JP2010144237A - Wear-resistant sintered alloy and method for producing the same - Google Patents

Wear-resistant sintered alloy and method for producing the same Download PDF

Info

Publication number
JP2010144237A
JP2010144237A JP2008325076A JP2008325076A JP2010144237A JP 2010144237 A JP2010144237 A JP 2010144237A JP 2008325076 A JP2008325076 A JP 2008325076A JP 2008325076 A JP2008325076 A JP 2008325076A JP 2010144237 A JP2010144237 A JP 2010144237A
Authority
JP
Japan
Prior art keywords
powder
mass
wear
hard phase
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008325076A
Other languages
Japanese (ja)
Inventor
Hideaki Kawada
英昭 河田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2008325076A priority Critical patent/JP2010144237A/en
Priority to US12/458,063 priority patent/US20100008812A1/en
Priority to DE102009031390A priority patent/DE102009031390A1/en
Priority to KR1020090060216A priority patent/KR101117361B1/en
Publication of JP2010144237A publication Critical patent/JP2010144237A/en
Priority to US13/707,235 priority patent/US9260772B2/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive wear-resistant sintered alloy which has such high corrosion resistance as to be used in an internal combustion engine using an alcohol fuel, and to provide a method for producing the same. <P>SOLUTION: The wear-resistant sintered alloy has a total composition comprising, by mass ratio, 1.58-18.55 mass% Cr, 0.54-2.54 mass% Ni, 2.67-16.84 mass% Mo, 0.15-4.5 mass% Si, 2.25-33.30 mass% Co, 0.05-0.42 mass% Mn, 0.5-1.5 mass% C and the balance Fe with unavoidable impurities; and has a metallurgical structure in which a hard phase having a composition comprising 15-35% Mo, 1-10% Si, 10-40% Cr and the balance Co with unavoidable impurities is dispersed in an Fe-Ni-Mo-C based alloy matrix by 15-45%. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、高温における耐摩耗性に優れた耐摩耗性焼結合金および製造方法に係り、主として内燃機関のバルブシートに用いて好適な技術に関する。   The present invention relates to a wear-resistant sintered alloy having excellent wear resistance at high temperatures and a manufacturing method, and more particularly to a technique suitably used for a valve seat of an internal combustion engine.

焼結合金は、合金設計の自由度が高く、溶製材と比較して耐熱性や耐摩耗性等の各種特性を付加し易いため、内燃機関のバルブシートに適用されている。このようなバルブシート用の耐摩耗性焼結合金には、主に耐摩耗性の向上を目的として鉄基合金基地に高硬度の硬質粒子を分散させたものが多い。例えば、フェロモリブデンやフェロタングステン等のフェロアロイ粉末を原料粉末に添加して焼結することにより、フェロアロイ粒子を鉄基合金基地中に分散させたり(特許文献1等)、高速度工具鋼粉末やダイス鋼粉末により、金属炭化物が析出分散する硬質相を鉄基合金基地中に分散させたもの(特許文献2等)等が知られている。特に、高い耐摩耗性が要求される場合には、Co−Cr−W系合金(特許文献1)や、Co−Mo−Si系合金(特許文献3等)等のCo基合金粉末や、Ni基合金粉末(特許文献4等)を原料粉末に添加して硬質相として分散させると好適であることが知られている。   Sintered alloys are applied to valve seats of internal combustion engines because they have a high degree of freedom in alloy design and are easy to add various characteristics such as heat resistance and wear resistance as compared with melted materials. Many of such wear-resistant sintered alloys for valve seats are obtained by dispersing hard particles of high hardness on an iron-based alloy base mainly for the purpose of improving wear resistance. For example, ferroalloy particles such as ferromolybdenum and ferrotungsten are added to the raw material powder and sintered to disperse the ferroalloy particles in the iron-base alloy matrix (Patent Document 1, etc.), high-speed tool steel powder or dies. Known are steel powders in which a hard phase in which metal carbide is precipitated and dispersed is dispersed in an iron-base alloy matrix (Patent Document 2 and the like). In particular, when high wear resistance is required, a Co-based alloy powder such as a Co—Cr—W alloy (Patent Document 1) or a Co—Mo—Si alloy (Patent Document 3 or the like), Ni It is known that it is preferable to add a base alloy powder (eg, Patent Document 4) to the raw material powder and disperse it as a hard phase.

特開昭64−015349号公報JP-A 64-015349 特開平09−195012号公報Japanese Patent Laid-Open No. 09-195012 特開昭56−152947号公報JP 56-152947 A 特開平10−046298号公報Japanese Patent Laid-Open No. 10-046298

Co−Mo−Si系合金の硬質相を分散した耐摩耗性焼結合金は、近年、CoやMo等の価格高騰により、コストが高いものとなってきている。また、近年の環境問題および原油枯渇問題から、内燃機関の燃料として生物由来のアルコール燃料の使用が増加している。しかしながら、アルコール燃料は燃焼時に酸性物質を生成するため、バルブシートに使用される耐摩耗性焼結合金には、より高い耐食性が要求されるようになってきている。そこで、本発明は、安価で、かつ従来よりも高い耐食性を有する耐摩耗性焼結合金、およびその製造方法を提供することを目的とする。なお、以降の記載において、「%」は全て質量比における百分率、すなわち「質量%」を表すものとする。   In recent years, wear-resistant sintered alloys in which a hard phase of a Co—Mo—Si based alloy is dispersed have become costly due to rising prices of Co and Mo. In addition, due to recent environmental problems and crude oil depletion problems, the use of biological alcohol fuel as fuel for internal combustion engines is increasing. However, since alcohol fuel generates an acidic substance during combustion, higher corrosion resistance is required for wear-resistant sintered alloys used for valve seats. Accordingly, an object of the present invention is to provide a wear-resistant sintered alloy that is inexpensive and has higher corrosion resistance than before, and a method for producing the same. In the following description, “%” represents all percentages in mass ratio, that is, “mass%”.

本発明の耐摩耗性焼結合金は、質量比で、全体組成が、Cr:1.58〜18.55質量%、Ni:0.54〜2.54質量%、Mo:2.67〜16.84質量%、Si:0.15〜4.5質量%、Co:2.25〜33.30質量%、Mn:0.05〜0.42質量%、C:0.5〜1.5質量%、および残部がFeと不可避不純物からなり、Fe−Co−C系合金基地中に、組成が、Mo:15〜35%、Si:1〜10%、Cr:10〜40%、および残部がCoと不可避不純物からなる硬質相が15〜45%分散する金属組織を呈することを特徴とする。   The wear-resistant sintered alloy of the present invention has a mass ratio of Cr: 1.58 to 18.55% by mass, Ni: 0.54 to 2.54% by mass, Mo: 2.67 to 16 .84% by mass, Si: 0.15 to 4.5% by mass, Co: 2.25 to 33.30% by mass, Mn: 0.05 to 0.42% by mass, C: 0.5 to 1.5 In the Fe-Co-C alloy base, the composition is Mo: 15 to 35%, Si: 1 to 10%, Cr: 10 to 40%, and the balance. Exhibits a metal structure in which a hard phase composed of Co and inevitable impurities is dispersed by 15 to 45%.

