JP3267740B2 - Substrate type temperature fuse - Google Patents
Substrate type temperature fuseInfo
- Publication number
- JP3267740B2 JP3267740B2 JP11005293A JP11005293A JP3267740B2 JP 3267740 B2 JP3267740 B2 JP 3267740B2 JP 11005293 A JP11005293 A JP 11005293A JP 11005293 A JP11005293 A JP 11005293A JP 3267740 B2 JP3267740 B2 JP 3267740B2
- Authority
- JP
- Japan
- Prior art keywords
- melting point
- fusible alloy
- flux
- low melting
- point fusible
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Fuses (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明はヒュ−ズエレメントに低
融点可溶合金片を使用した合金タイプの基板型温度ヒュ
−ズに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alloy-type substrate type temperature fuse using a fuse element having a low melting point as a fuse element.
【0002】[0002]
【従来の技術】電気機器を過電流から保護し、電気機器
の熱的損傷、ひいては火災の発生を未然に防止する電気
部品として温度ヒュ−ズが存在する。この温度ヒュ−ズ
として、ヒュ−ズエレメントに低融点可溶合金片を用い
た合金タイプの温度ヒュ−ズが汎用されている。この合
金タイプの温度ヒュ−ズの基本的な構造は、電極間に低
融点可溶合金片を橋設し、その低融点可溶合金片上にフ
ラツクスを塗布し、このフラツクス塗布合金片を絶縁体
で包囲した構成であり、被保護機器における過電流で発
熱し易い箇所に取り付けて使用され、その作動過程は次
の通りである。2. Description of the Related Art There is a temperature fuse as an electric component for protecting electric equipment from overcurrent and preventing thermal damage to the electric equipment and, consequently, fire. As this temperature fuse, an alloy type temperature fuse using a low melting point fusible alloy piece for a fuse element is widely used. The basic structure of this alloy type temperature fuse is such that a low melting point fusible alloy piece is bridged between the electrodes, a flux is applied on the low melting point fusible alloy piece, and the flux coated alloy piece is used as an insulator. The protection device is attached to a portion of the protected device that is likely to generate heat due to an overcurrent, and the operation process is as follows.
【0003】すなわち、被保護機器が過電流で発熱する
と、その発生熱により低融点可溶合金片が溶融し、この
溶融金属が表面張力で既に溶融しているフラツクスとの
共存下、表面張力により球状化し、この球状化が進んで
分断され、機器への通電が遮断される。この場合、溶融
金属の球状化には、溶融金属の電極への濡れ性が主に関
与し、濡れ性が良好なほど球状化がよく促進され、迅速
な分断が期待できる。而るに、溶融フラックスにおいて
は、溶融金属の濡れ性を良好にするから、溶融金属の球
状化分断の促進に寄与する。That is, when the device to be protected generates heat due to an overcurrent, the generated heat melts the low-melting-point fusible alloy piece, and the molten metal coexists with the flux already melted by the surface tension. The spheroidization proceeds, the spheroidization proceeds and the spheroid is cut off, and the power supply to the device is cut off. In this case, the wettability of the molten metal to the electrode is mainly involved in the spheroidization of the molten metal, and the better the wettability, the better the spheroidization is promoted, and rapid separation can be expected. Thus, the molten flux improves the wettability of the molten metal, thereby contributing to the promotion of the spheroidization of the molten metal.
【0004】本出願人においては、合金タイプの温度ヒ
ュ−ズとして、基板型温度ヒュ−ズを開発した。この基
板型温度ヒュ−ズの基本的構造は、図3の(イ)並びに
図3の(ロ)〔図3の(イ)のロ−ロ断面図〕に示すよ
うに、絶縁基板1’の片面上に巾方向に間隔を隔てて層
状電極2’,2’を設け、これら電極の先端部間に低融
点可溶合金片3’を橋設し、該低融点可溶合金片3’上
にフラックス4’を塗布し、各電極2’に後端側からリ
−ド線先端部52’を接続し、上記絶縁基板片面の全面
に絶縁層6’を被覆した構成であり、絶縁基板面を被保
護機器に接触させて使用される。The present applicant has developed a substrate-type temperature fuse as an alloy-type temperature fuse. The basic structure of this substrate-type temperature fuse is, as shown in FIG. 3A and FIG. 3B, a cross-sectional view of FIG. Layered electrodes 2 ', 2' are provided on one surface at intervals in the width direction, and a low-melting-point fusible alloy piece 3 'is bridged between the tips of these electrodes. And a lead wire 52 'is connected to each electrode 2' from the rear end side, and the entire surface of one surface of the insulating substrate is covered with an insulating layer 6 '. Is used in contact with the device to be protected.
