JPS5857505B2 - Greta japonica - Google Patents

Greta japonica

Info

Publication number
JPS5857505B2
JPS5857505B2 JP9979475A JP9979475A JPS5857505B2 JP S5857505 B2 JPS5857505 B2 JP S5857505B2 JP 9979475 A JP9979475 A JP 9979475A JP 9979475 A JP9979475 A JP 9979475A JP S5857505 B2 JPS5857505 B2 JP S5857505B2
Authority
JP
Japan
Prior art keywords
powder
less
alloy
pores
valve seat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9979475A
Other languages
Japanese (ja)
Other versions
JPS5223512A (en
Inventor
文夫 清田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP9979475A priority Critical patent/JPS5857505B2/en
Publication of JPS5223512A publication Critical patent/JPS5223512A/en
Publication of JPS5857505B2 publication Critical patent/JPS5857505B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は無鉛ガソリンやLPG(液化プロパンガス)を
燃料とする内燃機関用の排気弁座として好適な鉄基焼結
合金と有機金属化合物からなる複合材料及びその製造方
法に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a composite material comprising an iron-based sintered alloy and an organometallic compound suitable for use as an exhaust valve seat for internal combustion engines that use unleaded gasoline or LPG (liquefied propane gas) as fuel, and a method for producing the same. Pertains to.

無鉛ガソリンやLPGを燃料とする内燃機関の排気弁座
は所謂パルブリセツションと呼ばれる摩耗を生ずる。
Exhaust valve seats of internal combustion engines that use unleaded gasoline or LPG as fuel undergo wear called so-called valve reset.

即ち、加鉛ガソリンを燃料とする場合は燃料中のアルキ
ン鉛が燃焼時に酸化鉛、硫酸化鉛又はハロゲン化鉛等の
鉛化合物を生じ、これが弁や弁座の当り面に附勢して固
体潤滑剤や衝撃の緩衝剤として作用する効果を持つ為に
弁や弁座の摩耗は問題視されることが少なかったが、無
鉛ガソリンやLPGを燃料とする場合はこれらの作用を
持つ鉛化合物が生じない為摩耗が甚しくなり、更に弁座
の当り面での疲労破壊による剥離を局部的に生じるよう
になる。
In other words, when leaded gasoline is used as fuel, the alkyne lead in the fuel produces lead compounds such as lead oxide, lead sulfate, or lead halides during combustion, and these are energized on the contact surfaces of valves and valve seats and become solid. Wear on valves and valve seats has rarely been seen as a problem because they act as lubricants and impact buffers, but when unleaded gasoline or LPG is used as fuel, lead compounds that have these functions are Since this does not occur, wear becomes severe, and furthermore, peeling due to fatigue failure occurs locally on the contact surface of the valve seat.

これはピッチング摩耗と呼ばれろ現象として知られてお
り、弁と弁座との間の気密性を悪くし、遂には燃焼ガス
の吹き抜けを起して弁の損傷の原因となり、運転不能と
なることさえある。
This is a phenomenon known as pitting wear, which impairs the airtightness between the valve and the valve seat, and eventually causes combustion gas to blow through, damaging the valve and rendering it inoperable. Even.

一方、弁座はシリンダヘッドに圧入された後、弁との尚
り出しの為弁案内と同軸で労り面の切削加工が施される
ので被削性の良好であることが要求される。
On the other hand, after the valve seat is press-fitted into the cylinder head, the working surface is machined coaxially with the valve guide in order to protrude from the valve, so it is required to have good machinability.

上記のように弁座材料に要求される特性は耐摩耗性、耐
ピツチング性及び被剛性が主なものであろが、耐摩耗性
と被削性とは一般に二律背反的な性質であり、一方を良
くすれば他方が悪くなる傾向がある。
As mentioned above, the main properties required for valve seat materials are wear resistance, pitting resistance, and rigidity, but wear resistance and machinability are generally contradictory properties, and one should not be considered one. One thing that gets better tends to make the other worse.

現在迄に無鉛ガソリンやLPGを燃料とする内燃機関用
弁座材料としては高合金耐熱鋼、多量の炭化物を析出さ
せた耐熱鋳鋼及び高台金の焼結合金が提案されているが
上記の特性を総べて満足する材料は見出がれていない。
To date, high-alloy heat-resistant steel, heat-resistant cast steel with a large amount of carbide precipitated, and a sintered alloy of high-base metal have been proposed as valve seat materials for internal combustion engines that use unleaded gasoline or LPG as fuel. No material has been found that satisfies all aspects.

特に焼結合金は内在する空孔の為に切削加工に際して断
続切削となり、工具刃先の損傷を起し易く、工具の寿命
が著しく短かいと共に加工精度も悪くなる欠点を持って
いる。
In particular, sintered alloys have the disadvantage that due to the inherent pores, the cutting process involves intermittent cutting, which tends to damage the cutting edge of the tool, resulting in extremely short tool life and poor machining accuracy.

然し乍ら、鉄基焼結合金のあるものは排気弁座として使
用すると、使用中に空孔内にF e 304を主体とす
る酸化物が形成され、表面には酸化物皮膜を生じ、見掛
けの硬度が上昇し、又、摩擦係数を低下させ、而も生成
された酸化物皮膜は表面に接した空孔内部迄連続してい
るので剥離し難く、耐摩耗性を向上させる。
However, when iron-based sintered alloys are used as exhaust valve seats, oxides mainly composed of Fe 304 are formed in the pores during use, forming an oxide film on the surface, which reduces the apparent hardness. The oxide film increases and the friction coefficient decreases, and since the formed oxide film continues to the inside of the pores in contact with the surface, it is difficult to peel off, and the wear resistance is improved.