この場合において、硬質相中のCoの一部をFeで置換することや、全体組成において、Mn:2.25質量%以下となるように、硬質相の組成に、Mn:5質量%以下を追加することが好ましい。また、Niを全体組成に対して5.0質量%以下となるよう追加したり、Cuを全体組成に対して5.0質量%以下となるよう追加することが好ましい。さらに、焼結合金の気孔および粒界に、鉛、二硫化モリブデン、硫化マンガン、窒化硼素、メタ珪酸カルシウム系鉱物、弗化カルシウムの群より選ばれる少なくとも1種の被削性改善物質粉末を0.3〜2質量%さらに分散させたり、焼結合金の気孔中に、鉛、鉛合金、銅、銅合金、アクリル樹脂のうちの少なくとも1種を充填することが好ましい。   In this case, Mn: 5 mass% or less is included in the composition of the hard phase so that a part of Co in the hard phase is replaced with Fe, or in the overall composition, Mn: 2.25 mass% or less. It is preferable to add. Moreover, it is preferable to add Ni so that it may become 5.0 mass% or less with respect to the whole composition, or to add Cu so that it may become 5.0 mass% or less with respect to the whole composition. Further, at least one machinability improving substance powder selected from the group consisting of lead, molybdenum disulfide, manganese sulfide, boron nitride, calcium metasilicate mineral, calcium fluoride is added to the pores and grain boundaries of the sintered alloy. It is preferable to further disperse 3 to 2% by mass, or to fill at least one of lead, lead alloy, copper, copper alloy, and acrylic resin in the pores of the sintered alloy.

また、本発明の耐摩耗性焼結合金の製造方法は、組成が、質量比で、Ni:1〜3質量%、Mo:0.5〜2質量%、Cr:0.1〜1質量%、Mn:0.1〜0.5質量%、残部がFeと不可避不純物からなる鉄合金粉末に、組成が、質量比で、Mo:15〜35%、Si:1〜10%、Cr:10〜40%、および残部がCoと不可避不純物からなる硬質相形成粉末:15〜45%と、黒鉛粉末:0.5〜1.5%とを添加し、混合した原料粉末を所望の形状に圧粉成形し、得られた成形体を焼結することを特徴とする。   Moreover, the manufacturing method of the wear-resistant sintered alloy of the present invention is such that the composition is in mass ratio, Ni: 1 to 3% by mass, Mo: 0.5 to 2% by mass, Cr: 0.1 to 1% by mass. , Mn: 0.1 to 0.5% by mass, the balance of the iron alloy powder consisting of Fe and inevitable impurities, the composition is Mo: 15 to 35%, Si: 1 to 10%, Cr: 10 Hard phase forming powder consisting of ˜40% and the balance consisting of Co and inevitable impurities: 15 to 45% and graphite powder: 0.5 to 1.5%, and the mixed raw material powder is pressed into a desired shape Powder molding is performed, and the obtained molded body is sintered.

この場合において、硬質相形成粉末のCoの一部をFeで置換することや、硬質相形成粉末が、Mn:5質量%以下をさらに含むことが好ましい。また、原料粉末にニッケル粉末を全体組成に対して5.0質量%以下となるよう追加したり、原料粉末に銅粉末を全体組成に対して5.0質量%以下となるよう追加することが好ましい。さらに、原料粉末に、鉛粉末、二硫化モリブデン粉末、硫化マンガン粉末、窒化硼素粉末、メタ珪酸カルシウム系鉱物粉末、弗化カルシウム粉末の群より選ばれる少なくとも1種の被削性改善物質粉末を0.3〜2質量%さらに添加することや、焼結により得られた耐摩耗性焼結合金の気孔中に、鉛、鉛合金、銅、銅合金、アクリル樹脂のうちの1種を溶浸もしくは含浸させることが好ましい。   In this case, it is preferable that a part of Co in the hard phase forming powder is replaced with Fe, or that the hard phase forming powder further includes Mn: 5% by mass or less. Moreover, it is possible to add nickel powder to the raw material powder so as to be 5.0% by mass or less with respect to the whole composition, or add copper powder to the raw material powder so that it becomes 5.0% by mass or less with respect to the whole composition. preferable. Further, at least one machinability improving substance powder selected from the group consisting of lead powder, molybdenum disulfide powder, manganese sulfide powder, boron nitride powder, calcium metasilicate mineral powder and calcium fluoride powder is used as the raw material powder. Further, 3 to 2% by mass or infiltration of one of lead, lead alloy, copper, copper alloy and acrylic resin in the pores of the wear-resistant sintered alloy obtained by sintering or It is preferable to impregnate.

本発明の耐摩耗性焼結合金は、比較的安価なCrを用いて鉄基合金基地および硬質相合金基地を強化するとともに、Crにより不動態酸化被膜が形成されるため、腐食環境下においても優れた耐食性および耐摩耗性を発揮する。したがって、本発明は、燃料としてアルコール燃料を用いる内燃機関のバルブシートに好適である。   The wear-resistant sintered alloy of the present invention reinforces the iron base alloy base and the hard phase alloy base using relatively inexpensive Cr, and a passive oxide film is formed by Cr, so even in a corrosive environment. Excellent corrosion resistance and wear resistance. Therefore, the present invention is suitable for a valve seat of an internal combustion engine that uses alcohol fuel as fuel.

[硬質相]
本発明の硬質相は、従来技術と同様に、硬質相形成粉末を原料粉末に添加し、焼結することで基地中に分散する。そして、本発明の硬質相では、Co−Mo−Si系硬質相を改良するにあたり、Crの含有量を大幅に増量したことを骨子とする。したがって、Co、Mo、Siの作用は従来技術の場合とほぼ同様である。
[Hard phase]
As in the prior art, the hard phase of the present invention is dispersed in the matrix by adding the hard phase forming powder to the raw material powder and sintering it. And in the hard phase of this invention, in improving Co-Mo-Si type | system | group hard phase, it is essential that the content of Cr was increased significantly. Therefore, the action of Co, Mo and Si is almost the same as in the case of the prior art.

Co:
硬質相の合金基地を形成するCoは、基地に固溶して基地の耐熱性を向上させるとともに、高温強度ならびに高温耐摩耗性を向上させる。また、硬質相のCoは、基地に拡散して基地を固溶強化するとともに、硬質相を基地に強固に結合する。加えて、Coの一部は、Mo、Cr、Siとともにモリブデン珪化物、クロム珪化物およびそれらの複合珪化物を形成し、硬質相の核となって基地の塑性流動、凝着を防止し、耐摩耗性の向上に寄与する。
Co:
Co that forms the alloy base of the hard phase improves the heat resistance of the base by dissolving in the base and improves the high temperature strength and the high temperature wear resistance. Further, Co in the hard phase diffuses into the base and strengthens the base in solid solution, and firmly bonds the hard phase to the base. In addition, a part of Co forms molybdenum silicide, chromium silicide and their composite silicide together with Mo, Cr and Si, and serves as the core of the hard phase to prevent plastic flow and adhesion of the base, Contributes to improved wear resistance.