【0005】この基板型温度ヒュ−ズにおいては、温度
ヒュ−ズの全表面中、絶縁基板面が占める割合が高く、
他の方式の温度ヒュ−ズに較べ機器との接触面積を広く
し得、しかも、絶縁基板例えば、セラミックス板が良好
な熱良伝導性を有するので、被保護機器からの発生熱を
高感度で受熱できる。In this substrate type temperature fuse, the ratio of the insulating substrate surface to the entire surface of the temperature fuse is high.
Compared to other types of temperature fuses, the area of contact with the equipment can be increased, and the insulating substrate, for example, a ceramic plate, has good thermal conductivity. Can receive heat.
【0006】[0006]
【発明が解決しようとする課題】温度ヒュ−ズにおいて
は、定格電流を流しつづけても作動しない温度としてホ
−ルディング温度が設定されている。(例えば、公称動
作温度115℃の温度ヒュ−ズのホ−ルディング温度は
89℃、公称動作温度130℃の温度ヒュ−ズのホ−ル
ディング温度は102℃、公称動作温度133℃の温度
ヒュ−ズのホ−ルディング温度は108℃、公称動作温
度150℃の温度ヒュ−ズのホ−ルディング温度は12
3℃である)而して、温度ヒュ−ズが作動温度以下であ
っても、ホ−ルディング温度近傍にまで加熱されると、
フラックスの溶融が避けられない。In the temperature fuse, a holding temperature is set as a temperature at which the temperature fuse does not operate even when the rated current is continuously supplied. (For example, a holding temperature of a temperature fuse having a nominal operating temperature of 115 ° C is 89 ° C, a holding temperature of a temperature fuse having a nominal operating temperature of 130 ° C is 102 ° C, and a temperature fuse having a nominal operating temperature of 133 ° C. The fuse has a holding temperature of 108 ° C. and a nominal operating temperature of 150 ° C. The fuse has a holding temperature of 12 ° C.
Thus, even if the temperature fuse is lower than the operating temperature, if it is heated to near the holding temperature,
Flux melting is inevitable.
【0007】上記基板型温度ヒュ−ズにおいては、低融
点可溶合金片両端31’のそれぞれを各電極先端部の巾
中間に位置させてある(フラックスが塗布された部分で
は絶縁被覆層と絶縁基板並びに層状電極との接着が行わ
れず、この非接着部分の面積が多くなるほど、絶縁被覆
層の封止性が低下するので、フラックスの塗布量は低融
点可溶合金片を包囲するに足る最小限度に抑えてあ
る)。In the above-mentioned substrate type temperature fuse, both ends 31 'of the low melting point fusible alloy piece are located in the middle of the width of the tip of each electrode (in the portion where the flux is applied, the insulating coating layer is insulated from the insulating coating layer). Since the bonding with the substrate and the layered electrode is not performed, and the sealing area of the insulating coating layer is reduced as the area of the non-bonded portion increases, the applied amount of the flux is a minimum enough to surround the low melting point fusible alloy piece. To the limit).