従ってpbやCu又はこれらの合金を溶浸して封孔する
ことは被削性向上の目的には有効であるが耐摩耗の観点
からは不都合であり、又、溶浸温度が100OC前後で
あるので原価高となる欠点を有する。
Therefore, sealing by infiltrating PB, Cu, or their alloys is effective for improving machinability, but it is inconvenient from the viewpoint of wear resistance, and since the infiltration temperature is around 100°C, It has the disadvantage of high cost.

現在弁座材料としてFe基地中に金属モリブデン、フェ
ロモリブデン、Cr−W−Co−C合金等の硬質粉末を
分散させた鉄基焼結合金が提案されているが、耐摩耗性
では満足できても被削性が悪く、耐ピッチング偏も良好
でない。
Currently, iron-based sintered alloys in which hard powders such as metallic molybdenum, ferromolybdenum, and Cr-W-Co-C alloys are dispersed in Fe base materials have been proposed as valve seat materials, but the wear resistance is not satisfactory. Also, machinability is poor and pitting resistance is also poor.

特にフェロクロム粉とフェロモリブデン粉を併せて配合
した材料では耐ピツチング性が劣る。
In particular, materials containing both ferrochrome powder and ferromolybdenum powder have poor pitting resistance.

本発明は従来材料の欠点を解消した耐摩耗性に優れると
共に被削性も良好であり、かつ、耐ピツチング性にも優
れた低原価の弁座用複合材料及びその製造方法を提供す
るものである。
The present invention provides a low-cost composite material for valve seats that eliminates the drawbacks of conventional materials, has excellent wear resistance, good machinability, and excellent pitting resistance, and a method for manufacturing the same. be.

即ち、本発明に係る複合材料の原材料として使用する合
金粉末ばF e −C−Cr −M o −Coの成分
からなり、溶解原材料として廉価で融点の低いフェロア
ロイが使用できるので、通常の鋳鋼溶解用のライニング
を施した溶解炉で溶製でき、且つ、粉砕が容易であるか
ら廉価に製造でき、而も得られる本発明複合材料は優れ
た耐摩耗性、耐ピツチング性を持ち、更に被削性も良好
である。
That is, the alloy powder used as a raw material for the composite material according to the present invention consists of the components Fe-C-Cr-Mo-Co, and since a ferroalloy that is inexpensive and has a low melting point can be used as a raw material for melting, it can be melted using ordinary cast steel melting. The composite material of the present invention can be melted in a melting furnace lined with a metal lining, and can be manufactured at low cost because it is easy to crush. The properties are also good.

以下本発明複合材料の製造手順に就いて述べる。The manufacturing procedure of the composite material of the present invention will be described below.

1.5〜5.0%C,15〜40%Cr、10〜30%
Mo、10%以下のCo、残部は実質的にFeよりなる
組成の合金を通例の塩基性ライニングを施した溶解炉で
溶製し、金型に鋳込んでインゴットとし、表面を清浄に
した後粉砕して100メツシユ以下の粉末とする。
1.5-5.0%C, 15-40%Cr, 10-30%
An alloy with a composition consisting of Mo, 10% or less Co, and the balance substantially Fe is melted in a melting furnace with a conventional basic lining, cast into a mold to form an ingot, and after cleaning the surface. Grind into a powder of 100 mesh or less.

この合金粉末8〜20係、Ni粉末0.5〜5.0係、
黒鉛粉末0.6〜1.5係、2硫化モリブデン又は2硫
化タングステン粉末の1種又は2種を0.2〜2.0
%、金属マンガン粉末はフェロマンガン粉末をMn量と
して0.5〜3.0係、残部Fe粉となるように配合し
、適量の潤滑剤を加えて混合、成形し、得られた圧粉体
を111100〜1150℃で焼結し、冷却途中若しく
は冷却後加熱して600〜800℃の温度に保持して基
地をパーライト組織となるようにする。
This alloy powder has a ratio of 8 to 20, Ni powder has a ratio of 0.5 to 5.0,
Graphite powder 0.6 to 1.5, one or two molybdenum disulfide or tungsten disulfide powder 0.2 to 2.0
%, the metallic manganese powder is mixed with ferromanganese powder so that the Mn content is 0.5 to 3.0, and the balance is Fe powder, and an appropriate amount of lubricant is added, mixed and molded, and the obtained green compact is obtained. is sintered at a temperature of 111,100 to 1,150°C, heated during or after cooling, and maintained at a temperature of 600 to 800°C to form a pearlite structure.

かくして金属硫化物及びF e −C−Cr −Mo
−C。
Thus metal sulfides and Fe-C-Cr-Mo
-C.

からなりHMV800〜1400の硬度を持ち、かつ原
料の合金粉末の形状をほぼ保っている微粒子(以下本明
細書で硬質相と呼ぶ)がパーライト基地中に微細に均一
に分布した組織を持つ密度6.3〜7.1tjf/cc
の弁座素材を得る。
It has a hardness of HMV 800 to 1400, and has a density of 6, which has a structure in which fine particles (hereinafter referred to as hard phase) that maintain the shape of the raw material alloy powder are finely and uniformly distributed in a pearlite base. .3~7.1tjf/cc
Obtain valve seat material.