Mo:
Moは基地に固溶して基地を強化するとともに、基地組織の焼入れ性を改善する効果があり、基地の強度と耐摩耗性の向上に寄与する。また、Moは、主にSiとともに硬質なモリブデン珪化物を形成し、一部はCrやCoとも反応して複合珪化物を形成して、硬質相の核を形成する。このため、基地の塑性流動、凝着を防止でき、耐摩耗性を向上できる。ここで、硬質相形成粉末中のMoの含有量が15%を下回ると、基地強化が不充分になるとともに、充分な量の珪化物が析出しないため、上記ピン止め効果が乏しくなって耐摩耗性が低下する。一方、35%を超えて含有すると、硬質相形成粉末が固くなって圧縮性が損なわれるとともに、珪化物の量が増加するため、相手部品の摩耗を促進させる。このため、硬質相形成粉末中のMo量を15〜35%とする。
Mo:
Mo dissolves in the base to strengthen the base and has the effect of improving the hardenability of the base structure, contributing to the improvement of the strength and wear resistance of the base. Mo forms a hard molybdenum silicide mainly with Si, and a part reacts with Cr and Co to form a composite silicide to form a hard phase nucleus. For this reason, plastic flow and adhesion of the base can be prevented, and wear resistance can be improved. Here, if the Mo content in the hard phase forming powder is less than 15%, the base strengthening becomes insufficient, and a sufficient amount of silicide does not precipitate, resulting in poor pinning effect and wear resistance. Sex is reduced. On the other hand, if the content exceeds 35%, the hard phase forming powder becomes hard and compressibility is impaired, and the amount of silicide increases, so that the wear of the counterpart part is promoted. For this reason, the amount of Mo in the hard phase forming powder is set to 15 to 35%.

Si:
Siは、Mo、Co、Crと化合し、硬質なモリブデン珪化物、クロム珪化物およびそれらの複合珪化物を形成して耐摩耗性を向上させる。硬質相形成粉末中のSi量が1%未満であると、充分な量の珪化物が析出せず、10%を超えると硬質相形成粉末が固くなって圧縮性が損なわれるとともに、焼結性を悪化させる。このため、硬質相形成粉末中のSi量を1〜10%とする。
Si:
Si combines with Mo, Co, and Cr to form hard molybdenum silicide, chromium silicide, and composite silicide thereof to improve wear resistance. If the amount of Si in the hard phase forming powder is less than 1%, a sufficient amount of silicide does not precipitate, and if it exceeds 10%, the hard phase forming powder becomes hard and compressibility is impaired. Worsen. For this reason, the amount of Si in hard phase formation powder shall be 1-10%.

Cr:
Crは硬質相の合金基地に固溶して硬質相の合金基地を強化するとともに、焼結時にFeを主成分とする焼結合金の基地に拡散して基地の強化に寄与する。また、焼結合金のFe基地に拡散したCrは、耐摩耗性部品の表面に不動態酸化被膜を形成して、腐食環境下での耐食性の向上に寄与する。さらに、Crの一部はSiとともに硬質なクロム珪化物や複合珪化物を形成する。このようなCrは、CoやMoに比して比較的安価であり、Cr量を増加させてCo量を減少させた分、硬質相形成合金粉末が安価となり、耐摩耗性焼結合金を安価に製造できる。上記作用を有するCrは、硬質相形成合金粉末の組成において10%に満たないと、上記の基地強化および耐食性向上の効果が乏しくなる。一方、硬質相形成合金粉末中のCr量が40%を超えると、粉末表面に形成される酸化被膜が強固となるため焼結の進行が阻害されるとともに、酸化被膜により粉末が硬くなるため圧縮性が低下する。そのため、焼結合金の強度が低下し、耐摩耗性が低下する。このため、硬質相形成粉末中のCr量を10〜40%とする。
Cr:
Cr dissolves in the hard phase alloy base to strengthen the hard phase alloy base, and at the time of sintering, diffuses into the base of the sintered alloy mainly composed of Fe and contributes to strengthening of the base. Further, Cr diffused in the Fe base of the sintered alloy forms a passive oxide film on the surface of the wear-resistant component, and contributes to improvement of corrosion resistance in a corrosive environment. Furthermore, a part of Cr forms a hard chromium silicide or composite silicide together with Si. Such Cr is relatively cheaper than Co and Mo, and the amount of Co is decreased by increasing the Cr content, so that the hard phase forming alloy powder becomes cheaper and the wear-resistant sintered alloy is less expensive. Can be manufactured. When Cr having the above action is less than 10% in the composition of the hard phase forming alloy powder, the above-mentioned effects of strengthening the base and improving the corrosion resistance are poor. On the other hand, if the Cr content in the hard phase forming alloy powder exceeds 40%, the oxide film formed on the surface of the powder becomes strong, so that the progress of sintering is inhibited and the oxide film hardens the powder and is compressed. Sex is reduced. Therefore, the strength of the sintered alloy is reduced, and the wear resistance is reduced. For this reason, the Cr amount in the hard phase forming powder is set to 10 to 40%.

本発明においては、硬質相を形成する硬質相形成粉末のCr量を上記のように設定したことにより、硬質相の合金基地を形成するCoの一部をFeに置換することが可能となる。すなわち、Feに固溶したCrが不動態酸化被膜を形成して腐食環境下における耐食性を向上させるため、硬質相中の高価なCoの一部に安価なFeを適用することが可能となる。ここで、硬質相の合金基地中のCo量の80%まではFeで置換が可能である。   In the present invention, by setting the Cr content of the hard phase forming powder forming the hard phase as described above, it becomes possible to replace a part of Co forming the hard phase alloy base with Fe. That is, since Cr dissolved in Fe forms a passive oxide film and improves the corrosion resistance in a corrosive environment, it is possible to apply inexpensive Fe to a part of expensive Co in the hard phase. Here, up to 80% of the amount of Co in the alloy base of the hard phase can be replaced with Fe.

Mn:
また、本発明においては、硬質相形成粉末にMnを含有させて、焼結後に形成される硬質相の合金基地にMnを固溶させ、硬質相の合金基地を強化することができる。このように硬質相の合金基地を強化すると、硬質相に析出する珪化物(モリブデン珪化物、クロム珪化物およびそれらの複合珪化物)の流動や脱落が防げるため、苛酷な条件下でも優れた耐摩耗性を発揮することができる。また、Mnは焼結合金のFe基地に拡散して硬質相の固着性を良好にし、硬質相自体の脱落を防止して耐摩耗性を向上させる。このようなMnは、硬質相形成粉末の組成において5%を超えると、粉末表層にMn酸化被膜を形成して焼結時の拡散を阻害し、硬質相の固着性をかえって低下させる。このため、硬質相形成粉末中のMn量は5%を上限とする。
Mn:
Further, in the present invention, Mn can be contained in the hard phase forming powder, and Mn can be dissolved in the hard phase alloy base formed after sintering, thereby strengthening the hard phase alloy base. Strengthening the hard-phase alloy base in this way prevents the flow and detachment of silicides (molybdenum silicides, chromium silicides and their composite silicides) that precipitate in the hard phase, so that they have excellent resistance to severe conditions. Abrasion can be demonstrated. Further, Mn diffuses into the Fe base of the sintered alloy to improve the adhesion of the hard phase, and prevents the hard phase from falling off and improves the wear resistance. When Mn exceeds 5% in the composition of the hard phase forming powder, a Mn oxide film is formed on the powder surface layer to inhibit diffusion during sintering, and the sticking property of the hard phase is lowered. For this reason, the upper limit of the amount of Mn in the hard phase forming powder is 5%.