【0008】また、電極2’面とリ−ド線先端部52’
との境に、深い微細間隙の入隅箇所n’が存在し、この
入隅箇所を絶縁被覆層の材料で完全に埋めることは困難
であり(この絶縁被覆層には、低融点可溶合金片に塗布
したフラックスを溶融させることのないように、常温硬
化性のエポキシ樹脂が使用されるが、低融点可溶合金片
が機械的に弱く、切断され易いので、絶縁被覆に加圧成
形法を使用することは無理であり、滴下塗装等の実質上
無加圧方式を使用せざるを得ないので、入隅箇所に被覆
材料を完全に圧入することは困難である)、その入隅箇
所に毛細管通路が形成され易い。Further, the surface of the electrode 2 'and the lead wire tip 52'
At the boundary between the two, there is a corner n 'of the deep fine gap, and it is difficult to completely fill the corner with the material of the insulating coating layer. A cold-setting epoxy resin is used so that the flux applied to the piece is not melted, but the low melting point fusible alloy piece is mechanically weak and easily cut, so a pressure molding method is applied to the insulating coating. It is impossible to use a non-pressurizing method, and it is necessary to use a substantially non-pressurizing method such as dripping, so it is difficult to completely press-fit the coating material into the corner.) A capillary passage is likely to be formed at the bottom.
【0009】而して、かかる毛細管通路の形成のもとで
は、温度ヒュ−ズが上記ホ−ルディング温度近傍にまで
加熱され、フラックスが溶融されると、該溶融フラック
スが熱膨張圧力のために図4に示すように毛細管通路に
向かって流動し、低融点可溶合金片上のフラックス量の
減少が余儀なくされる。この場合、低融点可溶合金片
3’の両側隣接箇所a1,a2のうち、リ−ド線5’側と
は反対側の片側隣接箇所a2のフラックスにおいては、
低融点可溶合金片各端31’を廻って毛細管通路に向い
流動し、a1側のフラックスにおいては、ストレートに
毛細管通路に向い流動する。 [0009] With the formation of such a capillary passage, when the temperature fuse is heated to near the above-mentioned holding temperature and the flux is melted, the molten flux is heated due to the thermal expansion pressure. As shown in FIG. 4, the flux flows toward the capillary passage, and the amount of flux on the low melting point fusible alloy piece must be reduced. In this case, of the fluxes of the adjacent portions a2 of the low melting point fusible alloy piece 3 'on one side adjacent to the lead wire 5' side, among the portions a1 and a2 adjacent on both sides of the low melting point fusible alloy piece 3 '.
It flows toward the capillary passage around each end 31 'of the low melting point fusible alloy piece, and the flux on the a1 side is straight.
It flows toward the capillary passage.
【0010】かかる状態で、温度ヒュ−ズが加熱されて
低融点可溶合金片が溶融されても、溶融合金と共存する
溶融フラックス量が不足し、溶融合金の球状化分断に対
する溶融フラックスの促進作用が達成されず、低融点可
溶合金片の迅速な分断が期待できず、温度ヒュ−ズの作
動性低下が避けられない。In this state, even if the temperature fuse is heated and the low melting point fusible alloy piece is melted, the amount of the molten flux coexisting with the molten alloy is insufficient, and the molten flux is promoted for the spheroidization of the molten alloy. No action is achieved, and a rapid cutting of the low-melting-point fusible alloy piece cannot be expected, and a decrease in the operability of the temperature fuse cannot be avoided.
【0011】本発明の目的は、作動温度以下の温度で加
熱されてフラックスが溶融されても、低融点可溶合金片
上のフラックス量を充分に保持させ、良好な作動を保障
できる基板型温度ヒュ−ズを提供することにある。[0011] It is an object of the present invention to provide a substrate type temperature heater capable of sufficiently maintaining the amount of flux on a low melting point fusible alloy piece and ensuring good operation even when the flux is melted by heating at a temperature lower than the operating temperature. -To provide
【0012】[0012]
【課題を解決するための手段】本発明の基板型温度ヒュ
−ズは、絶縁基板の片面上に巾方向に間隔を隔てて層状
電極を設け、これら電極の先端部間に低融点可溶合金片
を橋設し、該低融点可溶合金片にフラックスを塗布し、
各電極後端側からリ−ド線を接続し、上記絶縁基板片面
の全面に絶縁層を被覆した温度ヒュ−ズにおいて、低融
点可溶合金片両端のそれぞれを各電極先端部縁端から突
出させたことを特徴とする構成である。According to the present invention, there is provided a substrate-type temperature fuse having a layered electrode provided on one side of an insulating substrate at intervals in a width direction, and a low melting point fusible alloy between the tips of these electrodes. Bridge the pieces, apply flux to the low melting point fusible alloy pieces,
A lead wire is connected from the rear end side of each electrode, and in the temperature fuse in which the entire surface of one surface of the insulating substrate is covered with an insulating layer, both ends of the low melting point fusible alloy piece protrude from the edge of the front end of each electrode. This is a configuration characterized by having
【0013】[0013]
【作用】低融点可溶合金片の各端を各電極先端部の縁端
から突出させてあるから、フラックスが温度ヒュ−ズの
作動温度以下の温度で溶融され膨張加圧されても、低融
点可溶合金片の上記片側a2(リード線5側とは反対側)
のフラックスにおいては、低融点可溶合金片各端を廻っ
てのリ−ド線と電極との境の毛細管通路への流動が抑制
される。Since each end of the low-melting-point fusible alloy piece protrudes from the edge of each electrode tip, even if the flux is melted at a temperature lower than the operating temperature of the temperature fuse and expanded and pressurized, the flux is kept low. The above-mentioned one side a2 of the fusible alloy piece (the side opposite to the lead wire 5 side)
In the above flux, the flow to the capillary passage at the boundary between the lead wire and the electrode around each end of the low melting point fusible alloy piece is suppressed .