次いで100〜250℃の融点を持つ有機金属化合物浴
中にこれを浸漬し、真空又は加圧方式によって焼結素材
の空孔を上記有機金属化合物で充填して弁座とする。
Next, this is immersed in an organometallic compound bath having a melting point of 100 to 250°C, and the pores of the sintered material are filled with the organometallic compound using a vacuum or pressure method to form a valve seat.

次に本発明で使用する合金粉末の組成範囲の限定理由を
述べる。
Next, the reason for limiting the composition range of the alloy powder used in the present invention will be described.

Cは合金粉末中でFe、Cr、Mo、Coと炭化物を形
成し、合金粉末がパーライト基地中にHMV 800〜
1400の硬度を持つ硬質相となって分散して耐摩耗性
に寄与させる為に必要であると共に粉末製造に際して粉
砕を容易ならしめる為に必要であって、1.5係未満で
は炭化物の量が少なく、硬度も不充分であり、粉砕が困
難となる。
C forms carbides with Fe, Cr, Mo, and Co in the alloy powder, and the alloy powder has HMV 800~ in the pearlite base.
It is necessary to disperse into a hard phase with a hardness of 1400 and contribute to wear resistance, and it is also necessary to facilitate pulverization during powder production. The amount is small and the hardness is insufficient, making it difficult to crush.

5.0係を超えると粉砕性は良いが、排気弁座として使
用中に硬質相にクラックを生じて脱落し易くなる。
When the coefficient exceeds 5.0, the crushability is good, but the hard phase cracks and easily falls off during use as an exhaust valve seat.

Cr、Mo、Coは炭化物形成元素として必要であると
共に基地中に1部拡散して硬質相周囲の基地を強化して
耐摩耗性、耐ピツチング性を向上させる。
Cr, Mo, and Co are necessary as carbide-forming elements, and also partially diffuse into the base to strengthen the base around the hard phase and improve wear resistance and pitting resistance.

Crば15係未満では硬質相の硬度が低く、耐摩耗性が
不充分であり、40係を超えると被削性を害する。
When the Cr value is less than 15, the hardness of the hard phase is low and the wear resistance is insufficient, and when it exceeds 40, machinability is impaired.

又、合金溶製時に原材料の融点の高い金属クロムを必要
とする等原価高の原因となる。
In addition, metal chromium, which has a high melting point, is required as a raw material when melting the alloy, which causes high costs.

MoばCrと同様炭化物形成元素であり、10係未満で
は耐摩耗性が不足し、309Jを超えても耐摩耗性向上
の効果は顕著ではない。
Like Cr, Mo is a carbide-forming element, and if the coefficient is less than 10, the wear resistance is insufficient, and even if it exceeds 309 J, the effect of improving the wear resistance is not significant.

Coは合金粉と基地とΩ焼結性を良好にする。Co improves the sinterability between the alloy powder and the matrix.

特にCr、Moの量が多い場合に効果があるが、10%
を超えても顕著な効果は認められないので経済的な見地
から10%以下とする。
It is especially effective when the amount of Cr and Mo is large, but 10%
Since no significant effect is observed even if the amount exceeds 10%, it is set at 10% or less from an economical standpoint.

この合金は通常の塩基性ライニングを施した溶解炉で容
易に溶製でき、溶解後、金型に鋳込んでインゴットとし
、ショツトブラスト等で表面を清浄にした後ショークラ
ッシャーによる粗粉砕、振動ボールミル メツシユ以下の粉末にする。
This alloy can be easily melted in a melting furnace with a basic lining. After melting, it is cast into a mold to make an ingot. After cleaning the surface by shot blasting, etc., it is coarsely crushed in a show crusher, and then crushed in a vibrating ball mill. Grind it into a powder of less than a pound.

上記組成範囲の合金は容易に粉砕が可能である。Alloys within the above composition range can be easily pulverized.

次に本発明複合材料製造に於ける各原料粉末の配合比に
就いて述べる。
Next, the blending ratio of each raw material powder in producing the composite material of the present invention will be described.

上記合金粉末の配合比は8〜20%の範囲で良好な特性
が得られろ。
Good properties can be obtained when the blending ratio of the alloy powder is in the range of 8 to 20%.

8係未満では耐摩耗性が不足し、20%を超えると成形
時に圧粉体にクラックを生じ易く、又、金型の寿命を短
かくする他、被剛性が悪くなる。
If it is less than 8%, wear resistance will be insufficient, and if it exceeds 20%, cracks will easily occur in the green compact during molding, and the life of the mold will be shortened, as well as poor rigidity.

最も好ましい範囲は10〜15係である。The most preferable range is 10-15.

Ni粉末は基地に固溶してこれを強化し、耐摩耗性、耐
ピツチング性を向上させる他、寸法調整の目的で基地に
均一に拡散するよう微細なカーボニルニッケル粉の形で
配合するが、0.5係未満では効果が少なく、5.0%
を超えろと混合粉の流動性が悪くなって成形性を害する
と共に基地のパーライト化を困難にする。
Ni powder is solid dissolved in the base to strengthen it and improve wear resistance and pitting resistance, and is also blended in the form of fine carbonyl nickel powder to uniformly diffuse into the base for the purpose of dimensional adjustment. If it is less than 0.5, the effect is small, 5.0%
If it exceeds this, the fluidity of the mixed powder will deteriorate, impairing the moldability and making it difficult to form the base into pearlite.

Mnは金属マンガン粉末又はフェロマンガン粉末の形で
Mn量として0.5〜3.0係を配合するが、その目的
ばNiのそれと同様に基地の強化にある他、焼結時に硫
化マンガンを生成させることにある。
Mn is mixed in the form of metallic manganese powder or ferromanganese powder in an Mn amount of 0.5 to 3.0, but its purpose is to strengthen the base, similar to that of Ni, and also to produce manganese sulfide during sintering. It's about letting people know.

