JPH07105813A - Thermal fuse - Google Patents

Thermal fuse

Info

Publication number
JPH07105813A
JPH07105813A JP27787393A JP27787393A JPH07105813A JP H07105813 A JPH07105813 A JP H07105813A JP 27787393 A JP27787393 A JP 27787393A JP 27787393 A JP27787393 A JP 27787393A JP H07105813 A JPH07105813 A JP H07105813A
Authority
JP
Japan
Prior art keywords
case
melting point
low melting
flux
metal piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27787393A
Other languages
Japanese (ja)
Inventor
Natsuki Takegawa
奈都紀 竹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP27787393A priority Critical patent/JPH07105813A/en
Publication of JPH07105813A publication Critical patent/JPH07105813A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To surely prevent slight current from running after arc generated during operation is extinguished by adding a bending and forming process of lead wire's end part in a case. CONSTITUTION:A low melting point fusable metal piece 3 is bridged between the tip ends of a pair of parallel lead wires 2, 2 and a flux 4 is applied to the low melting point fusable metal piece 3. The flux applied low melting point fusable metal piece 3 is stored in a flat case 1 having a mouth 11 at one end through the mouth 11. After that, the mouth 11 is sealed with an adhesive 5 (e.g. epoxy resin). Further, the lead wires' tip ends 20 in the case are bent and formed so as to separate the lead wires' tip ends 20 and the flux applied low melting point fusable metal piece 3 from the inner face 10 of the case.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は扁平ケ−スタイプの合金
型温度ヒュ−ズに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flat case type alloy type temperature fuse.

【0002】[0002]

【従来の技術】ヒュ−ズエレメントに低融点可溶合金片
を使用した合金型温度ヒュ−ズにおいては、当該温度ヒ
ュ−ズにより保護しようとする電気機器が過電流により
発熱すると、その発生熱によるヒュ−ズエレメントの溶
断で機器への通電を遮断し、機器の異常発熱若しくは火
災の発生を未然に防止している。
2. Description of the Related Art In an alloy type temperature fuse using a low melting point fusible alloy piece as a fuse element, when an electric device to be protected by the temperature fuse generates heat due to an overcurrent, the generated heat is generated. The fuse element is blown out by cutting off the power supply to the equipment to prevent abnormal heat generation or fire of the equipment.

【0003】合金型温度ヒュ−ズの作動機構は、電気機
器の過電流に基づく発生熱で低融点可溶合金片が溶融さ
れ、この溶融金属が既に溶融しているフラックスとの共
存下、表面エネルギ−で球状化され、この球状化の進行
によって溶融金属が分断され、この分断初期に発生する
ア−クが分断距離の増加により持続されなくなったとき
に、通電遮断が終了する。
The operation mechanism of the alloy type temperature fuse is such that the low melting point fusible alloy piece is melted by the heat generated by the overcurrent of the electric equipment, and this molten metal coexists with the flux already melted on the surface. The spheroidization is performed by energy, the molten metal is divided by the progress of the spheroidization, and when the arc generated at the initial stage of the division is no longer sustained due to the increase of the division distance, the current interruption is terminated.

【0004】従来、かかる合金型温度ヒュ−ズの一形式
として、図5の(イ)並びに図5の(ロ)〔図5の
(イ)におけるロ−ロ断面図〕に示すように、一対の並
行なリ−ド線2’,2’間の先端部に低融点可溶金属片
3’を橋設し、該低融点可溶金属片3’にフラックス
4’を塗布し、該フラックス塗布低融点可溶金属片3
0’を一端に開口11’を有する扁平ケ−ス1’内にそ
の開口11’より収容し、該開口11’を接着剤5’で
封止したものが公知である。
As a conventional type of such an alloy type temperature fuse, as shown in (a) of FIG. 5 and (b) of FIG. 5 [a cross-sectional view taken along the line of (a) of FIG. A low melting point fusible metal piece 3'is bridged between the parallel lead wires 2 ', 2', and a flux 4'is applied to the low melting point fusible metal piece 3 ', and the flux is applied. Low melting point metal piece 3
It is known that 0 'is accommodated in a flat case 1'having an opening 11' at one end through the opening 11 'and the opening 11' is sealed with an adhesive 5 '.