このような硬質相形成粉末の原料粉末への添加量が15%に満たないと、十分な耐摩耗性が得られない。一方、本発明の硬質相形成粉末は、従来のCo−Mo−Si系の硬質相形成粉末のCr量を増加したもので、Co合金基地にCrが固溶する分、硬質相形成粉末の硬さが増加し圧縮性が低下する。しかしながら、軟質な鉄粉末を原料粉末の主原料として用いることから、従来のようにFe合金粉末を主原料として用いるものに比して、同等もしくはそれ以上の硬質相形成粉末の添加が可能となる。ここで、硬質相形成粉末の原料粉末への添加量が45%を超えると、原料粉末の圧縮性の低下が顕著となる。このため、硬質相形成粉末の原料粉末への添加量は15〜45%とする。   If the amount of such hard phase forming powder added to the raw material powder is less than 15%, sufficient wear resistance cannot be obtained. On the other hand, the hard phase forming powder of the present invention is obtained by increasing the amount of Cr in the conventional Co—Mo—Si based hard phase forming powder. Increases the compressibility. However, since soft iron powder is used as the main raw material of the raw material powder, it is possible to add a hard phase forming powder equal to or higher than that using the Fe alloy powder as the main raw material as in the past. . Here, when the addition amount of the hard phase forming powder to the raw material powder exceeds 45%, the compressibility of the raw material powder is significantly lowered. For this reason, the addition amount of the hard phase forming powder to the raw material powder is 15 to 45%.

耐摩耗性焼結合金の基地中に分散する硬質相は、硬質相形成粉末を原料粉末に添加し、焼結することで形成される。上記のように硬質相形成粉末の原料粉末への添加量を15〜45%としたことにより、耐摩耗性焼結合金の基地中に分散する硬質相は15〜45%となる。また、上記のように硬質相形成粉末の組成が、Mo:15〜35%、Si:1〜10%、Cr:10〜40%、および残部がCoと不可避不純物であることから、全体組成中のCo量は2.25〜33.3%、Cr量は1.5〜18%、Mo量は2.25〜15.75%、Si量は0.15〜4.5%となる。また、硬質相形成粉末にMnを含有させる場合、全体組成中のMn量は、2.25%以下となる。   The hard phase dispersed in the matrix of the wear resistant sintered alloy is formed by adding the hard phase forming powder to the raw material powder and sintering. As described above, when the amount of the hard phase forming powder added to the raw material powder is 15 to 45%, the hard phase dispersed in the matrix of the wear-resistant sintered alloy is 15 to 45%. In addition, since the composition of the hard phase forming powder is Mo: 15 to 35%, Si: 1 to 10%, Cr: 10 to 40%, and the balance is Co and inevitable impurities as described above. The Co content is 2.25 to 33.3%, the Cr content is 1.5 to 18%, the Mo content is 2.25 to 15.75%, and the Si content is 0.15 to 4.5%. Further, when Mn is contained in the hard phase forming powder, the amount of Mn in the entire composition is 2.25% or less.

[基地]
本発明においては、上記の硬質相を用いることにより、基地にCrを拡散させて不動態酸化被膜を形成し、基地の耐食性を向上させている。このため、基地に高価なCoを用いずに、安価なFe合金で基地を構成することが可能となる。
[base]
In the present invention, by using the above hard phase, Cr is diffused in the matrix to form a passive oxide film, thereby improving the corrosion resistance of the matrix. Therefore, it is possible to configure the base with an inexpensive Fe alloy without using expensive Co for the base.

Ni,Mo,Cr,Mn:
基地は、耐摩耗性焼結合金の自己の耐摩耗性および相手攻撃性の観点、および自己の強度の観点より基地の金属組織をベイナイトとする。このような基地組織のベイナイト化にはMo、Ni、Cr等の合金元素の添加が有効であり、この効果を基地組織全面に均一に及ぼすため、これらの合金成分をFeに合金化させた鉄合金粉末の形態で付与する。具体的には、鉄合金粉末の組成を、質量比で、Ni:1〜3%、Mo:0.5〜2%、Cr:0.1〜1%、Mn:0.1〜0.5%、および残部がFeおよび不可避的不純物からなるものとする。すなわち、Ni:1%未満、Mo:0.5%未満、Cr:0.1%未満、およびMn:0.1%未満では、基地のベイナイト化が不十分となる。一方、Ni:3%超、Mo:2%超、Cr:1%超、およびMn:0.5%超では合金粉末の硬さが高くなって圧縮性が低下し、このため強度および耐摩耗性低下が生じることとなる。
Ni, Mo, Cr, Mn:
The base uses bainite as the metal structure of the base from the viewpoint of self wear resistance and opponent attack of the wear resistant sintered alloy and from the viewpoint of self strength. Addition of alloy elements such as Mo, Ni, Cr, etc. is effective for the bainite formation of such a base structure, and in order to exert this effect uniformly on the entire surface of the base structure, iron obtained by alloying these alloy components with Fe It is applied in the form of alloy powder. Specifically, the composition of the iron alloy powder is, by mass ratio, Ni: 1-3%, Mo: 0.5-2%, Cr: 0.1-1%, Mn: 0.1-0.5 %, And the balance consists of Fe and inevitable impurities. That is, when Ni is less than 1%, Mo is less than 0.5%, Cr is less than 0.1%, and Mn is less than 0.1%, the bainite of the base becomes insufficient. On the other hand, if Ni is more than 3%, Mo is more than 2%, Cr is more than 1%, and Mn is more than 0.5%, the hardness of the alloy powder is increased and the compressibility is lowered. This will cause a decrease in performance.