0.5係未満では基地の強化が不充分であり、3、0係
を超えると基地の硬化によって被削性が害される。
If the coefficient is less than 0.5, the reinforcement of the matrix is insufficient, and if it exceeds 3.0, the matrix is hardened and machinability is impaired.

黒鉛粉末は基地のC含有量調整のために配合するのであ
るが、その配合量が0.6 1未満ではフェライトの多
い基地組織となって耐摩耗性が不足するようになり、こ
れが1.5係を越えると初析セメントの析出量が多くな
って脆化するようになる。
Graphite powder is blended to adjust the C content of the base, but if the blended amount is less than 0.61, the base structure will have a large amount of ferrite, resulting in insufficient wear resistance. When this value is exceeded, the amount of pro-eutectoid cement precipitated increases and becomes brittle.

2硫化モリブデン、2硫化タングステンは焼結時に分解
してMo,Wは1部基地に固溶してこれを強化し、1部
は炭化物を形成して耐摩耗性向上に寄与し、SばMn,
Fe,Niと反応してこれらと硫化物を形成し、基地中
に分散してて被削性を良好にする。
Molybdenum disulfide and tungsten disulfide decompose during sintering, Mo and W partially form a solid solution in the base to strengthen it, and a portion forms carbide and contributes to improving wear resistance, while S, Mn ,
It reacts with Fe and Ni to form sulfides, which are dispersed in the matrix and improve machinability.

配合量ば2硫化モリブデン、2硫化タングステンの1種
又は2種0.5〜2.0 %が望ましく、0.5 1未
満では被剛性向上の効果が少なく、2.0%を超えると
硫化物の量が多すぎて強度を著しく低下させると共に成
形性を悪くする。
The blending amount is desirably 0.5 to 2.0% of one or both of molybdenum disulfide and tungsten disulfide.If it is less than 0.5%, the effect of improving stiffness is small, and if it exceeds 2.0%, sulfide If the amount is too large, the strength will be significantly lowered and the moldability will be deteriorated.

最良の効果ば2硫化モリブデン単独使用の場合に得られ
る。
The best effect is obtained when molybdenum disulfide is used alone.

Mo,Wは単体金属やフェロアロイの形で配合すると焼
結温度(1100〜1150’C)では拡散が不充分と
なって被剛性を悪くする。
When Mo and W are blended in the form of single metals or ferroalloys, diffusion becomes insufficient at the sintering temperature (1100 to 1150'C), resulting in poor rigidity.

又、Sは単体の硫黄として配合すると焼結時に気化して
散逸し、歩留が低く、S量のバラツキも大きくなると共
に焼結炉の寿命を著しく短かくする。
Furthermore, if S is blended as simple sulfur, it will vaporize and dissipate during sintering, resulting in a low yield and large variations in the amount of S, as well as significantly shortening the life of the sintering furnace.

本発明複合材料を構成する焼結合金の組成範囲は、使用
する合金粉末の組成及び各原料粉末の配合比が上述の理
由によって範囲を限定される結果、次のように限定され
るものである。
The composition range of the sintered alloy constituting the composite material of the present invention is limited as follows, as the composition of the alloy powder used and the blending ratio of each raw material powder are limited due to the above-mentioned reasons. .

即ち、0、6 〜2.3%C、1.2 〜8.O%Cr
、2.0 ql)以下のCo, 0.5 〜5.0%N
i, 0.5 〜3.0%MnO.1〜0.6 % S
、上記合金粉末から供給されろMoとして0.8〜6.
04Mo、更に硫黄分の添加剤として配合する2硫化モ
リブデン粉末及び2硫化タングステン粉末の1種または
2種から供給されるMo及びWの工種または2種が合計
で0.3〜1、48%(但し、Moは1.2係以下、W
ば0.37%以上)、残部は実質的にFeからなる組成
となる。
That is, 0.6-2.3%C, 1.2-8. O%Cr
, 2.0 ql) or less Co, 0.5 to 5.0% N
i, 0.5-3.0%MnO. 1~0.6%S
, the amount of Mo supplied from the above alloy powder is 0.8 to 6.
04Mo, and the type or two of Mo and W supplied from one or two of molybdenum disulfide powder and tungsten disulfide powder, which are blended as sulfur additives, totaling 0.3 to 1.48% ( However, Mo is 1.2 or less, W
(0.37% or more), and the remainder consists essentially of Fe.

但し、上記C及びSの含有量範囲は、他の元素と異なっ
て焼結時の歩留が概ね100%ではないことを考慮する
と、Cば0.6〜2.3係、Sば0.1〜0、6係とな
る。
However, considering that unlike other elements, the yield during sintering is generally not 100%, the content range of C and S is 0.6 to 2.3 for C and 0.6 to 2.3 for S. 1 to 0 and 6 sections.

上記のように配合した混合粉に適量の潤滑剤を加え、金
型中で4〜7ton/cdの成形圧で成形して得られた
圧粉体を真空中又は還元雰囲気中で1100〜1150
℃に20〜60分間保持して焼結する。
Add an appropriate amount of lubricant to the mixed powder blended as above and mold it in a mold at a molding pressure of 4 to 7 tons/cd.
C. for 20-60 minutes to sinter.