【0005】周知の通り、温度ヒュ−ズにおいては、回
路電流が小であり、故障電流が低電流であるために、電
流ヒュ−ズのジュ−ル熱による溶断作動が困難である場
合に使用される。従って、温度ヒュ−ズで保護しようと
する回路の使用電圧、使用電流が低く、温度ヒュ−ズ作
動時でのア−クのエネルギ−も小であって、電流ヒュ−
ズの場合と異なり、ア−クによるケ−スの破裂は、通
常、発生しない。
As is well known, in the temperature fuse, since the circuit current is small and the failure current is low, it is used when it is difficult to perform the fusing operation of the current fuse due to the jule heat. To be done. Therefore, the operating voltage and current of the circuit to be protected by the temperature fuse are low, the energy of the arc during the operation of the temperature fuse is small, and the current fuse is low.
Unlike the case described above, the rupture of the case by the arc does not usually occur.

【0006】[0006]

【発明が解決しようとする課題】通常、温度ヒュ−ズで
保護される電気機器においては、負荷電流に基づくヒ−
トサイクルに曝され、温度ヒュ−ズの作動前にその作動
温度よりも低い温度の範囲内で繰返し加熱を受ける。
Generally, in an electric device protected by a temperature fuse, a heat source based on a load current is used.
And is repeatedly subjected to heating within a temperature range lower than its operating temperature before operating the temperature fuse.

【0007】この繰返し加熱の温度は、機器の定格通電
電流、従って、機器の耐熱性から定まり、耐熱性の高い
機器ほど温度ヒュ−ズの作動温度が高く設定されるか
ら、作動温度の高い温度ヒュ−ズの場合、上記の繰返し
加熱温度がかなり高温となってフラックスの融点以上と
なることがある。
The temperature of this repetitive heating is determined by the rated energizing current of the equipment and therefore the heat resistance of the equipment, and the higher the heat resistance of the equipment, the higher the operating temperature of the temperature fuse is set. In the case of fuses, the above-mentioned repeated heating temperature may become considerably high and may exceed the melting point of the flux.

【0008】而るに、従来の扁平ケ−スタイプの合金型
温度ヒュ−ズにおいては、ケ−ス内の相対向する平面の
一方にリ−ド線が接触し、リ−ド線先端部のフラックス
塗布低融点可溶金属片がその一方の平面に近接している
から、機器のヒ−トサイクルに基づく繰返し加熱により
フラックスが溶融されると、その直下のケ−ス内平面箇
所への溶融フラックスの移行が避けられず、加熱の繰返
しのためにその移行フラックスがケ−ス内平面箇所に凝
着され、かかるもとでは、温度ヒュ−ズの作動時にア−
クがその凝着フラックスに接触し、フラックスの炭化が
余儀なくされる。
However, in the conventional flat case type alloy type temperature fuse, the lead wire comes into contact with one of the opposing flat surfaces in the case, and the tip of the lead wire is in contact. Flux application Since the low melting point fusible metal piece is close to one of the planes, if the flux is melted by repeated heating based on the heat cycle of the equipment, it will melt to the plane part in the case immediately below it. The flux transfer is unavoidable, and due to repeated heating, the transferred flux is adhered to the flat portion in the case, and under such a condition, it is generated during the operation of the temperature fuse.
The craters come into contact with the cohesive flux, forcing the carbonization of the flux.

【0009】かかるフラックスの炭化のもとでは、ア−
ク消滅後においても、ヒュ−ズエレメント分断間が炭化
路のために低電気抵抗となるから、確実な通電遮断が困
難となり、微電流の続流通電が避けられない。
Under such carbonization of the flux,
Since the carbonization path causes a low electrical resistance even after the fuse has been extinguished, it is difficult to reliably cut off the energization, and it is inevitable that a small amount of current continues to flow.

【0010】このように、扁平ケ−スタイプの合金型温
度ヒュ−ズにおいては、フラックス塗布低融点可溶金属
片のフラックスが機器のヒ−トサイクルのために溶融し
てケ−ス内平面に凝着され、温度ヒュ−ズ作動時のア−
クのためにこの凝着フラックスが炭化され、ア−ク消滅
後においてこの炭化路に微電流が流れて、確実な電流遮
断が困難になることがある。
As described above, in the flat case type alloy type temperature fuse, the flux of the flux-coated low melting point soluble metal piece is melted due to the heat cycle of the equipment and is formed on the inner surface of the case. Adhesion, an alarm during the operation of the temperature fuse
This adhesion flux is carbonized due to the arc, and after the arc disappears, a slight current flows in this carbonization path, which may make it difficult to reliably cut off the current.