追加のNi,Cu:
よりいっそうの耐摩耗性の向上を望む場合には、原料粉末にニッケル粉末や銅粉末を添加して、基地組織の一部を強度の高いマルテンサイトとし、ベイナイトとマルテンサイトの混合組織とすることができる。すなわち、NiやCuは、基地の焼入れ性向上の作用が大きいこと、およびニッケル粉末および銅粉末は硬さが低いことから、上記の鉄合金粉末にニッケル粉末や銅粉末を添加することで、容易にベイナイトとマルテンサイトの混合組織とすることができる。ただし、ニッケル粉末の添加量が5%を超えると、基地中に耐摩耗性の低いNiリッチのオーステナイトが多量に残留するようになり、銅粉末の添加量が5%を超えると軟質な銅相が基地中に析出して基地の強度を低下させることとなる。このためニッケル粉末の添加量の上限を5%、銅粉末の添加量の上限を5%とする。
Additional Ni, Cu:
When further improvement of wear resistance is desired, nickel powder or copper powder should be added to the raw material powder to make a part of the base structure high-strength martensite and a mixed structure of bainite and martensite. Can do. That is, Ni and Cu have a large effect of improving the hardenability of the base, and nickel powder and copper powder have low hardness. Therefore, it is easy to add nickel powder and copper powder to the above iron alloy powder. Furthermore, it can be a mixed structure of bainite and martensite. However, if the addition amount of nickel powder exceeds 5%, a large amount of Ni-rich austenite with low wear resistance will remain in the base, and if the addition amount of copper powder exceeds 5%, a soft copper phase will remain. Will precipitate in the base and reduce the strength of the base. For this reason, the upper limit of the addition amount of nickel powder is 5%, and the upper limit of the addition amount of copper powder is 5%.

C:
Cは、Fe基地に固溶してFe基地を強化するとともに、基地組織を強度の高いマルテンサイトやベイナイトとするために添加される。C量は、0.5%に満たないと上記の効果が乏しく、一方、1.5%を超えると、不動態酸化被膜を形成して基地の耐食性を向上させるために含有させたCrと結合してCr炭化物が基地中に析出する結果、基地中のCr濃度が低下して耐食性が低下することとなる。このため、全体組成中のC量は0.5〜1.5%とする。このようなCを上記の鉄合金粉末に固溶して与えると、鉄合金粉末の硬さが増加し、原料粉末の圧縮性が著しく損なわれるため、全量を黒鉛粉末の形態で付与される。
C:
C is added to solidify the Fe base to strengthen the Fe base and to make the base structure have high strength martensite or bainite. If the amount of C is less than 0.5%, the above effect is poor. On the other hand, if it exceeds 1.5%, it binds to Cr contained to form a passive oxide film and improve the corrosion resistance of the base. As a result, Cr carbide precipitates in the matrix, resulting in a decrease in the Cr concentration in the matrix and a decrease in corrosion resistance. For this reason, the amount of C in the whole composition is 0.5 to 1.5%. If such C is given as a solid solution in the above-mentioned iron alloy powder, the hardness of the iron alloy powder increases and the compressibility of the raw material powder is remarkably impaired, so the whole amount is given in the form of graphite powder.

本発明の耐摩耗性焼結合金は、上記のように硬質相形成粉末を鉄合金粉末と黒鉛粉末に配合添加した原料粉末を所望の形状に圧粉成形した後、焼結することで得ることができるが、
鉄合金粉末は、組成が、質量比で、Ni:1〜3質量%、Mo:0.5〜2質量%、Cr:0.1〜1質量%、Mn:0.1〜0.5質量%、残部がFeと不可避不純物からなるものであり、硬質相形成粉末は、組成が、質量比で、Mo:15〜35%、Si:1〜10%、Cr:10〜40%、および残部がCoと不可避不純物からなるものであって、添加量が15〜45%であり、黒鉛粉末の添加量が0.5〜1.5%であることから、本発明の耐摩耗性焼結合金は、全体組成が、質量比で、全体組成が、Cr:1.58〜18.55質量%、Ni:0.54〜2.54質量%、Mo:2.67〜16.84質量%、Si:0.15〜4.5質量%、Co:2.25〜33.30質量%、Mn:0.05〜0.42質量%、C:0.5〜1.5質量%、および残部がFeと不可避不純物となる。また、その金属組織は、Fe−Ni−Mo−C系合金基地中に、組成が、Mo:15〜35%、Si:1〜10%、Cr:10〜40%、および残部がCoと不可避不純物からなる硬質相が15〜45%分散するものとなる。
The wear-resistant sintered alloy of the present invention is obtained by compacting a raw material powder in which a hard phase forming powder is added to an iron alloy powder and a graphite powder as described above into a desired shape and then sintering the powder. Can
The composition of the iron alloy powder is, by mass ratio, Ni: 1 to 3% by mass, Mo: 0.5 to 2% by mass, Cr: 0.1 to 1% by mass, Mn: 0.1 to 0.5% by mass. %, The balance is composed of Fe and inevitable impurities, and the composition of the hard phase forming powder is, by mass ratio, Mo: 15 to 35%, Si: 1 to 10%, Cr: 10 to 40%, and the balance Is composed of Co and inevitable impurities, and the addition amount is 15 to 45%, and the addition amount of graphite powder is 0.5 to 1.5%. Therefore, the wear-resistant sintered alloy of the present invention The total composition is in a mass ratio, and the overall composition is Cr: 1.58-18.55% by mass, Ni: 0.54-2.54% by mass, Mo: 2.67-16.84% by mass, Si: 0.15-4.5 mass%, Co: 2.25-33.30 mass%, Mn: 0.05-0.42 mass%, C: 0.5- .5% by weight, and the balance of Fe and unavoidable impurities. In addition, the metal structure is inevitable with the composition of Mo: 15 to 35%, Si: 1 to 10%, Cr: 10 to 40% and the balance of Co in the Fe-Ni-Mo-C alloy base. The hard phase consisting of impurities is dispersed by 15 to 45%.

本発明の耐摩耗性焼結合金においては、従来から行われている被削性改善技術を適用することができる。すなわち、原料粉末に、被削性改善物質である鉛粉末、二硫化モリブデン粉末、硫化マンガン粉末、窒化硼素粉末、メタ珪酸マグネシウム系鉱物の粉末、フッ化カルシウム粉末のうち少なくとも1種を0.3〜2%添加して、耐摩耗性焼結合金の気孔および粒界に、被削性改善物質をさらに分散させてもよい。これらは被削性改善成分であり、基地中に分散させることによって切削加工の際に切屑のブレーキングの起点となり、焼結合金の被削性を改善することができる。これら被削性改善成分の含有量は、0.3%未満であるとその効果が不十分であり、2%を超えて含有させると焼結合金の強度が低下する。   In the wear-resistant sintered alloy of the present invention, conventional machinability improving techniques can be applied. That is, at least one of lead powder, molybdenum disulfide powder, manganese sulfide powder, boron nitride powder, magnesium metasilicate-based mineral powder, and calcium fluoride powder, which is a machinability improving substance, is added to the raw material powder as 0.3. Addition of ˜2% may further disperse the machinability improving substance in the pores and grain boundaries of the wear-resistant sintered alloy. These are machinability improving components, and by dispersing them in the base, they become a starting point for chip breaking during cutting, and the machinability of the sintered alloy can be improved. If the content of these machinability improving components is less than 0.3%, the effect is insufficient, and if the content exceeds 2%, the strength of the sintered alloy decreases.