1100’C未満の温度では拡散が不充分で強度が不足
し耐摩耗性も充分でなく、1150℃を超える温度では
カーケンドル効果によって拡散が硬質相から基地中へ1
方向にのみ進行して硬質相の硬度が低下し遂には硬質相
が消失してその個所が空孔となって耐摩耗性が低下し、
更に基地の硬度が上昇して被削性を害すると共に焼結素
材の膨張が大きくなって寸法精度が悪くなる。
At temperatures below 1,100'C, diffusion is insufficient, resulting in insufficient strength and wear resistance, and at temperatures above 1,150'C, diffusion from the hard phase into the base 1 due to the Kirkendall effect.
The hardness of the hard phase decreases as it progresses only in the direction, and the hard phase eventually disappears, forming pores at that location and reducing wear resistance.
Furthermore, the hardness of the base increases, impairing machinability, and the expansion of the sintered material increases, resulting in poor dimensional accuracy.

次に焼結後の冷却の途中又は冷却後加熱して600〜8
00℃に保持して基地をパーライトとするその目的は被
削性を向上させると共に疲労によるピッチングの発生を
防止することにある。
Next, during cooling after sintering or after cooling, heat to 600 to 8
The purpose of maintaining the temperature at 00°C and using pearlite as the base is to improve machinability and to prevent pitting due to fatigue.

即ち、オーステナイト、遊離フェライト、マルテンサイ
ト等が混在する組織にあては疲れ強さが不充分で使用中
の繰返し衝撃荷重及び繰返し加熱冷却によって当り面で
疲労破壊によるピッチングを起し易く、又、遊離フェラ
イトの存在は切削加工に際してビビリを生じ易く、更に
過共析セメンタイトが析出すると材料を脆くするので好
ましくない。
In other words, structures containing austenite, free ferrite, martensite, etc., have insufficient fatigue strength, and are susceptible to pitting due to fatigue fracture at the contact surface due to repeated impact loads and repeated heating and cooling during use. The presence of ferrite tends to cause chatter during cutting, and the precipitation of hypereutectoid cementite makes the material brittle, which is undesirable.

最も好ましい基地組織は粒状パーライトである。The most preferred matrix structure is granular pearlite.

かくして6.3〜7.1グ/c cの密度を持ち、パー
ライト基地中に金属硫化物とHMV800〜1400の
硬度を持つ硬質相の分散した組織を有する焼結合金製素
材を得る。
In this way, a sintered alloy material having a density of 6.3 to 7.1 g/cc and a structure in which metal sulfide and a hard phase having a hardness of HMV 800 to 1400 are dispersed in a pearlite matrix is obtained.

密度は6.3S%c未満では耐摩耗性が不充分であり、
7.1@/ccを超えると成形に際して高い成形圧を必
要とするので6.3〜7.1f/ccとする。
If the density is less than 6.3S%c, the wear resistance is insufficient,
If it exceeds 7.1@/cc, high molding pressure is required during molding, so it is set at 6.3 to 7.1 f/cc.

特に好ましい範囲は6.5〜6.8t / c cであ
る。
A particularly preferred range is 6.5 to 6.8 t/cc.

次いで上記素材を融点ioo〜250℃の溶融有機金属
化合物中に浸漬して真空、加圧若しくは両者の併用の方
法によって素材の空孔内を有機金属化合物で充填する。
Next, the above-mentioned material is immersed in a molten organometallic compound having a melting point of ioo to 250[deg.] C., and the pores of the material are filled with the organometallic compound by vacuum, pressure, or a combination of both.

有機金属化合物は断続切削を防止する他、工具と被切削
材との間の潤滑剤としても作用する。
In addition to preventing interrupted cutting, the organometallic compound also acts as a lubricant between the tool and the workpiece.

その融点は1oocよりも低いと切削中に液化して被削
性改善の効果が得られず、250℃を超えると溶浸に高
温を必要とするので好ましくない他、排気弁座として使
用中に空孔を回復し難い。
If the melting point is lower than 1ooc, it will liquefy during cutting and the effect of improving machinability will not be obtained, and if it exceeds 250℃, high temperature is required for infiltration, which is undesirable. Difficult to recover pores.

有機金属化合物としてばZnやpbのような低融点金属
の有機化合物が好適である。
As the organometallic compound, organic compounds of low melting point metals such as Zn and PB are suitable.

本発明による排気弁座は使用中に高温に曝されて**当
り面附近の空孔に充填された有機金属化合物は容易に気
化して空孔を回復し、表面及び表面に接する空孔内部に
Fe3O4を主体とする酸化皮膜が形成されて耐摩耗性
が改善される。
When the exhaust valve seat according to the present invention is exposed to high temperatures during use, the organometallic compound filled in the pores near the contact surface easily vaporizes and recovers the pores, and the surface and the inside of the pores in contact with the surface are easily vaporized and recovered. An oxide film mainly composed of Fe3O4 is formed on the surface, improving wear resistance.

而も、該酸化皮膜は空孔内に連続しているから剥離し難
く安定である。
Moreover, since the oxide film is continuous within the pores, it is difficult to peel off and is stable.

本発明による排気弁座の当り面附近の組織をモデル化し
て第1図に示す。
The structure around the contact surface of the exhaust valve seat according to the present invention is modeled and shown in FIG.

aは使用前の状態で、パーライト組織を持つ基地1の中
にFe−C−Cr)−Mo−Co合金よりなる硬質相2
と金属硫化物3が分布し、空孔には有機金属化合物5が
充填されている。
a shows a state before use, with a hard phase 2 made of Fe-C-Cr)-Mo-Co alloy in a base 1 having a pearlite structure.
and metal sulfide 3 are distributed, and the pores are filled with organometallic compound 5.

bは短時間運転後の状態で当り面附近の有機金属化合物
が消失して空孔4が回復されている。
In b, after a short period of operation, the organometallic compound near the contact surface has disappeared and the pores 4 have been recovered.