【0011】本発明の目的は、扁平ケ−スタイプの合金
型温度ヒュ−ズのかかる固有の問題を簡易に解消できる
温度ヒュ−ズを提供することにある。
An object of the present invention is to provide a temperature fuse capable of easily solving the problem inherent to the flat case type alloy type temperature fuse.

【0012】[0012]

【課題を解決するための手段】本発明の温度ヒュ−ズ
は、一対の並行なリ−ド線間の先端部に低融点可溶金属
片を橋設し、該低融点可溶金属片にフラックスを塗布
し、該フラックス塗布低融点可溶金属片を一端に開口を
有する扁平ケ−ス内にその開口より収容し、該開口を接
着剤で封止した合金型温度ヒュ−ズにおいて、ケ−ス内
におけるリ−ド線先端部の曲げ成形により同リ−ド線先
端部並びにフラックス塗布低融点可溶金属片をケ−ス内
面より離隔したことを特徴とする構成であり、通常、使
用電圧が250ボルト以下、使用電流が7アンペア以下
とされる。
In the temperature fuse of the present invention, a low melting point soluble metal piece is bridged at a tip portion between a pair of parallel lead wires, and the low melting point soluble metal piece is connected to the low melting point soluble metal piece. In an alloy type temperature fuse in which a flux is applied, the flux-coated low melting point soluble metal piece is housed in the flat case having an opening at one end through the opening, and the opening is sealed with an adhesive. -The structure is characterized in that the lead wire tip and the flux-coated low melting point soluble metal piece are separated from the inner surface of the case by bending and forming the lead wire tip in the case. The voltage is 250 volts or less and the working current is 7 amps or less.

【0013】以下、本発明の構成を図面を参照しつつ説
明する。図1の(イ)は本発明の合金型温度ヒュ−ズを
示す説明図、図1の(ロ)は図1の(イ)におけるロ−
ロ断面図、図1の(ハ)は図1の(イ)におけるハ−ハ
断面図である。図1の(イ)乃至図1の(ハ)におい
て、1は一端を開口した扁平ケ−スであり、セラミック
ス、プラスチック(例えば、フェノ−ル樹脂)等を使用
できる。2,2は一対の並行なリ−ド線(通常、銅線が
使用される)、3はリ−ド線2,2間の先端部に溶接に
より橋設したヒュ−ズエレメントとしての低融点可溶金
属片である。4は低融点可溶金属片3に塗布したフラッ
クスであり、このフラックス塗布低融点可溶金属片30
をケ−ス開口11よりケ−ス1内に収容し、リ−ド線先
端部の曲げ形成により該リ−ド線先端部20並びにフラ
ックス塗布低融点可溶金属片30をケ−ス内面の平面1
0より離隔してある。5はケ−ス1の開口11を封止し
た接着剤であり、例えばエポキシ樹脂を使用できる。
The structure of the present invention will be described below with reference to the drawings. 1 (a) is an explanatory view showing the alloy type temperature fuse of the present invention, and FIG. 1 (b) is a flow chart in FIG. 1 (a).
2B is a sectional view, and FIG. 1C is a sectional view taken along line HB in FIG. In FIGS. 1A to 1C, reference numeral 1 is a flat case having one end opened, and ceramics, plastic (for example, phenol resin) or the like can be used. 2 and 2 are a pair of parallel lead wires (usually copper wires are used), 3 is a low melting point as a fuse element bridged by welding at the tip between the lead wires 2 and 2. It is a soluble metal piece. Reference numeral 4 is a flux applied to the low melting point soluble metal piece 3, and this flux applying low melting point soluble metal piece 30
Is housed in the case 1 through the case opening 11 and the lead wire tip 20 and the flux-coated low melting point fusible metal piece 30 are formed on the inner surface of the case by bending the lead wire tip. Plane 1
Separated from zero. Reference numeral 5 denotes an adhesive that seals the opening 11 of the case 1. For example, an epoxy resin can be used.

【0014】図2の(イ)並びに図2の(ロ)〔図2の
(イ)におけるロ−ロ断面図〕は本発明の別実施例を示
し、リ−ド線先端部20を傾斜方向に曲げ形成して該リ
−ド線先端部20並びにフラックス塗布低融点可溶金属
片30をケ−ス内面の平面10より離隔してある。
2 (a) and 2 (b) [a sectional view taken along line (b) of FIG. 2] shows another embodiment of the present invention, in which the lead wire tip 20 is inclined. The lead wire tip portion 20 and the flux-coated low-melting point fusible metal piece 30 are formed by bending to form a space apart from the plane 10 of the inner surface of the case.