【0014】従って、作動温度以下の温度で加熱されて
フラックスが溶融されても、低融点可溶合金片の上記片
側a2に隣接するフラックス量のある程度の確保を保障
できる。而して、温度ヒュ−ズの作動時、溶融合金の球
状化分断に対する溶融フラックスの促進作用が達成さ
れ、低融点可溶合金片の良好な分断が期待でき、温度ヒ
ュ−ズ作動性が充分に保障される。Therefore, even if the flux is melted by heating at a temperature lower than the operating temperature, it is possible to guarantee a certain amount of flux adjacent to the one side a2 of the low melting point fusible alloy piece. Thus, at the time of operating the temperature fuse, the effect of promoting the molten flux on the spheroidization of the molten alloy is achieved, and good fracturing of the low melting point fusible alloy piece can be expected, and the temperature fuse operability is sufficient. Is guaranteed.
【0015】[0015]
【実施例】以下、図面により本発明の実施例を説明す
る。図1の(イ)は本発明の実施例を示す平面説明図、
図1の(ロ)は図1の(イ)におけるロ−ロ断面図であ
る。図1の(イ)並びに図1の(ロ)において、1は良
好な熱伝導性を有する絶縁基板であり、通常、セラミッ
クス板が使用される。2,2は絶縁基板1の片面上に巾
方向に間隔を隔てて設けた層状電極であり、銀ペ−スト
等の導電性塗料の焼き付け、銅箔積層絶縁基板の銅箔の
エッチング等により形成してある。各電極2の後端21
は絶縁基板後端11に対し所定の距離aを隔てて位置さ
せてある。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1A is an explanatory plan view showing an embodiment of the present invention,
FIG. 1B is a cross-sectional view of FIG. In FIGS. 1A and 1B, reference numeral 1 denotes an insulating substrate having good thermal conductivity, and a ceramic plate is usually used. Reference numerals 2 and 2 denote layered electrodes provided on one surface of the insulating substrate 1 at intervals in the width direction. The layered electrodes are formed by baking a conductive paint such as a silver paste or etching a copper foil of a copper foil laminated insulating substrate. I have. Rear end 21 of each electrode 2
Are located at a predetermined distance a from the rear end 11 of the insulating substrate.
