JPH04180547A - Ceramics-dispersed iron-base sintered material - Google Patents

Ceramics-dispersed iron-base sintered material

Info

Publication number
JPH04180547A
JPH04180547A JP30676090A JP30676090A JPH04180547A JP H04180547 A JPH04180547 A JP H04180547A JP 30676090 A JP30676090 A JP 30676090A JP 30676090 A JP30676090 A JP 30676090A JP H04180547 A JPH04180547 A JP H04180547A
Authority
JP
Japan
Prior art keywords
tin
wear resistance
iron
sintered material
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30676090A
Other languages
Japanese (ja)
Inventor
Kazutoshi Takemura
和俊 武村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP30676090A priority Critical patent/JPH04180547A/en
Publication of JPH04180547A publication Critical patent/JPH04180547A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a ceramics-dispersed iron-base sintered material excellent in wear resistance by dispersing fine TiN in specific proportion into a matrix having a composition consisting of C, Cr, Mo, and Fe, further sealing pores, and regulating hardness to a specific value. CONSTITUTION:TiN of 5-70mu average grain diameter is uniformly dispersed at 0.5-10% by volume ratio into a matrix having a composition consisting of 1-3.5% C, 3-30% Cr, 0.3-3.0% Mo, and the balance essentially Fe. Further, pores in the material are sealed, and hardness is regulated to >=500MHV. By this method, the ceramics-dispersed iron-base sintered material excellent in pitting resistance and airtightness as well as in wear resistance can be obtained. Accordingly, the above material is suitable for rolling piston material for rotary type refrigerating compressor.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、セラミック分散鉄基焼結材料に関するもので
あり、さらに詳しく述べるならば、ロータリー式の冷凍
圧縮機のローリングピストンの材として使用されるセラ
ミック分散鉄基焼結材料に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a ceramic dispersed iron-based sintered material, and more specifically, it is used as a material for a rolling piston of a rotary refrigeration compressor. This invention relates to ceramic dispersed iron-based sintered materials.

〔従来の技術] 一般にロータリー式の冷凍圧縮機のローリングピストン
材として従来から使用されている代表的材料は高クロム
鋳鉄の焼入材であり、相手ベーンには鋳造材や焼結材が
使用されてきた。
[Prior art] The typical material conventionally used as the rolling piston material for rotary refrigeration compressors is hardened high chromium cast iron, and cast or sintered materials are used for the mating vanes. It's here.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、冷凍圧縮機の出力向上が年々進み、またフロン
規制に伴い、材料の耐摩耗性が一段と高いレベルのもの
が要求されている。なおかつ気密性を保持しコストも低
いものが要求されている。
However, as the output of refrigeration compressors continues to improve year by year, and with regulations on fluorocarbons, there is a demand for materials with even higher levels of wear resistance. Furthermore, there is a demand for something that maintains airtightness and is low in cost.

しかしながら、高クロム鋳鉄は溶製材であるため耐摩耗
性向上に限界があり、一方セラミックを分散した鉄基焼
結材による耐摩耗性向上は溶製材の限界を突破する有効
な手段であると考えられるが、セラミック粒子は鉄基地
から脱落することによる悪影響もあるので、その対策を
講する必要がある。
However, since high chromium cast iron is a molten material, there is a limit to its wear resistance.However, we believe that improving wear resistance by using iron-based sintered materials with ceramic dispersed in them is an effective means to overcome the limitations of molten materials. However, ceramic particles can also have negative effects when they fall off from the iron base, so it is necessary to take countermeasures against this.

【課題を解決するための手段〕[Means to solve problems]

このような問題に鑑み、本発明は、組成を特定した鉄基
焼結材中に硬いセラミック粒子であるTiNを適正な粒
度と適正な量、分散させることにより耐摩耗性に優れた
材料を提供するものである。
In view of these problems, the present invention provides a material with excellent wear resistance by dispersing TiN, which is a hard ceramic particle, with an appropriate particle size and in an appropriate amount in an iron-based sintered material with a specified composition. It is something to do.