Cは長時間運転後の状態でFe3O4を主事とする酸化
物6が表面及び回復した空孔内に形成されている。
In C, after a long period of operation, an oxide 6 mainly composed of Fe3O4 is formed on the surface and in the recovered pores.

本発明に係る排気弁座材料は基地中に分散した硬質相、
金属硫化物及び運転中に形成される酸化皮膜によって優
れた耐摩耗性が保持されるものである。
The exhaust valve seat material according to the present invention has a hard phase dispersed in the matrix,
Excellent wear resistance is maintained by the metal sulfide and the oxide film formed during operation.

次に実施例に就いて説明する。Next, examples will be explained.

実施例 1 高炭素フェロクロム、フエロモリフテン、鋼屑、黒鉛層
、金属コバルトを原材料としてマグネシアライニングを
施した高周波誘導炉で溶解し、金型に鋳込んでインゴッ
トを造り、ショツトブラストで表面を清浄にした後ショ
ークラッシャーにて粗粉砕、振動ボールミルにて細粉砕
、振動篩を通して一1100メツシュの合金粉を得た。
Example 1 High carbon ferrochrome, ferromolyftene, steel scrap, graphite layer, and metallic cobalt were melted in a magnesia-lined high-frequency induction furnace as raw materials, cast into a mold to make an ingot, and the surface was cleaned by shot blasting. After that, it was coarsely crushed in a show crusher, finely crushed in a vibrating ball mill, and passed through a vibrating sieve to obtain an alloy powder of 11,100 mesh.

合金粉の組成は第1表に示す通りである。The composition of the alloy powder is shown in Table 1.

次に第2表に示すような諸条件で配合、成形、焼結、熱
処理、有機金属化合物の溶浸を行なって外径37馴、内
径30rrrrrL、高さ7.5Mの円筒形排気弁座素
材を製作した。
Next, compounding, molding, sintering, heat treatment, and infiltration with organometallic compounds were carried out under the conditions shown in Table 2 to produce a cylindrical exhaust valve seat material with an outer diameter of 37cm, an inner diameter of 30rrrrrL, and a height of 7.5M. was produced.

表には有機金属化合物溶浸前後の素材の緒特性が併記し
である。
The table also shows the characteristics of the material before and after infiltration with organometallic compounds.

上記排気弁座素材を構成する焼結合金の化学組成(分析
値)は第2表の2に示す通りである。
The chemical composition (analytical value) of the sintered alloy constituting the exhaust valve seat material is as shown in Table 2-2.

これらの内試料3.5及び8に就いて排気弁座を作り、
水冷4気筒4サイクル、OHCタイプ、排気量1,60
0ccのエンジンに組込んで、無鉛ガソリンを燃料とし
、6000 rpm 、全負荷にて100又は200時
間の実機による耐久試験を行ない排気弁座の摩耗量を測
定し、当り面のピッチング発生の有無を観察した。
Exhaust valve seats were made for samples 3.5 and 8 of these,
Water-cooled 4-cylinder 4-stroke, OHC type, displacement 1.60
A 100 or 200 hour durability test was carried out using an actual machine installed in a 0cc engine using unleaded gasoline as fuel at 6000 rpm and full load to measure the amount of wear on the exhaust valve seat and check for pitting on the contact surface. Observed.

弁座の摩耗量は弁を閉じた状態での弁の沈み量(M)で
表示した。
The amount of wear on the valve seat was expressed as the amount of valve depression (M) when the valve was closed.

対比材として0.8%C,0,3%Mo、0.1%V、
2.5*Cr、0.07%Ni、残部Feよりなり、硬
度HRA58、密度6.8み俺Cの焼結合金にpbを溶
浸した材料(対比材Aと呼ぶ)及び特殊耐熱鋼(対比材
Bと呼ぶ)に就いて同一条件で試験した。
0.8%C, 0.3%Mo, 0.1%V as contrast materials,
A material consisting of 2.5*Cr, 0.07% Ni, balance Fe, hardness HRA 58, density 6.8 sintered alloy infiltrated with PB (referred to as contrast material A) and special heat-resistant steel ( Comparative material B) was tested under the same conditions.

試験結果を第3表に示す。The test results are shown in Table 3.

本発明による排気弁座は対比材に比べて摩耗量が明らか
に小さく、又、ピッチングの発生も認められないか或は
僅かに認められる程度であって、排気弁座用材料として
極めて優れていることが判る。
The exhaust valve seat according to the present invention has a clearly smaller amount of wear than the comparative material, and no or only slight pitting is observed, making it an extremely excellent material for exhaust valve seats. I understand that.

実施例 2 実施例工に使用した弁座材料と同一素材1をチャック4
によって旋盤に取付け、第2図に示す方法で素材端面に
45°の面取を施して被削性試験を行なった。
Example 2 The same material 1 as the valve seat material used in the example work was made into a chuck 4.
The material was mounted on a lathe by the method shown in FIG. 2, and the end face of the material was chamfered at 45° to conduct a machinability test.

被削性の評価は各([1ffi切削加工後のバイト3の
刃先の摩耗寸法(M)によった。
The machinability was evaluated based on the wear dimension (M) of the cutting edge of the cutting tool 3 after cutting (1ffi).