【0016】3は両電極2,2の先端部間に溶接等によ
り橋設した低融点可溶合金片であり、各端31を各電極
先端部縁端22から突出させてある。bは突出距離を示
している。4はフラックスであり、低融点可溶合金片3
上に塗布してある(低融点可溶合金3全体に塗布して
も、片端31においては、下面がフラックスに濡れ難い
セラミックスであるために、該端31にフラックスが付
着されないこともある)。5はリ−ド線であり、単線導
体51にプラスチック絶縁層を押出被覆した絶縁被覆線
を使用し、口出導体52をその先端521を低融点可溶
合金片3に接近させて(間隔cが0.2mm〜1.5mm程度とさ
れる)電極2に半田付け、溶接等により接続してある。Reference numeral 3 denotes a low-melting-point fusible alloy piece bridged between the tips of the electrodes 2 and 2 by welding or the like, and each end 31 is projected from each electrode tip end edge 22. “b” indicates the protruding distance. 4 is a flux, a low melting point fusible alloy piece 3
It is applied on the upper surface (even if it is applied on the whole of the low-melting-point fusible alloy 3, the flux may not be attached to the one end 31 because the lower surface is made of ceramics that is hardly wetted by the flux. Reference numeral 5 denotes a lead wire, which is an insulated wire obtained by extrusion-coating a single-wire conductor 51 with a plastic insulating layer. The leading end 521 of the lead-out conductor 52 approaches the low melting point fusible alloy piece 3 (interval c). Is about 0.2 mm to 1.5 mm). The electrode 2 is connected by soldering, welding, or the like.
【0017】6は絶縁基板片面の全面に設けた絶縁被覆
層であり、例えば、実質上の無加圧方式により被覆して
ある。例えば、エポキシ樹脂液の滴下塗装により被覆す
ることができる。Reference numeral 6 denotes an insulating coating layer provided on the entire surface of one surface of the insulating substrate, which is coated by, for example, a substantially pressureless method. For example, it can be coated by drop coating of an epoxy resin liquid.
【0018】上記の基板型温度ヒュ−ズは、既述した通
り被保護機器に取り付けて使用される。この場合、作動
温度以下の温度での加熱により、低融点可溶合金片3は
溶融されずにフラックス4のみが溶融されることがあ
る。而るに、リ−ド線口出導体52と層状電極2との間
の入隅コ−ナ及び上記した口出導体先端521と低融点
可溶合金片3との間の近接間隙を、上記絶縁被覆材6の
無加圧被覆、例えば、滴下塗装で完全に充填することが
困難であるから、前記近接間隙を経て前記入隅コ−ナに
沿う毛細管通路nが形成され易い。The above-mentioned substrate type temperature fuse is used by being attached to a device to be protected as described above. In this case, by heating at a temperature equal to or lower than the operating temperature, only the flux 4 may be melted without melting the low melting point fusible alloy piece 3. Thus, the corner at the corner between the lead wire lead conductor 52 and the layered electrode 2 and the above-mentioned lead conductor tip 521 and the low melting point
Since it is difficult to completely fill the close gap between the fusible alloy piece 3 and the non-pressurized coating of the insulating coating material 6, for example, by drop coating, the close corner gap passes through the close gap. The capillary passage n along the hole is easily formed.
【0019】而して、温度ヒューズ作動温度以下の加熱
によりフラックス4のみが溶融されると、低融点可溶合
金片両側a1,a2に存在するフラックスのうちa1側に
存在するフラックスが、前記毛細管通路nに向かって流
動されるが、リ−ド線側と反対側a2のフラックスにお
いては、低融点可溶合金片各端31が突出されているた
めに、低融点可溶合金片各端31を廻り難く、前記毛細
管通路に向かう流動がよく抑制される。従って、作動温
度以下の温度での加熱によりフラックスのみが溶融され
ても、従来例よりも、低融点可溶合金片に接するフラッ
クス量をそれだけ多量に確実に保持でき、従って、温度
ヒュ−ズの作動時、低融点可溶合金片の溶融合金に溶融
フラックスを充分に共存させ得、溶融合金の球状化分断
に対する溶融フラックスの促進作用をよく達成させ得
る。When only the flux 4 is melted by heating below the temperature fuse operating temperature, a low melting point
On the a1 side of the flux existing on both sides a1, a2 of the gold piece
The existing flux flows toward the capillary passage n.
But the flux on the side a2 opposite to the lead wire side
In addition, each end 31 of the low melting point fusible alloy piece is protruded.
It is difficult to turn around each end 31 of the low melting point fusible alloy piece,
The flow toward the pipe passage is well suppressed. Therefore, even when only the flux is melted by heating at a temperature lower than the operating temperature, the amount of the flux in contact with the low melting point fusible alloy piece can be surely held in a larger amount than in the conventional example, and therefore, the temperature fuse can be reduced. During operation, the molten flux can sufficiently coexist with the molten alloy of the low melting point fusible alloy piece, and the action of promoting the molten flux on the spheroidization of the molten alloy can be well achieved.