本発明は、Cを1〜3.5%、Crを3〜30%、Mo
を0.3〜3.0%含有し、残りが実質的にFeからな
る組成の基地中に、平均粒径5〜70μのTiNが体積
比で0.5〜10%となるように均一に分散してなり、
かつ封孔された気孔を有し、さらにMHVで500以上
の硬さを有するところの耐摩耗性に優れた鉄基焼結材料
を提供する。
In the present invention, C is 1 to 3.5%, Cr is 3 to 30%, Mo
TiN having an average particle size of 5 to 70μ is uniformly added to a volume ratio of 0.5 to 10% in a base composition containing 0.3 to 3.0% of TiN with the remainder substantially consisting of Fe. become dispersed,
The present invention provides an iron-based sintered material that has sealed pores and has a hardness of 500 or more in terms of MHV and has excellent wear resistance.

以下、本発明のセラミック分散鉄基焼結材を説明する。The ceramic dispersed iron-based sintered material of the present invention will be explained below.

(1)TiN TiNは高硬度を有して、耐摩耗性を向上させる。しか
もTiNは基地である鉄基合金との界面にほとんど大き
な空孔を生じさせず焼結材料中に均一に分散する。すな
わち、TiNと鉄基合金粒子が緊密に結合した複合粒子
が得られる。したがって、TiNは鉄基焼結材自身の耐
摩耗性も向上させ、さらにT i N粒子の脱落により
相手材を摩耗させることもない。
(1) TiN TiN has high hardness and improves wear resistance. Furthermore, TiN is uniformly dispersed in the sintered material without forming almost any large pores at the interface with the base iron-based alloy. That is, composite particles in which TiN and iron-based alloy particles are tightly bonded are obtained. Therefore, TiN improves the wear resistance of the iron-based sintered material itself, and also prevents the mating material from being worn out due to shedding of TiN particles.

しかし、TiNの平均粒径が5μ以下であると、TiN
の粒子が活性化しているために基地合金との濡れが悪く
なり、気孔率を低下させ、結果として耐ピツチング性が
劣り、逆に平均粒径が70μを越えると、TiNが砥粒
となり相手材の摩耗を促進させるので、平均粒径を5〜
70μとする必要がある。
However, if the average particle size of TiN is 5μ or less, TiN
Because the TiN particles are activated, wetting with the base alloy becomes poor, lowering the porosity and resulting in poor pitting resistance.On the other hand, if the average particle size exceeds 70μ, TiN becomes an abrasive grain and becomes abrasive to the mating material. Since this accelerates the wear of the particles, the average particle size should be
It needs to be 70μ.

TiN0量が体積比で0.5%以下では耐摩耗性が発揮
できず、10%を越えて分散させると、TiNの偏析が
起きやす(、TiN粒子の脱落の可能性があり、耐摩耗
性上も好ましくない。したがって、TiNの分散量は体
積比で0.5〜10%と定める必要がある。
If the amount of TiN0 is less than 0.5% by volume, wear resistance cannot be achieved, and if it is dispersed in excess of 10%, segregation of TiN tends to occur (there is a possibility of TiN particles falling off, and the wear resistance The above is also not preferable.Therefore, the amount of TiN dispersed needs to be set at 0.5 to 10% by volume.

つぎに、鉄基合金の成分の限定理由を述べるが、基地は
TiNが入らなくともそれなりの耐摩耗性を有すること
が要求される。
Next, the reasons for limiting the components of the iron-based alloy will be described, but the base is required to have a certain level of wear resistance even without TiN.