試験条件は切削速度58m/分、送り速度0.05 r
rary/rey、工具材料TH−03、チップ形状5
NP−432、バイトホルダーN141VI−33であ
る。
The test conditions were a cutting speed of 58 m/min and a feed rate of 0.05 r.
rary/rey, tool material TH-03, chip shape 5
NP-432, bite holder N141VI-33.

対比材には試料5の有機金属の溶浸を施さない素材(5
′と表示する)に就いても試験を行なった。
The contrast material was a material that was not infiltrated with the organometallic sample 5 (5
’ ) were also tested.

試験結果を第3図に示す。The test results are shown in Figure 3.

尚、本試験に使用した工具材料は試料Bに対しては不適
当な材料であるので図から除外した。
Note that the tool material used in this test was not suitable for sample B, so it was excluded from the figure.

本発明に係る弁座材料は対比材に比べて被剛性が著しく
優れていることが判る。
It can be seen that the valve seat material according to the present invention has significantly better rigidity than the control material.

以上詳細に説明したように、本発明に係る排気弁座用複
合材料は無鉛ガソリンやLPGを燃料とする内燃機関に
使用して、従来材に見られない優れた耐摩耗性、耐ピツ
チング性及び良好な被剛性を併せ備えており、又、融点
の低い粉砕の容易な合金粉末を使用すること及び極めて
低い融点を持つ有機金属を溶浸するので廉価に製造でき
ることが理解されよう。
As explained in detail above, the composite material for exhaust valve seats according to the present invention can be used in internal combustion engines that use unleaded gasoline or LPG as fuel, and has excellent wear resistance, pitting resistance, and It will be understood that it has good rigidity and can be manufactured at a low cost because it uses an easily pulverized alloy powder with a low melting point and is infiltrated with an organic metal that has an extremely low melting point.

尚、本発明に係る排気弁座用材料に更に耐ピツチング性
を改善する目的で、基地の強靭化元素としてV、Nbを
添加することは有効である。
Incidentally, for the purpose of further improving the pitting resistance of the exhaust valve seat material according to the present invention, it is effective to add V and Nb as base toughening elements.

この場合、添加量はそれぞれ2係以下に止めるのが良い
In this case, it is preferable to limit the amount of each addition to 2 parts or less.

これを超える添加は被剛性を害する。Coば5〜15係
含有させると耐摩耗性が僅か向上するが一方Cの拡散を
促進して脱炭を助長する作用があるので多量の添加は避
けるべきである。
Addition in excess of this will impair rigidity. When Co is added in an amount of 5 to 15%, the wear resistance is slightly improved, but on the other hand, it has the effect of promoting the diffusion of C and promoting decarburization, so addition of a large amount should be avoided.

又、空孔ノ形状を球状化させることによって耐ピツチン
グ性が改善されるので0.3〜0.6%のPを含むFe
粉をP量で0.25 %以下の範囲で使用して1部液相
暁結させることも有効である。
In addition, pitting resistance is improved by making the shape of the pores spherical, so Fe containing 0.3 to 0.6% P
It is also effective to use the powder in an amount of P in the range of 0.25% or less to form a part of the powder into a liquid phase.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明弁座用材料の蟲す面附近の組織を説明す
る為の組織図で、aは使用前の状態、bは短時間運転後
の状態、Cは長時間運転後の状態を示す。 1は基地、2は硬質相、3は金属硫化物、4は空孔、5
は有機金属化合物、6は酸化物であも第2図は被削性試
験の方法を説明する為の断面図で、1は試験片、2は切
削部分、3Vi、工具、4はチャックであり、矢印は工
具の送り方向を示す。 第3図は被削性試験の結果を示すグラフである。
Fig. 1 is a tissue diagram for explaining the structure of the valve seat material of the present invention near the rotary surface, where a is the state before use, b is the state after short-time operation, and C is the state after long-time operation. shows. 1 is the base, 2 is the hard phase, 3 is the metal sulfide, 4 is the vacancy, 5
is an organometallic compound, 6 is an oxide, and Figure 2 is a cross-sectional view to explain the machinability test method, where 1 is a test piece, 2 is a cutting part, 3Vi is a tool, and 4 is a chuck. , the arrow indicates the feeding direction of the tool. FIG. 3 is a graph showing the results of the machinability test.

Claims (1)