【0020】上記において、低融点可溶合金片各端31
の突出距離bは、後述する距離eの確保上、絶縁基板1
の巾の増加をもたらすので、0.1mm〜1.0mm程度とされ
る。電極2,2間の距離dは、低融点可溶合金片の球状
化分断を保障するのに必要な距離に設定され、250V定格
で0.9mm〜1.5mmに設定される。また、電極先端23と絶
縁基板先端13までの間隔f並びに低融点可溶合金片端
31から絶縁基板横端12までの間隔eは溶融低融点可
溶合金が絶縁基板と絶縁被覆層との接着界面を剥離して
外部に圧出するのを防止するのに必要な間隔に設定さ
れ、250V定格の温度ヒュ−ズの場合、e=0.4mm〜1.6m
m,f=1.3mm〜1.6mm設定される。aは0.2mm〜1.0mmに
設定される。In the above, each end 31 of the low melting point fusible alloy piece
The protrusion distance b of the insulating substrate 1
The width is increased to about 0.1 mm to 1.0 mm. The distance d between the electrodes 2 and 2 is set to a distance necessary for ensuring the spheroidization of the low melting point fusible alloy piece, and is set to 0.9 mm to 1.5 mm at a rating of 250 V. The distance f between the electrode tip 23 and the insulating substrate tip 13 and the distance e from the low melting point fusible alloy one end 31 to the insulating substrate lateral end 12 are determined by the adhesive interface between the insulating substrate and the insulating coating layer. Is set to the interval required to prevent the pressure from being released to the outside by exfoliation. In the case of a temperature fuse rated at 250 V, e = 0.4 mm to 1.6 m
m, f = 1.3 mm to 1.6 mm are set. a is set to 0.2 mm to 1.0 mm.
【0021】図2は本発明の別実施例の基板型温度ヒュ
−ズを示し、低融点可溶合金片3を橋設する電極先端部
2aの巾をリ−ド線口出導体52を接続する電極部分2
bの巾に較べて狭くし、低融点可溶合金片端31から絶
縁基板横端12までの間隔を溶融低融点可溶合金が絶縁
基板と絶縁被覆層との接着界面を剥離して外部に圧出す
るのを防止するのに必要な間隔eに設定し、電極部分2
bと絶縁基板横端12までの間隔gを基板型温度ヒュ−
ズの両横端をア−ス電位に保持したときの対地電圧の絶
縁に必要な間隔に設定してあり、他の寸法a,b,c,
d,f等は、図1に示した実施例と同じである。FIG. 2 shows a substrate type temperature fuse according to another embodiment of the present invention. The width of the electrode tip 2a for bridging the low melting point fusible alloy piece 3 is connected to the lead wire lead conductor 52. Electrode part 2
b, the gap from one end 31 of the low-melting-point fusible alloy to the lateral end 12 of the insulating substrate is melted by the low-melting-point fusible alloy to peel off the adhesive interface between the insulating substrate and the insulating coating layer and pressurize to the outside. The electrode portion 2 is set at the interval e necessary to prevent the
The distance g between b and the insulating substrate lateral end 12 is determined by the substrate type temperature hue.
The distances required to insulate the ground voltage when both lateral ends of the capacitor are held at the ground potential are set to other dimensions a, b, c, and
d, f, etc. are the same as in the embodiment shown in FIG.