(2)鉄基地の組成 Cは、添加されたCr、MoおよびFeとの炭化物を形
成し、その炭化物が鉄基地に耐摩耗性を付与する。しか
しC含有量が1%以下では炭化物の量が確保できず、耐
摩耗性が劣ることに加えて、焼結時に気孔が残り気孔率
が高くなる。−方、C含有量が3.5%以上では焼結体
の変形が多(なり、焼結時の形状の確保が難しいことに
加えて、Cが偏析しやすいので、その成分範囲を1.0
〜3.5%と定める必要がある。
(2) Composition C of the iron base forms a carbide with added Cr, Mo, and Fe, and the carbide provides wear resistance to the iron base. However, if the C content is less than 1%, the amount of carbides cannot be ensured, and in addition to poor wear resistance, pores remain during sintering and the porosity increases. On the other hand, if the C content is 3.5% or more, the sintered body will be highly deformed and it will be difficult to secure the shape during sintering, and C will be likely to segregate, so the range of its components should be reduced to 1.5%. 0
It is necessary to set it at ~3.5%.

Cは鉄合金粉末中に予め合金化されていてもよく、また
原料粉の混合時に黒鉛として添加してもよい。
C may be alloyed in advance in the iron alloy powder, or may be added as graphite when mixing the raw material powder.

CrはCと結合して炭化物を生成させ耐摩耗性向上に寄
与するが、3%以下ではその生成量が少なく耐摩耗性が
劣り、30%以上加えると焼結材料が脆化するので、そ
の量を3〜30%と定める必要がある。
Cr combines with C to generate carbides and contributes to improving wear resistance, but if it is less than 3%, the amount produced is small and wear resistance is poor, and if it is added more than 30%, the sintered material becomes brittle. It is necessary to set the amount at 3-30%.

本発明においては、鉄基地の焼入れ性を高める目的でM
Oを0.3〜3.0%加えるが、0゜3%以下ではその
効果が少なく耐摩耗性が劣り、3%以上加えると圧縮性
が損なわれ、スチーム処理でも封孔が困難になるので、
その量を0.3〜3.0%と定めた。
In the present invention, in order to improve the hardenability of the iron base, M
0.3 to 3.0% O is added, but if it is less than 0.3%, the effect will be small and the wear resistance will be poor, and if it is added more than 3%, the compressibility will be impaired and it will be difficult to seal the pores even with steam treatment. ,
The amount was determined to be 0.3 to 3.0%.

さらに、耐摩耗性向上の目的でV、WをlO%程度まで
、粉末の酸素量を抑える目的でSlを2%程度まで加え
てもよい。
Further, V and W may be added to about 10% for the purpose of improving wear resistance, and Sl may be added to about 2% for the purpose of suppressing the amount of oxygen in the powder.

TiN以外の合金元素は鉄との母合金化を作り、これを
溶解し、水アトマイズすることにより鉄合金粉末中に合
金化される。なお、鉄合金の粒子径は特に制限はされな
いが、平均粒径で40〜120μの範囲内であることが
好ましい。
Alloying elements other than TiN are alloyed into iron alloy powder by forming a master alloy with iron, dissolving this, and atomizing with water. Although the particle size of the iron alloy is not particularly limited, it is preferable that the average particle size is within the range of 40 to 120 μm.

(3)硬さ 鉄基地の組成が低C且つ高Crになると、硬さの低下が
生じ耐摩耗性の低下を招くために、本鉄基焼結材の硬さ
はM[V500以上である必要がある。この硬さは、焼
結後の焼き割れを生じない程度の冷却速度での冷却状態
で得られるが、必要により焼き入れのための熱処理を行
っても良い。
(3) Hardness When the composition of the iron base becomes low C and high Cr, the hardness decreases, leading to a decrease in wear resistance. Therefore, the hardness of the iron base sintered material is M [V500 or more There is a need. This hardness can be obtained by cooling at a cooling rate that does not cause quench cracking after sintering, but heat treatment for hardening may be performed if necessary.

(4)気孔の封孔 焼結により焼結体中に一般に10〜30体積%発生する
気孔は、焼結材の外部に開孔していると、気密性を損な
うのでスチーム処理、Cu含浸、樹脂含浸などにより封
孔処理をする必要がある。
(4) Sealing of pores Generally, 10 to 30% by volume of pores are generated in the sintered body due to sintering.If the pores are opened outside the sintered material, the airtightness will be impaired, so steam treatment, Cu impregnation, etc. It is necessary to perform a sealing process such as resin impregnation.