【0015】図3の(イ)並びに図3の(ロ)〔図3の
(イ)におけるロ−ロ断面図〕は本発明の他の別実施例
を示し、リ−ド線先端部20を折り返し、この折り返し
先端をケ−ス奥部のコ−ナに当接してリ−ド線先端部2
0並びにフラックス塗布低融点可溶金属片30をケ−ス
内面の平面10より離隔してある。
3 (a) and 3 (b) [a sectional view taken along line (b) of FIG. 3] shows another embodiment of the present invention, in which the lead wire tip portion 20 is Fold back the tip of the folded wire by abutting the tip of the folded back against the corner at the back of the case.
0 and the flux-applied low melting point fusible metal piece 30 are separated from the plane 10 of the inner surface of the case.

【0016】上記の実施例においては、両リ−ド線とも
ケ−ス内の両平面の一方側に配設しているが、図4に示
すように、ケ−ス内の各平面10にリ−ド線2を一本あ
て配設し、各リ−ド線2の先端部20を曲げ形成してリ
−ド線先端部20並びにフラックス塗布低融点可溶金属
片30をケ−ス内面の平面10より離隔することもでき
る。上記何れの実施例においても、ケ−ス内の各平面1
0とフラックス塗布低融点可溶金属片30との間隔は、
1mm〜1.5mm程度としてある。
In the above embodiment, both lead wires are arranged on one side of both planes in the case. However, as shown in FIG. One lead wire 2 is arranged and the tip 20 of each lead wire 2 is bent to form the lead wire tip 20 and the flux-coated low melting point fusible metal piece 30 on the inner surface of the case. It may be separated from the plane 10. In each of the above embodiments, each plane 1 in the case
The distance between 0 and the flux melting low melting point metal piece 30 is
It is about 1 mm to 1.5 mm.

【0017】[0017]

【作用】温度ヒュ−ズで保護しようとする機器が、ヒ−
トサイクルによりフラックスよりも高温で、かつ低融点
可溶金属片の融点よりも低温で加熱され、フラックス塗
布低融点可溶金属片のフラックスが溶融されても、溶融
フラックスが”だれ”を生じない程度の粘性を有し、か
つフラックス塗布低融点可溶金属片とケ−ス内平面との
間が充分に離隔されているから、その溶融フラックスの
ケ−ス内平面への移行、移行フラックスの繰返し加熱に
よるケ−ス内平面への凝着を回避できる。
Function: The equipment to be protected by the temperature fuse is
Even if the flux of the low melting point fusible metal piece is melted by being heated at a temperature higher than the flux and lower than the melting point of the low melting point fusible metal piece by thermal cycle, the molten flux does not cause "dag". Since the melted low melting point fusible metal piece and the case inner plane are sufficiently separated from each other, the molten flux is transferred to the case inner plane, Adhesion to the inner surface of the case due to repeated heating can be avoided.

【0018】温度ヒュ−ズにおいて、低融点可溶金属片
と共にフラックスが溶融されると、溶融金属が溶融フラ
ックスと共に表面エネルギ−により球状化され、その球
状化の進行で分断され、分断の先端部間にア−クが発生
する。このア−クがケ−ス内平面に接触しても、その箇
所にはフラツクスの凝着がないから、分断間でのフラッ
クス炭化による導電路の生成を回避できる。従って、ア
−ク消滅後での分断間の抵抗を充分に保障でき、通電遮
断を完結できる。このことは次ぎの実施例と比較例との
作動後の絶縁抵抗値の測定結果の比較からも確認でき
る。
In the temperature fuse, when the flux is melted together with the low melting point fusible metal piece, the molten metal is spheroidized by the surface energy together with the molten flux, and the spheroidization progresses and the spheroidization is performed. An arc occurs in the meantime. Even if this arc comes into contact with the inner surface of the case, since there is no adhesion of the flux at that portion, it is possible to avoid the generation of a conductive path due to the flux carbonization between the divisions. Therefore, the resistance between the divisions after the arc is extinguished can be sufficiently ensured, and the energization interruption can be completed. This can be confirmed by comparing the measurement results of the insulation resistance values after the operation of the following Examples and Comparative Examples.