【0022】本発明の基板型温度ヒュ−ズにおいては、
この作動以前にフラックスが溶融されて熱膨張により加
圧されても、低融点可溶合金片に隣接するフラックス量
を充分に確保できる。このことは次の試験結果からも確
認できる。 試験結果 実施例品は、図2において、a=0.5mm,d=1.1
mm,e=1.2mm,f=1.4mm,電極先端部2a巾=
0.8mm,電極部分2b巾=1.5mmとし、絶縁基板に
厚さ0.6mmのセラミックス板を使用し、層状電極を
銀ペ−ストの焼き付けにより設け、絶縁被覆リ−ド線に
導体直径0.51mmのものを使用し、口出導体の長さを
2.6mmとし、低融点可溶合金片に厚み0.3mm,巾
0.4mmの断面四角形,融点98℃のものを使用し、低
融点可溶合金片各端の突出距離bを0.5mmとし、口出
導体先端から低融点可溶合金片までの距離c=0.5mm
とし、厚み1.8mmのエポキシ樹脂の滴下塗装により絶
縁被覆を施した定格電圧250V用の基板型温度ヒュ−ズで
ある。これに対し、比較例品は低融点可溶合金片各端を
電極先端部2aの巾中央に位置させ、これ以外は実施例
品と同じとした。In the substrate type temperature fuse of the present invention,
Even if the flux is melted and pressurized by thermal expansion before this operation, a sufficient amount of flux adjacent to the low melting point fusible alloy piece can be secured. This can be confirmed from the following test results. Test results In the example product, a = 0.5 mm and d = 1.1 in FIG.
mm, e = 1.2 mm, f = 1.4 mm, electrode tip 2a width =
0.8 mm, electrode part 2b width = 1.5 mm, a 0.6 mm thick ceramic plate is used for the insulating substrate, layered electrodes are provided by baking silver paste, and the conductor diameter is set to the insulating coated lead wire. Use a 0.51 mm long conductor with a lead length of 2.6 mm, a low melting point fusible alloy piece with a thickness of 0.3 mm, a width of 0.4 mm, a rectangular cross section, and a melting point of 98 ° C. The projecting distance b of each end of the low melting point fusible alloy piece is 0.5 mm, and the distance c from the tip of the lead conductor to the low melting point fusible alloy piece is c = 0.5 mm.
This is a substrate type temperature fuse for a rated voltage of 250 V, which is coated with an insulating coating by drop coating of a 1.8 mm thick epoxy resin. On the other hand, the comparative example was the same as the example except that each end of the low-melting-point fusible alloy piece was positioned at the center of the width of the electrode tip 2a.
【0023】比較例品並びに実施例品をそれぞれ50個
づつ製作し、温度80℃で100時間加熱したのち、冷
却後、解体して、低融点可溶合金片に隣接しているフラ
ックス量を測定したところ、実施例品では、当初量の7
0%以上であったが、比較例品では60%〜50%であ
った。Fifty pieces each of a comparative example product and an example product were manufactured, heated at a temperature of 80 ° C. for 100 hours, cooled, disassembled, and the amount of flux adjacent to the low melting point fusible alloy piece was measured. As a result, in the example product, the initial amount of 7
Although it was 0% or more, it was 60% to 50% in the comparative example product.
【0024】[0024]
【発明の効果】本発明の基板型温度ヒュ−ズは上述した
通りの構成であり、作動以前に加熱によりフラックスが
溶融され、その熱膨張で加圧されても、低融点可溶合金
片に接するフラックス量を充分に保持させ得、温度ヒュ
−ズの作動性を充分に保障できる。The substrate-type temperature fuse of the present invention has the above-described structure. Even if the flux is melted by heating before operation and pressurized by its thermal expansion, it can be formed into a low melting point fusible alloy piece. The amount of flux in contact can be sufficiently maintained, and the operability of the temperature fuse can be sufficiently ensured.
【図1】図1の(イ)は本発明の実施例を示す説明図、
図1の(ロ)は図1の(イ)のロ−ロ断面図であるであ
る。FIG. 1A is an explanatory view showing an embodiment of the present invention;
FIG. 1 (B) is a cross-sectional view of FIG. 1 (A).
【図2】本発明の別実施例を示す説明図である。FIG. 2 is an explanatory view showing another embodiment of the present invention.
【図3】図3の(イ)は従来例を示す説明図、図3の
(ロ)は図3の(イ)のロ−ロ断面図であるである。3A is an explanatory view showing a conventional example, and FIG. 3B is a cross-sectional view of FIG.