[作用] (イ)TiNを体積比で05〜10%を含有し、残りが
実質的にFe合金からなる組成とすることにより、セラ
ミック(T i N)粒子により耐摩耗性を向上させた
。(ロ)TiNの平均粒径を5〜70uとすることによ
り、適度な気孔をもたせまた相手材を摩耗しないように
した。さらに、(ハ)Fe基合金(鉄基地)の組成を、
C1゜0〜3.5%、Cr3〜30%、Mo’0.3〜
3.0%含有組成とし、かつ硬さがMHVで500以上
とすることにより、鉄基地にもある程度の硬さをもたせ
た。(ニ)気孔を封孔処理することにより、気密性をも
たせた。
[Function] (a) By containing TiN in a volume ratio of 05 to 10% and having a composition in which the remainder substantially consists of an Fe alloy, the wear resistance was improved by the ceramic (T i N) particles. (b) By setting the average particle size of TiN to 5 to 70 μm, appropriate pores were created and the mating material was prevented from being abraded. Furthermore, (c) the composition of the Fe-based alloy (iron base),
C1゜0~3.5%, Cr3~30%, Mo'0.3~
By setting the composition to contain 3.0% and having a hardness of 500 or more in MHV, the iron base was also given a certain degree of hardness. (d) Airtightness was provided by sealing the pores.

以上の(イ)〜(ニ)により耐摩耗性、耐ピツチング性
および気密性に優れた焼結材を提供することができた。
Through the above (a) to (d), it was possible to provide a sintered material with excellent wear resistance, pitting resistance, and airtightness.

次に、本発明の焼結材を実施例により説明する。Next, the sintered material of the present invention will be explained using examples.

[実施例] 原料粉末として粒度−80meshの鉄基合金粉末、平
均粒度が1.5μ、20μ、100μのTiN粉末を用
意し、原料粉末を第1表に示される組成になるように配
合し、さらにおのおのの混合粉末の形成時の潤滑をよ(
するためステアリン酸亜鉛を0.7%添加し、混合機に
より40分間混合ののち、金型にて6 t / c m
 ”の圧力で圧粉体を成形し、ついで真空炉中で110
0〜1180℃の温度範囲で所定の温度に、30分間保
持の条件で焼結し、窒素ガス冷却することによって、第
1表の組成を持った焼結合金を得た。
[Example] An iron-based alloy powder with a particle size of -80 mesh and TiN powder with an average particle size of 1.5μ, 20μ, and 100μ were prepared as raw material powders, and the raw material powders were blended to have the composition shown in Table 1. In addition, lubrication is required during the formation of each mixed powder (
To achieve this, 0.7% zinc stearate was added, mixed for 40 minutes using a mixer, and then mixed in a mold at 6 t/cm.
The green compact is molded at a pressure of
A sintered alloy having a composition shown in Table 1 was obtained by sintering at a predetermined temperature in the temperature range of 0 to 1180°C and holding it for 30 minutes, and cooling with nitrogen gas.

次に、上記方法により得られた焼結合金と、比較例とし
て現在のロータリー式冷凍圧縮機に用いらtている鋳鉄
を用意し、試験片形状が5 X 5 mm角×20長さ
のビン状となるように加工し、ついで、現用ベーン焼結
材でφ36の軸形状のドラム2を作り、第1図に示すよ
うなピン−ドラム摩耗試験機で、第2図のように局面ど
うしを接触させ、試験面圧:ヘルツ応力60kg/cm
”、速度:2m/sec、潤滑油:スニソ5GS (サ
ンオイル社製品)、油流量300 c c / m i
 n、油温ニア0°C1摩耗距離:5μmの摩耗試験を
行い、5X5mm角ビン1のローリングピストン材の摩
耗体積(2点の平均)を測定し、これらの結果を第1表
に示した。
Next, the sintered alloy obtained by the above method and the cast iron used in current rotary refrigeration compressors as a comparative example were prepared, and a test piece of 5 x 5 mm square x 20 length bottle was prepared. Next, a drum 2 with a shaft shape of φ36 was made using the existing vane sintered material, and the surfaces were tested using a pin-drum wear tester as shown in Fig. 2, as shown in Fig. 2. Contact, test surface pressure: Hertzian stress 60kg/cm
”, Speed: 2 m/sec, Lubricating oil: Suniso 5GS (product of Sun Oil Co., Ltd.), Oil flow rate: 300 cc/mi
n, oil temperature near 0° C.1 Wear distance: 5 μm Wear test was conducted, and the wear volume (average of 2 points) of the rolling piston material of 5×5 mm square bottle 1 was measured. The results are shown in Table 1.