【特許請求の範囲】 1 0.6〜2.3%C11,2〜8.0 % Cr、
2.0係以下のCo、 0.5〜5.0%Ni、 0
.5〜3.O4Mn、OJ〜0.6%S、原料の合金粉
末から供給されるMoとして0.8〜6.0 % Mo
、更に硫黄分添加剤の2硫化モリブデン粉末及び2硫
化タンゲステン粉末の1種または2種から供給されるM
o及びWの1種または2種が合計で0.3〜1.48
% (但し、Moは1.2係以下、Wば0.37 %以
上)、残部が実質的にFeからなる組成を有し、F’e
を主成分とするパーライト基地中に、金属硫化物と、1
.5〜5.0 % C115〜40%Cr、10〜30
%Mo、10%以下のCo、残部が実質的にFeよりな
る組成の原料粉によって形成され、HMv800〜14
00の硬度を有する硬質相とが微細に分散した組織を有
し、かつ6.3〜7.1f/ccの密度を有する焼結合
金の空孔が、100〜250℃の融点を持つ有機金属化
合物によって充填されていることを特徴とする耐摩耗性
と被剛性に優れた排気弁座用複合材料。 2 1.5〜5.0L1)C,15〜40%Cr、10
〜30%Mo、10%以下のCo、残部は実質的にFe
よりなる合金粉末8〜20%、Ni粉末0.5〜5.0
%、黒鉛粉末0.6〜1.5係、2硫化モリフデン粉末
及び2硫化タングステン粉末の1種又は2種が合計で0
.5〜2.0%、フェロマンガン粉末又は金属マンガン
粉末がMn量として0.5〜3.0東残部Fe粉よりな
る混合粉を圧縮成形し、1100〜1150℃で焼結し
、600〜800℃保持の熱処理を施して基地をパーラ
イトとした後、100〜250℃の融点を持つ溶融有機
金属化合物を空孔中に充填することを特徴とする特許請
求の範囲1記載の排気弁座用複合材料の製造方法。
[Claims] 1 0.6-2.3% C11, 2-8.0% Cr,
Co less than 2.0%, 0.5-5.0%Ni, 0
.. 5-3. O4Mn, OJ~0.6%S, 0.8~6.0% Mo as Mo supplied from raw material alloy powder
, and M supplied from one or two of molybdenum disulfide powder and tungsten disulfide powder as sulfur additives.
One or two of o and W in total is 0.3 to 1.48
% (However, Mo is 1.2% or less, W is 0.37% or more), the balance is substantially Fe, and F'e
Metal sulfide and 1
.. 5-5.0% C115-40%Cr, 10-30
%Mo, 10% or less Co, and the balance is formed from raw material powder consisting essentially of Fe, and has a HMv of 800 to 14
The pores of the sintered alloy, which has a structure in which a hard phase having a hardness of 0.00 and a density of 6.3 to 7.1 f/cc are finely dispersed, form an organic metal having a melting point of 100 to 250°C. A composite material for exhaust valve seats that is filled with a compound and has excellent wear resistance and rigidity. 2 1.5-5.0L1) C, 15-40% Cr, 10
~30% Mo, 10% or less Co, remainder substantially Fe
Alloy powder consisting of 8-20%, Ni powder 0.5-5.0%
%, graphite powder 0.6 to 1.5 ratio, one or two of molyfden disulfide powder and tungsten disulfide powder is 0 in total
.. 5 to 2.0%, ferromanganese powder or metallic manganese powder with Mn content of 0.5 to 3.0 Tozanbe Fe powder is compression molded, sintered at 1100 to 1150°C, and 600 to 800% The composite for an exhaust valve seat according to claim 1, characterized in that after the base is made into pearlite by heat treatment to maintain it at °C, the pores are filled with a molten organometallic compound having a melting point of 100 to 250 °C. Method of manufacturing the material.
JP9979475A 1975-08-19 1975-08-19 Greta japonica Expired JPS5857505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9979475A JPS5857505B2 (en) 1975-08-19 1975-08-19 Greta japonica

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9979475A JPS5857505B2 (en) 1975-08-19 1975-08-19 Greta japonica

Publications (2)

Publication Number Publication Date
JPS5223512A JPS5223512A (en) 1977-02-22
JPS5857505B2 true JPS5857505B2 (en) 1983-12-20

Family

ID=14256812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9979475A Expired JPS5857505B2 (en) 1975-08-19 1975-08-19 Greta japonica

Country Status (1)

Country Link
JP (1) JPS5857505B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2810044B2 (en) * 1978-03-08 1980-01-10 Kaltenbach & Voigt Gmbh & Co, 7950 Biberach Dental handpiece
DE2855359C3 (en) * 1978-12-21 1981-07-23 Kaltenbach & Voigt Gmbh & Co, 7950 Biberach Dental handpiece
JPS56169766A (en) * 1980-05-29 1981-12-26 Nippon Piston Ring Co Ltd Sliding member for internal-combustion engine

Also Published As

Publication number Publication date
JPS5223512A (en) 1977-02-22

Similar Documents

Publication Publication Date Title
KR101399003B1 (en) Improved powder metallurgy composition
EP1536028B1 (en) Alloy powder for forming hard phase and manufacturing method for wear resistant sintered alloy
JP5551413B2 (en) Powder metal valve seat insert
JP4368245B2 (en) Hard particle dispersion type iron-based sintered alloy
JPH0210311B2 (en)
GB2109004A (en) Anti-wear sintered alloy and process for the manufacture thereof
EP2253727B1 (en) Iron-based alloy powder
JP4693170B2 (en) Wear-resistant sintered alloy and method for producing the same
JP4179550B2 (en) Wear-resistant sintered alloy and method for producing the same
JP4455390B2 (en) Wear-resistant sintered alloy and method for producing the same
JP4467013B2 (en) Sintered valve seat manufacturing method
JPS5857505B2 (en) Greta japonica
JPH05202451A (en) Sintered alloy for valve seat
JP3434527B2 (en) Sintered alloy for valve seat
JPH10219411A (en) Wear resistant sintered alloy and its production
JP5253132B2 (en) Wear-resistant sintered alloy and method for producing the same
JPH0116905B2 (en)
JP4716366B2 (en) Sintered valve seat manufacturing method
JPS6119762A (en) Abrasion resistant sintered alloy
JPS5834545B2 (en) Greta's baboon
JPS6169946A (en) Valve system sliding member and its manufacture
JP2010144235A (en) Wear-resistant sintered alloy and method for producing the same
JP3763605B2 (en) Sintered alloy material for valve seats
JP2010144237A (en) Wear-resistant sintered alloy and method for producing the same
JPH0533299B2 (en)