【0019】[0019]

【実施例】図1の(イ)乃至(ハ)において、扁平ケ−
ス1には、タテ(リ−ド線方向)が8.5mm、ヨコが
6.6mm、ケ−ス内の扁平空間の厚みが2.7mmの
セラミツクスケ−スを使用し、リ−ド線2には外径0.
7mmの銅線を使用し、低融点可溶金属片3には融点が
143℃の共晶合金で外径0.5mmのものを使用し、
フラツクス4には軟化点70℃のロジン系配合物を使用
し、更に、リ−ド線先端部20の長さLを2mmとし、
ケ−ス内各平面10とリ−ド線先端部20との間隔hを
1.0mmとして、実施例品を製作した。
EXAMPLE In FIGS. 1A to 1C, the flat cable
As the case 1, a ceramic case having a vertical length (lead wire direction) of 8.5 mm, a horizontal width of 6.6 mm, and a flat space inside the case having a thickness of 2.7 mm is used. 2 has an outer diameter of 0.
7 mm copper wire is used, and the low melting point fusible metal piece 3 is a eutectic alloy having a melting point of 143 ° C. and an outer diameter of 0.5 mm.
For the flux 4, a rosin-based compound having a softening point of 70 ° C. is used, and further, the length L of the lead wire tip portion 20 is set to 2 mm,
The product of the example was manufactured by setting the distance h between each flat surface 10 in the case and the lead wire tip portion 20 to 1.0 mm.

【0020】この実施例品に対し、リ−ド線先端部の曲
げ形成を行わず、図5の(ロ)に示すようにケ−ス内の
一方の平面にケ−ス内リ−ド線部分を全長にわたり接触
させ、これ以外は実施例品と同じにして比較例品を製作
した。
With respect to this embodiment, the lead wire end portion was not bent and the lead wire in the case was attached to one of the planes in the case as shown in FIG. A comparative example product was manufactured in the same manner as the example product except that the portions were contacted over the entire length.

【0021】これらの実施例品並びに比較例品(何れ
も、試料数は20個)について、275ボルト、12ア
ンペアの課電を継続しつつ、130℃での1時間加熱,
10分間冷却を10回繰り返した後、温度ヒュ−ズを作
動させ、作動後、課電を解除したうえでリ−ド線間の抵
抗値を測定したところ、実施例品においては最も低いも
ので50MΩであったが、比較例品においては、0.1
MΩが1箇、0.2MΩが2箇、残りが2MΩ〜10M
Ωであった。
With respect to these example products and comparative example products (each of which has 20 samples), heating at 130 ° C. for 1 hour while continuing to apply a voltage of 275 V and 12 amps,
After cooling was repeated 10 times for 10 minutes, the temperature fuse was activated, and after the activation, the voltage was released and the resistance value between the lead wires was measured. Although it was 50 MΩ, it was 0.1 in the comparative example product.
One MΩ, two 0.2MΩ, the rest 2MΩ to 10M
It was Ω.

【0022】[0022]

【発明の効果】本発明の温度ヒュ−ズは、上述した通り
の構成であり、扁平ケ−スタイプの合金型温度ヒュ−ズ
において、作動時に発生するア−クの消滅後、リ−ド線
間の抵抗を充分に高抵抗になし得るから、ア−クの消滅
後に微電流が流れるのを確実に防止できる。
The temperature fuse of the present invention is constructed as described above, and in the flat case type alloy temperature fuse, after the arc generated during operation disappears, the lead wire is removed. Since the resistance between them can be made sufficiently high, it is possible to reliably prevent a slight current from flowing after the arc disappears.

【0023】而して、本発明によれば、通電遮断を確実
に完結できる扁平ケ−スタイプの合金型温度ヒュ−ズ
を、リ−ド線先端部を曲げ形成する工程を追加するだけ
で簡単に提供できる。
Thus, according to the present invention, a flat case type alloy type temperature fuse capable of surely completing energization interruption can be simply formed by adding a step of bending the lead wire tip. Can be provided to.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1の(イ)は本発明の一実施例を示す説明
図、図1の(ロ)は図1の(イ)におけるロ−ロ断面
図、図1の(ハ)は図1の(イ)におけるハ−ハ断面図
である。
1A is an explanatory view showing an embodiment of the present invention, FIG. 1B is a cross-sectional view taken along the line of FIG. 1A, and FIG. FIG. 3 is a cross-sectional view taken along the line 1- (I) of FIG.

【図2】図2の(イ)は上記とは別の本発明の実施例を
示す説明図、図2の(ロ)は図2の(イ)におけるロ−
ロ断面図である。
2 (a) is an explanatory view showing an embodiment of the present invention different from the above, and FIG. 2 (b) is a flowchart in FIG. 2 (a).
FIG.

【図3】図3の(イ)は上記とは別の本発明の実施例を
示す説明図、図3の(ロ)は図3の(イ)におけるロ−
ロ断面図である。
3 (a) is an explanatory view showing an embodiment of the present invention different from the above, and FIG. 3 (b) is a flowchart in FIG. 3 (a).
FIG.

【図4】図4は上記とは別の本発明の実施例を示す説明
図である。
FIG. 4 is an explanatory view showing another embodiment of the present invention different from the above.

【図5】図5の(イ)は従来例を示す説明図、図5の
(ロ)は図5の(イ)におけるロ−ロ断面図である。
5 (A) is an explanatory view showing a conventional example, and FIG. 5 (B) is a cross-sectional view taken along line (B) of FIG.

【符号の説明】[Explanation of symbols]

1 ケ−ス 10 ケ−ス内の平面 11 ケ−スの開口 2 リ−ド線 20 リ−ド線先端部 3 低融点可溶金属片 4 フラックス 5 接着剤 1 Case 10 Plane in 10 Case 11 Opening of Case 2 Lead Wire 20 Lead Wire Tip 3 Low Melting Melt Metal Piece 4 Flux 5 Adhesive

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一対の並行なリ−ド線間の先端部に低融点
可溶金属片を橋設し、該低融点可溶金属片にフラックス
を塗布し、該フラックス塗布低融点可溶金属片を一端に
開口を有する扁平ケ−ス内にその開口より収容し、該開
口を接着剤で封止した合金型温度ヒュ−ズにおいて、ケ
−ス内におけるリ−ド線先端部の曲げ成形により同リ−
ド線先端部並びにフラックス塗布低融点可溶金属片をケ
−ス内面より離隔したことを特徴とする温度ヒュ−ズ。
1. A low melting point soluble metal piece is bridged at a tip portion between a pair of parallel lead wires, a flux is applied to the low melting point soluble metal piece, and the flux coating low melting point soluble metal piece is applied. In an alloy type temperature fuse in which a piece is housed in a flat case having an opening at one end through the opening, and the opening is sealed with an adhesive, bending of the lead wire tip portion in the case is performed. By the same lead
A temperature fuse characterized in that the wire end and the flux-coated low melting point metal piece are separated from the inner surface of the case.
JP27787393A 1993-10-08 1993-10-08 Thermal fuse Pending JPH07105813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27787393A JPH07105813A (en) 1993-10-08 1993-10-08 Thermal fuse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27787393A JPH07105813A (en) 1993-10-08 1993-10-08 Thermal fuse

Publications (1)

Publication Number Publication Date
JPH07105813A true JPH07105813A (en) 1995-04-21

Family

ID=17589479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27787393A Pending JPH07105813A (en) 1993-10-08 1993-10-08 Thermal fuse

Country Status (1)

Country Link
JP (1) JPH07105813A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4940366B1 (en) * 2011-06-10 2012-05-30 内橋エステック株式会社 Thermal fuse and method of manufacturing the thermal fuse

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4940366B1 (en) * 2011-06-10 2012-05-30 内橋エステック株式会社 Thermal fuse and method of manufacturing the thermal fuse

Similar Documents

Publication Publication Date Title
JP3995058B2 (en) Alloy type temperature fuse
JP2007294117A (en) Protection element and operation method of protection element
JPH07105813A (en) Thermal fuse
JP4156406B2 (en) Thermo protector and method of operating thermo protector
JP3696635B2 (en) How the temperature protector works
JPH07192593A (en) Alloy type thermal fuse and its manufacture
JP2001143592A (en) Fuse alloy
JPS6030020A (en) Temperature fuse
JP2002150906A (en) Alloy-type thermal fuse
JPH086354Y2 (en) Alloy type thermal fuse
JP2001195963A (en) Alloy temperature fuse
JPH117875A (en) Alloy temperature fuse
JP4101536B2 (en) Alloy type thermal fuse
JP3403993B2 (en) Fuse with flux
JPS6016020Y2 (en) Safety devices for electrical appliances
JPH117876A (en) Circuit board type temperature fuse
JPH06124632A (en) Method for using alloy type temperature fuse
JPH02288126A (en) Return method of alloy type temperature fuse
JPH1140025A (en) Thermal alloy fuse
JPH07105811A (en) Thermal fuse
JP3131936B2 (en) Alloy type temperature fuse
JPS642360Y2 (en)
JP2911793B2 (en) Alloy type temperature fuse
JP2561549B2 (en) How to use thermal fuse and thermal fuse
JPH0795418B2 (en) Flat thermal fuse