なお、第1図中3はウェイト、4は始点、5はバランサ
ーであり、ドラムは2.QC−0゜7P−12Cr−I
Mo−V−Ba1.Feの組成を有し、1130℃の温
度で真空炉中で焼結された硬さHRC53の焼結材であ
った。
In Fig. 1, 3 is a weight, 4 is a starting point, 5 is a balancer, and the drum is 2. QC-0゜7P-12Cr-I
Mo-V-Ba1. It was a sintered material having a composition of Fe and having a hardness of HRC53, which was sintered in a vacuum furnace at a temperature of 1130°C.

比較材は鋳鉄で、3.3%C−2,1%5f−0,8%
Mn−0,7%Cr−0,25%Mob、3%Ni−B
a1.Feの組成、硬さHRC55であった。
The comparison material is cast iron, 3.3%C-2,1%5F-0,8%
Mn-0,7% Cr-0,25% Mob, 3% Ni-B
a1. The composition of Fe and the hardness were HRC55.

(以下余白) 第1表に示された結果から、実施例はいずれもすぐれた
耐摩耗性を有するのに対して、比較材は耐摩耗性が劣っ
たものとなっていることが明らかである。
(Left below) From the results shown in Table 1, it is clear that all of the examples have excellent abrasion resistance, while the comparison materials have poor abrasion resistance. .

比較材11は、TiNを含有せず、本発明実施例1の基
地合金のみからなる焼結材であり、耐摩耗性が極めて不
良である。比較材12はTiNの粒度が小さい比較例で
あり、耐摩耗性がすぐれない。比較材13はTiNの粒
度が大きい比較例であり、自身の耐摩耗性は良好である
が、相手材の摩耗が大である。比較材14はTiNの量
が多い例であり、比較材15は鉄基地のC量が少ない例
′ であり、比較材16はC量が多い例であり、比較材
17はCr量が少ない例であり、それぞれ耐摩耗性がす
ぐれない。また、比較材の鋳鉄は硬さは本発明の実施例
以上の硬さを有しているが、耐摩耗性は極めて劣る。
Comparative material 11 is a sintered material containing only the base alloy of Example 1 of the present invention without containing TiN, and has extremely poor wear resistance. Comparative material 12 is a comparative example in which the particle size of TiN is small, and the wear resistance is not excellent. Comparative material 13 is a comparative example in which the particle size of TiN is large, and the wear resistance of itself is good, but the wear of the mating material is large. Comparative material 14 is an example with a large amount of TiN, comparative material 15 is an example with a small amount of C in the iron matrix, comparative material 16 is an example with a large amount of C, and comparative material 17 is an example with a small amount of Cr. Both have poor abrasion resistance. Further, although the comparative cast iron has a hardness higher than that of the examples of the present invention, its wear resistance is extremely poor.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の焼結材は優れた耐摩耗性
を示す工業上極めて有用な材料である。
As explained above, the sintered material of the present invention is an industrially extremely useful material that exhibits excellent wear resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は耐摩耗性試験機の図、 第2図は試験片ピンと相手材ドラムとの摺動状況を示す
図である。 1−ピン、2−ドラム、3−ウェイト、5−バランサー 特許出願人   株式会社リケン 特許出願代理人 弁理士 村井 卓雄
Fig. 1 is a diagram of the abrasion resistance tester, and Fig. 2 is a diagram showing the sliding situation between the test piece pin and the mating material drum. 1-pin, 2-drum, 3-weight, 5-balancer Patent applicant: Riken Co., Ltd. Patent application agent Patent attorney: Takuo Murai

Claims (1)

【特許請求の範囲】[Claims] 1、Cを1〜3.5%、Crを3〜30%、Moを0.
3〜3.0%含有し、残りが実質的にFeからなる組成
の基地中に平均粒径5〜70μのTiNが体積比で0.
5〜10%となるように均一に分散してなり、かつ封孔
された気孔を有し、しかもMHVで500以上の硬さを
有することを特徴とする耐摩耗性に優れたセラミック分
散鉄基焼結材料。
1, C 1-3.5%, Cr 3-30%, Mo 0.
TiN with an average particle size of 5 to 70μ is contained in a volume ratio of 0.3% to 3.0%, with the remainder substantially consisting of Fe.
Ceramic dispersed iron base with excellent wear resistance, characterized by being uniformly dispersed at 5 to 10%, having sealed pores, and having a hardness of 500 or more in terms of MHV. Sintered material.
JP30676090A 1990-11-13 1990-11-13 Ceramics-dispersed iron-base sintered material Pending JPH04180547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30676090A JPH04180547A (en) 1990-11-13 1990-11-13 Ceramics-dispersed iron-base sintered material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30676090A JPH04180547A (en) 1990-11-13 1990-11-13 Ceramics-dispersed iron-base sintered material

Publications (1)

Publication Number Publication Date
JPH04180547A true JPH04180547A (en) 1992-06-26

Family

ID=17960969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30676090A Pending JPH04180547A (en) 1990-11-13 1990-11-13 Ceramics-dispersed iron-base sintered material

Country Status (1)

Country Link
JP (1) JPH04180547A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8917763B2 (en) 2011-03-07 2014-12-23 Panasonic Corporation Motion compensation apparatus, video coding apparatus, video decoding apparatus, motion compensation method, program, and integrated circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8917763B2 (en) 2011-03-07 2014-12-23 Panasonic Corporation Motion compensation apparatus, video coding apparatus, video decoding apparatus, motion compensation method, program, and integrated circuit

Similar Documents

Publication Publication Date Title
US9291264B2 (en) Coatings and powders, methods of making same, and uses thereof
JP4891421B2 (en) Powder metallurgy mixture and method for producing powder metallurgy parts using the same
JP4948636B2 (en) Hard particles for blending sintered alloys, wear-resistant iron-based sintered alloys, and valve seats
JP7086064B2 (en) Free graphite-containing powder
US3779720A (en) Plasma sprayed titanium carbide tool steel coating
AU696267B2 (en) Wear-resistant sintered ferrous alloy for valve seat
US4123265A (en) Method of producing ferrous sintered alloy of improved wear resistance
JPH0610103A (en) Vane material excellent in wear resistance and sliding property
EP3296418A1 (en) Manufacturing method of wear-resistant iron-based sintered alloy and wear-resistant iron-based sintered alloy
JPH10504353A (en) Iron-based powder containing chromium, molybdenum and manganese
JPH04180547A (en) Ceramics-dispersed iron-base sintered material
JPS62177159A (en) Sintered alloy member having excellent wear resistance
JP2005509742A (en) Metal powder for thermal coating of substrate
JPH0277551A (en) Sintered apex seal material
JPH03225008A (en) Valve seat made of fe-based sintered alloy having superior abrasion resistance
JPS60159154A (en) Wear resistant sintered sliding material
JPH06192784A (en) Wear resistant sintered sliding member
JPS6119762A (en) Abrasion resistant sintered alloy
JP7156193B2 (en) Hard particles and sintered sliding member using the same
JPH11140603A (en) Wear resistant sintered alloy material for part of compressor
JPS61117254A (en) Ferrous sintered alloy for valve seat
JPS5857505B2 (en) Greta japonica
JP2600245B2 (en) Vane lumber
JPH0124856B2 (en)
JPS63227757A (en) Method for thermally spraying wear-resistant ceramics