【図4】図3に示す従来例の作動温度以下での溶融フラ
ックスの流動状態を示す説明図である。FIG. 4 is an explanatory diagram showing a flow state of a molten flux at a temperature lower than an operating temperature of the conventional example shown in FIG. 3;
1 絶縁基板 2 層状電極 22 電極先端部縁端 3 低融点可溶合金片 31 低融点可溶合金片端 4 フラックス 5 リ−ド線 52 リ−ド線の電極接続部分 6 絶縁被覆層 DESCRIPTION OF SYMBOLS 1 Insulating substrate 2 Layered electrode 22 Electrode tip edge 3 Low melting point fusible alloy piece 31 Low melting point fusible alloy piece end 4 Flux 5 Lead wire 52 Lead wire electrode connection part 6 Insulation coating layer
フロントページの続き (56)参考文献 特開 平3−81921(JP,A) 実開 昭63−99643(JP,U) (58)調査した分野(Int.Cl.7,DB名) H01H 37/76 Continuation of the front page (56) References JP-A-3-81921 (JP, A) JP-A-63-99643 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) H01H 37 / 76
Claims (1)
層状電極を設け、これら電極の先端部間に低融点可溶合
金片を橋設し、該低融点可溶合金片にフラックスを塗布
し、各電極後端側からリ−ド線を接続し、上記絶縁基板
片面の全面に絶縁層を被覆した温度ヒュ−ズにおいて、
低融点可溶合金片両端のそれぞれを各電極先端部縁端か
ら突出させたことを特徴とする基板型温度ヒュ−ズ。1. A layered electrode is provided on one surface of an insulating substrate at intervals in the width direction, a low melting point fusible alloy piece is bridged between the tips of these electrodes, and a flux is applied to the low melting point fusible alloy piece. Is applied, a lead wire is connected from the rear end side of each electrode, and in the temperature fuse in which an insulating layer is coated on one entire surface of the insulating substrate,
A substrate type temperature fuse characterized in that both ends of a low melting point fusible alloy piece protrude from the edge of each electrode tip.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11005293A JP3267740B2 (en) | 1993-04-12 | 1993-04-12 | Substrate type temperature fuse |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11005293A JP3267740B2 (en) | 1993-04-12 | 1993-04-12 | Substrate type temperature fuse |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06302260A JPH06302260A (en) | 1994-10-28 |
JP3267740B2 true JP3267740B2 (en) | 2002-03-25 |
Family
ID=14525882
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11005293A Expired - Fee Related JP3267740B2 (en) | 1993-04-12 | 1993-04-12 | Substrate type temperature fuse |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3267740B2 (en) |
-
1993
- 1993-04-12 JP JP11005293A patent/JP3267740B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06302260A (en) | 1994-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6507265B1 (en) | Fuse with fuse link coating | |
US6462925B2 (en) | Excess current interrupting structure | |
JPS61259430A (en) | Electric circuit protector and making thereof | |
US4988969A (en) | Higher current carrying capacity 250V subminiature fuse | |
WO2002099827A1 (en) | Temperature fuse, and battery using the same | |
JP3267740B2 (en) | Substrate type temperature fuse | |
JP4037248B2 (en) | Circuit protection element and manufacturing method thereof | |
JP4015240B2 (en) | Manufacturing method of substrate type temperature fuse and manufacturing method of temperature fuse with substrate type resistor | |
JPH1050184A (en) | Chip fuse element | |
JP3252025B2 (en) | Substrate type temperature fuse | |
JP3866366B2 (en) | Method for manufacturing circuit protection element | |
JPH0514438Y2 (en) | ||
JP2872525B2 (en) | Circuit protection element | |
JPH06302261A (en) | Board type temperature fuse | |
JPS6322599Y2 (en) | ||
CN212907259U (en) | Novel thermal protection piezoresistor | |
JPH0312192Y2 (en) | ||
JP2501183Y2 (en) | Alloy type temperature fuse | |
JPH0514433Y2 (en) | ||
JPH06302258A (en) | Board type temperature fuse | |
JPH06302257A (en) | Board type temperature fuse | |
JPH117876A (en) | Circuit board type temperature fuse | |
JPH05258653A (en) | Substrate type temperature fuse | |
JPH0343925A (en) | Flat thermal fuse | |
JPH086354Y2 (en) | Alloy type thermal fuse |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |