度ヒユーズの断面図である。第2
図は従来の温度ヒユーズの断面図で、第3図はその動作
後の断面図である。 1.2・・・・・・リード線、 3・・・・・・可溶合金、 4a・・・・・・フラックス、 5・・・・・・絶縁ケース、 6.7・・・・・・封口樹脂。 第  1 図 第2図 W!43 図
FIG. 1 is a cross-sectional view of the temperature fuse of the present invention. Second
The figure is a cross-sectional view of a conventional temperature fuse, and FIG. 3 is a cross-sectional view after its operation. 1.2... Lead wire, 3... Fusible alloy, 4a... Flux, 5... Insulation case, 6.7...・Sealing resin. Figure 1 Figure 2 W! 43 Figure

Claims (2)

【特許請求の範囲】[Claims] (1)可溶合金にフラックスを塗布し、この可溶合金部
分を絶縁ケースに収納封止してなる温度ヒューズにおい
て、 前記フラックスのロジンとして不均化ロジンを用いるこ
とを特徴とする温度ヒューズ。
(1) A thermal fuse comprising a fusible alloy coated with flux and a portion of the fusible alloy sealed in an insulating case, characterized in that a disproportionated rosin is used as the rosin for the flux.
(2)前記不均化ロジンに活性剤を添加してなる請求項
1記載の温度ヒューズ。
(2) The thermal fuse according to claim 1, wherein an activator is added to the disproportionated rosin.
JP30989490A 1990-11-14 1990-11-14 Thermal fuse Pending JPH04181625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30989490A JPH04181625A (en) 1990-11-14 1990-11-14 Thermal fuse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30989490A JPH04181625A (en) 1990-11-14 1990-11-14 Thermal fuse

Publications (1)

Publication Number Publication Date
JPH04181625A true JPH04181625A (en) 1992-06-29

Family

ID=17998601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30989490A Pending JPH04181625A (en) 1990-11-14 1990-11-14 Thermal fuse

Country Status (1)

Country Link
JP (1) JPH04181625A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5939217A (en) * 1996-10-29 1999-08-17 Sony Chemicals Corporation Battery and protecting element therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5939217A (en) * 1996-10-29 1999-08-17 Sony Chemicals Corporation Battery and protecting element therefor

Similar Documents

Publication Publication Date Title
EP1424711A1 (en) Alloy type thermal fuse and material for a thermal fuse element
EP1424712A1 (en) Alloy type thermal fuse and material for a thermal fuse element
JP2003328066A (en) Alloy-type thermal fuse
EP0824258B1 (en) Structure of electronic device
JPH04181625A (en) Thermal fuse
US3666913A (en) Method of bonding a component lead to a copper etched circuit board lead
EP1424713B1 (en) Alloy type thermal fuse and material for a thermal fuse element
KR19990023758A (en) Circuit device including SMD element, especially temperature sensor, and temperature sensor manufacturing method
JP2667188B2 (en) Fuse and manufacturing method thereof
JP3173086B2 (en) Fusible alloy type thermal fuse
JP4946419B2 (en) Thermal fuse and manufacturing method thereof
JP3403993B2 (en) Fuse with flux
JP2002150906A (en) Alloy-type thermal fuse
JPH02305409A (en) Overload fusing type resistor
KR820002403B1 (en) Passivated and ecapsulated semiconductors and method of making same
JP2001143592A (en) Fuse alloy
JP4230313B2 (en) Cylindrical case type alloy type thermal fuse
JPH086354Y2 (en) Alloy type thermal fuse
JPH0831298B2 (en) Thermal switch
JPH07105813A (en) Thermal fuse
JP2002100272A (en) Thermo protector
JPH10284305A (en) Glass-sealed thermistor and manufacture thereof
JPH05258909A (en) Glass-sealed thermistor
JPS593016B2 (en) temperature fuse
JPS61142621A (en) Manufacture of temperature fuse