また、本発明の耐摩耗性焼結合金の気孔中に、鉛、鉛合金、銅、銅合金、およびアクリル樹脂のうち1種を、溶浸もしくは含浸により充填してもよい。気孔を有する焼結合金を切削する場合、断続切削となり、工具の刃先への衝撃が間欠的に生じるが、このように鉛や銅等を気孔中に含有させることによって連続切削となり、工具の刃先への衝撃が緩和される。鉛もしくは鉛合金は固体潤滑剤としても機能する他、銅もしくは銅合金は熱伝導性が高いので熱のこもりを防止し、熱による刃先のダメージを軽減する機能がある。また、アクリル樹脂は切屑のブレーキングの起点となる機能がある。   Further, the pores of the wear-resistant sintered alloy of the present invention may be filled with one of lead, lead alloy, copper, copper alloy, and acrylic resin by infiltration or impregnation. When cutting a sintered alloy with pores, it becomes intermittent cutting, and the impact to the cutting edge of the tool is intermittently generated, but by containing lead, copper, etc. in the pores in this way, it becomes continuous cutting, and the cutting edge of the tool The shock to is reduced. Lead or lead alloy functions as a solid lubricant, and copper or copper alloy has a high thermal conductivity, thereby preventing heat accumulation and reducing damage to the blade edge due to heat. In addition, the acrylic resin has a function as a starting point for chip breaking.

[第1実施例]
Ni:2%、Mo:1%、Cr:0.5%、Mn:0.3%、および残部がFeと不可避不純物からなる鉄合金粉末、表1に示す粉末組成の硬質相形成粉末、および黒鉛粉末を用意し、鉄合金粉末に硬質相形成粉末を35%と黒鉛粉末を1%添加し、混合した混合粉末100質量部に、さらに成形潤滑剤としてステアリン酸亜鉛0.8質量部を配合し、混合して得られた原料粉末を成形圧力650MPaでφ30mm×φ20mm×h10mmのリングに成形した。次に、これら成形体を、アンモニア分解ガス雰囲気中で1160℃で60分間焼結し、試料番号01〜06の試料を作製した。これらの試料について、簡易摩耗試験および腐食試験を行った。これらの試験の結果を表1に併せて示す。
[First embodiment]
An iron alloy powder comprising Ni: 2%, Mo: 1%, Cr: 0.5%, Mn: 0.3%, and the balance consisting of Fe and inevitable impurities, a hard phase forming powder having the powder composition shown in Table 1, and Prepare graphite powder, add 35% hard phase forming powder and 1% graphite powder to iron alloy powder, mix 100 parts by mass of mixed powder and 0.8 parts by mass of zinc stearate as molding lubricant. The raw material powder obtained by mixing was molded into a ring of φ30 mm × φ20 mm × h10 mm at a molding pressure of 650 MPa. Next, these compacts were sintered in an ammonia decomposition gas atmosphere at 1160 ° C. for 60 minutes to prepare samples Nos. 01 to 06. These samples were subjected to a simple wear test and a corrosion test. The results of these tests are also shown in Table 1.

簡易摩耗試験は、高温下で打撃と摺動の入力がかかる状態で行った。具体的には、上記リング状試験片(焼結合金)を、内周縁部に45°のテーパ面を有するバルブシート形状に加工し、アルミ合金製ハウジングに圧入嵌合した。そして、SUH−36素材で作製した外周縁部の一部に45°のテーパ面を有する円盤形状の相手材(バルブ)を、モーター駆動による偏心カムの回転によって上下ピストン運動させることにより、焼結合金と相手材とのテーパ面同士を繰り返し衝突させた。すなわち、バルブの動作は、モータ駆動によって回転する偏心カムによってバルブシートから離れる開放動作と、バルブスプリングによるバルブシートへの着座動作とを繰り返し、上下ピストン運動を行った。なお、この試験では、焼結合金が300℃となるように相手材をバーナーで加熱して温度設定し、打撃回数を3000回/分、繰り返し時間を15時間とした。このような試験後、バルブシートの摩耗量およびバルブの摩耗量を測定して評価を行った。また、腐食試験では、作製したリング状試験片を10%硝酸水溶液に1時間浸漬した後、浸漬前後の重量変化を測定して、これを表面積で除した値を腐食減量(mg/cm)として評価を行った。 The simple wear test was performed in a state in which impact and sliding inputs were applied at high temperatures. Specifically, the ring-shaped test piece (sintered alloy) was processed into a valve seat shape having a 45 ° tapered surface at the inner peripheral edge, and press-fitted into an aluminum alloy housing. Then, a disk-shaped mating material (valve) having a 45 ° taper surface on a part of the outer peripheral edge made of SUH-36 material is moved by piston movement by rotating an eccentric cam driven by a motor. The taper surfaces of the gold and the counterpart material were repeatedly collided. That is, the valve operation was performed by moving the piston up and down by repeating the opening operation of separating from the valve seat by the eccentric cam rotated by the motor drive and the seating operation on the valve seat by the valve spring. In this test, the temperature of the counterpart material was set by heating with a burner so that the sintered alloy would be 300 ° C., the number of impacts was 3000 times / minute, and the repetition time was 15 hours. After such a test, the wear amount of the valve seat and the wear amount of the valve were measured and evaluated. Further, in the corrosion test, after the ring-shaped test piece prepared by immersing 1 hour in a 10% nitric acid aqueous solution, by measuring the weight change before and after immersion, the corrosion weight loss divided by the this surface area (mg / cm 2) As an evaluation.

Figure 2010144237
Figure 2010144237

表1より、硬質相形成粉末中のCr量(硬質相中のCr量)の影響を調べることができる。試料番号01の試料は、硬質相形成粉末中のCr量が乏しいことから耐食性が乏しくなり、腐食減量が大きくなっている。また、Cr量が乏しいため、焼結合金の基地が十分に強化されずバルブシートの摩耗量も大きくなっている。しかし、硬質相形成粉末中のCr量が10%の試料番号02の試料では、Crによる耐食性向上の効果により腐食減量が抑制され、また、Crによる基地強化によりバルブシートの摩耗量も著しく低下している。また、硬質相形成粉末中のCr量が40%まではCr量の増加に伴い、バルブシートの摩耗量が低い値となっており、腐食減量が低く抑制されている傾向を示す。また、硬質相形成粉末中のCr量が40%を超える試料番号06の試料では、硬質相形成粉末中のCr量が増加することにより、硬質相形成粉末の硬さが増加して原料粉末の圧縮性が低下し、成形体密度が低下した結果、焼結体密度が低下したため、バルブシートの摩耗量が増加し、腐食減量が著しく増加している。さらに、バルブシートの摩耗粉がバルブを攻撃し、バルブの摩耗量も著しく増加している。以上の結果より、硬質相形成粉末中のCr量(硬質相中のCr量)が10〜40%の範囲で、バルブシートおよびバルブの摩耗量が小さくなり、焼結合金の腐食減量も小さくなることが確認された。   From Table 1, the influence of the Cr amount in the hard phase forming powder (the Cr amount in the hard phase) can be examined. The sample of sample number 01 has poor corrosion resistance due to the small amount of Cr in the hard phase forming powder, and the corrosion weight loss is large. Further, since the amount of Cr is scarce, the base of the sintered alloy is not sufficiently strengthened and the wear amount of the valve seat is also increased. However, in the sample of sample number 02 in which the amount of Cr in the hard phase forming powder is 10%, the corrosion weight loss is suppressed by the effect of improving the corrosion resistance by Cr, and the wear amount of the valve seat is also significantly reduced by strengthening the base by Cr. ing. Further, when the Cr content in the hard phase forming powder is up to 40%, the wear amount of the valve seat becomes a low value as the Cr content increases, and the corrosion weight loss tends to be suppressed low. Further, in the sample of sample number 06 in which the Cr amount in the hard phase forming powder exceeds 40%, the hardness of the hard phase forming powder increases due to the increase in the Cr amount in the hard phase forming powder. As a result of a decrease in compressibility and a decrease in the density of the molded body, the density of the sintered body has decreased, so the amount of wear of the valve seat has increased and the corrosion weight loss has increased remarkably. Furthermore, the wear powder of the valve seat attacks the valve, and the amount of wear of the valve is also significantly increased. From the above results, when the amount of Cr in the hard phase forming powder (the amount of Cr in the hard phase) is in the range of 10 to 40%, the wear amount of the valve seat and the valve is reduced, and the corrosion loss of the sintered alloy is also reduced. It was confirmed.

[第2実施例]
第1実施例で用いた鉄合金粉末(Fe-2%Ni-1%Mo-0.5%Cr-0.3%Mn粉末)、第1実施例の試料番号04で用いた硬質相形成粉末(Co-30%Cr-20%Mo-17%Fe-3%Si粉末)、および黒鉛粉末を用いて、表2に示すように硬質相形成粉末の添加割合を変えて添加、混合した混合粉末100質量部に、さらに成形潤滑剤としてステアリン酸亜鉛0.8質量部を配合し、混合を行って得られた原料粉末を第1実施例と同様に成形、焼結して試料番号07〜11の試料を作製した。これらの試料について、第1実施例と同様にして耐摩耗性および耐食性の評価を行った。この結果を第1実施例の試料番号04の試料の値とともに表2に示す。
[Second Embodiment]
Iron alloy powder (Fe-2% Ni-1% Mo-0.5% Cr-0.3% Mn powder) used in the first example, hard phase forming powder (Co-30) used in sample number 04 of the first example % Cr-20% Mo-17% Fe-3% Si powder), and graphite powder, and as shown in Table 2, the addition ratio of the hard phase forming powder was changed and mixed to 100 parts by mass of the mixed powder. Further, 0.8 parts by mass of zinc stearate as a molding lubricant was blended, and the raw material powder obtained by mixing was molded and sintered in the same manner as in the first example to prepare samples Nos. 07-11. did. These samples were evaluated for wear resistance and corrosion resistance in the same manner as in the first example. The results are shown in Table 2 together with the value of the sample No. 04 of the first example.

Figure 2010144237
Figure 2010144237

表2より、硬質相形成粉末の添加量(基地中に分散する硬質相の量)の影響を調べることができる。硬質相形成粉末の添加量が15%に満たない試料番号07の試料は、硬質相の量が乏しく、基地の塑性流動を抑制できずバルブシートの摩耗量が大きい。また、硬質相が乏しいため、硬質相から基地に拡散するCrが乏しくなるため腐食減量が大きくなっている。しかし、硬質相形成粉末の添加量が15%の試料番号08の試料では、硬質相によって焼結合金の基地の耐摩耗性および耐食性が改善され、バルブシートの摩耗量が著しく低下するとともに腐食減量が低下している。また、硬質相形成粉末の添加量が35%までは硬質相形成粉末の添加量の増加に伴いバルブシートの摩耗量および腐食減量が低下する傾向を示す。そして、硬質相形成粉末の添加量が45%の試料番号10の試料では、硬質相形成粉末の添加量が増加することにより原料粉末の圧縮性が低下したため、バルブシートの摩耗量および腐食減量が若干増加する傾向を示すが、バルブシートの摩耗量、腐食減量ともに、未だ低い値を示している。一方、硬質相形成粉末の添加量が45%を超える試料番号11の試料では、圧縮性低下の影響が著しくなり、バルブシートの摩耗量が著しく増加し、腐食減量が増加している。さらに、バルブシートの摩耗粉がバルブを攻撃してバルブの摩耗量も著しく増加している。以上の結果より、硬質相形成粉末の添加量(基地中に分散する硬質相の量)が15〜45%の範囲で、バルブシートおよびバルブの摩耗量が小さくなることが確認された。   From Table 2, the influence of the addition amount of hard phase forming powder (the amount of hard phase dispersed in the matrix) can be examined. Sample No. 07, in which the addition amount of the hard phase forming powder is less than 15%, has a small amount of the hard phase, cannot suppress the plastic flow of the base, and has a large wear amount of the valve seat. Moreover, since the hard phase is scarce, Cr diffusing from the hard phase to the base becomes scarce, so the corrosion weight loss is large. However, in the sample of Sample No. 08 in which the addition amount of the hard phase forming powder is 15%, the hard phase improves the wear resistance and corrosion resistance of the base of the sintered alloy, and the wear amount of the valve seat is remarkably lowered and the corrosion weight loss is reduced. Has fallen. Further, when the addition amount of the hard phase forming powder is up to 35%, the wear amount and the corrosion weight loss of the valve seat tend to decrease as the addition amount of the hard phase forming powder increases. And, in the sample of Sample No. 10 where the addition amount of the hard phase forming powder is 45%, the compressibility of the raw material powder is reduced by increasing the addition amount of the hard phase forming powder. Although there is a tendency to increase slightly, both the amount of wear and the weight loss of the valve seat are still low. On the other hand, in the sample of Sample No. 11 in which the addition amount of the hard phase forming powder exceeds 45%, the influence of the compressibility decrease is significant, the wear amount of the valve seat is remarkably increased, and the corrosion weight loss is increased. Furthermore, the wear powder of the valve seat attacks the valve, and the amount of wear of the valve is remarkably increased. From the above results, it was confirmed that the amount of wear of the valve seat and the valve becomes small when the addition amount of the hard phase forming powder (the amount of the hard phase dispersed in the matrix) is in the range of 15 to 45%.

[第3実施例]
表3に示す組成の鉄合金粉末、第1実施例の試料番号04で用いた硬質相形成粉末(Co-30%Cr-20%Mo-17%Fe-3%Si粉末)、および黒鉛粉末を用いて、鉄合金粉末に硬質相形成粉末を35%と黒鉛粉末を1%添加し、混合した混合粉末100質量部に、さらに成形潤滑剤としてステアリン酸亜鉛0.8質量部を配合し、混合して得られた原料粉末を第1実施例と同様に成形、焼結して試料番号12〜20の試料を作製した。これらの試料について、第1実施例と同様にして耐摩耗性および耐食性の評価を行った。この結果を第1実施例の試料番号04の試料の値とともに表3に示す。
[Third embodiment]
The iron alloy powder having the composition shown in Table 3, the hard phase forming powder (Co-30% Cr-20% Mo-17% Fe-3% Si powder) used in Sample No. 04 of the first example, and the graphite powder Using 35% hard phase forming powder and 1% graphite powder to iron alloy powder, and mixing 100 parts by mass of mixed powder with 0.8 parts by mass of zinc stearate as a forming lubricant, and mixing The raw material powder obtained was molded and sintered in the same manner as in the first example to prepare samples Nos. 12 to 20. These samples were evaluated for wear resistance and corrosion resistance in the same manner as in the first example. The results are shown in Table 3 together with the value of sample No. 04 of the first example.

Figure 2010144237
Figure 2010144237

表3の試料番号04,12〜15の試料により、鉄合金粉末中のNi量の影響を調べることができる。Niを含有しない鉄合金粉末を用いた試料番号12の試料は、焼結合金のFe基地が強化されず、バルブシートの摩耗量が大きく、かつ腐食減量が大きい値となっている。しかし、鉄合金粉末中のNi量が1〜3%の試料番号13,04,14の試料では、NiによるFe基地の強化および耐食性向上の効果によりバルブシートの摩耗量が著しく低下するとともに、Fe基地の耐食性が向上して腐食減量が低下している。しかしながら、鉄合金粉末中のNi量が3%を超える試料番号15の試料では、鉄合金粉末の硬さが増加することにより原料粉末の圧縮性が低下して原料粉末の圧縮性が低下し、成形体密度が低下した結果、焼結体密度が低下したことにより、バルブシートの摩耗量および腐食減量が著しく増加している。以上の結果より、鉄合金粉末中のNi量が1〜3%の範囲で、バルブシートの摩耗量が小さくなるとともに、腐食減量が抑制されることが確認された。   The effects of the amount of Ni in the iron alloy powder can be examined by using samples Nos. 04 and 12 to 15 in Table 3. Sample No. 12 using an iron alloy powder not containing Ni does not reinforce the Fe base of the sintered alloy, has a large wear amount of the valve seat, and has a large corrosion weight loss. However, in the samples of Sample Nos. 13, 04, and 14 in which the amount of Ni in the iron alloy powder is 1 to 3%, the wear amount of the valve seat is remarkably reduced due to the effect of strengthening the Fe base by Ni and improving the corrosion resistance. The corrosion resistance of the base has been improved and the corrosion weight loss has been reduced. However, in the sample of Sample No. 15 where the amount of Ni in the iron alloy powder exceeds 3%, the compressibility of the raw material powder decreases due to the increase in the hardness of the iron alloy powder, and the compressibility of the raw material powder decreases. As a result of the decrease in the density of the molded body, the amount of wear and the weight loss of the valve seat are remarkably increased due to the decrease in the density of the sintered body. From the above results, it was confirmed that when the amount of Ni in the iron alloy powder is in the range of 1 to 3%, the wear amount of the valve seat becomes small and the corrosion weight loss is suppressed.

表3の試料番号04,16〜20の試料により、鉄合金粉末中のCr量の影響を調べることができる。Crを含有しない鉄合金粉末を用いた試料番号16の試料は、焼結合金のFe基地が強化されず、バルブシートの摩耗量が大きく、かつ腐食減量が大きい値となっている。しかし、鉄合金粉末中のCr量が0.1〜1%の試料番号18,04,19の試料では、CrによるFe基地の強化耐食性向上の効果によりバルブシートの摩耗量が著しく低下するとともに、Fe基地の耐食性が向上して腐食減量が低下している。しかしながら、鉄合金粉末中のCr量が1%を超える試料番号20の試料では、鉄合金粉末の硬さが増加することにより原料粉末の圧縮性が低下して原料粉末の圧縮性が低下し、成形体密度が低下した結果、焼結体密度が低下したことにより、バルブシートの摩耗量および腐食減量が著しく増加している。以上の結果より、鉄合金粉末中のCr量が0.1〜1%の範囲で、バルブシートの摩耗量が小さくなるとともに、腐食減量が抑制されることが確認された。   The influence of the Cr amount in the iron alloy powder can be examined by the samples Nos. 04 and 16 to 20 in Table 3. Sample No. 16 using iron alloy powder containing no Cr does not strengthen the Fe base of the sintered alloy, has a large wear amount of the valve seat, and has a large corrosion weight loss. However, in the samples of Sample Nos. 18, 04 and 19 in which the Cr amount in the iron alloy powder is 0.1 to 1%, the wear amount of the valve seat is remarkably reduced due to the effect of improving the strengthened corrosion resistance of the Fe base by Cr, The corrosion resistance of the Fe base is improved and the corrosion weight loss is reduced. However, in the sample of Sample No. 20 in which the amount of Cr in the iron alloy powder exceeds 1%, the compressibility of the raw material powder decreases due to the increase in the hardness of the iron alloy powder, and the compressibility of the raw material powder decreases. As a result of the decrease in the density of the molded body, the amount of wear and the weight loss of the valve seat are remarkably increased due to the decrease in the density of the sintered body. From the above results, it was confirmed that when the amount of Cr in the iron alloy powder is in the range of 0.1 to 1%, the wear amount of the valve seat is reduced and the corrosion weight loss is suppressed.

[第4実施例]
第1実施例で用いた鉄合金粉末(Fe-2%Ni-1%Mo-0.5%Cr-0.3%Mn粉末)、第1実施例の試料番号04で用いた硬質相形成粉末(Co-30%Cr-20%Mo-17%Fe-3%Si粉末)および黒鉛粉末を用いて、表4に示すように黒鉛粉末の添加割合を変えて配合し混合した混合粉末100質量部に、さらに成形潤滑剤としてステアリン酸亜鉛0.8質量部を配合し、混合して得られた原料粉末を第1実施例と同様に成形、焼結して試料番号21〜26の試料を作製した。これらの試料について、第1実施例と同様にして耐摩耗性の評価を行った。この結果を第1実施例の試料番号04の試料の値とともに表4に示す。
[Fourth embodiment]
Iron alloy powder (Fe-2% Ni-1% Mo-0.5% Cr-0.3% Mn powder) used in the first example, hard phase forming powder (Co-30) used in sample number 04 of the first example % Cr-20% Mo-17% Fe-3% Si powder) and graphite powder, and further mixed into 100 parts by mass of the mixed powder obtained by mixing and mixing the graphite powder at different ratios as shown in Table 4. 0.8 parts by mass of zinc stearate as a lubricant was blended, and the raw material powder obtained by mixing was molded and sintered in the same manner as in the first example to prepare samples Nos. 21 to 26. These samples were evaluated for wear resistance in the same manner as in the first example. The results are shown in Table 4 together with the value of the sample No. 04 of the first example.

Figure 2010144237
Figure 2010144237

表4より、黒鉛粉末の添加量(全体組成中のC量)の影響を調べることができる。黒鉛粉末の添加量が0.5%に満たない試料番号21の試料は、焼結合金のFe基地が十分に強化されず、バルブシートの摩耗量が大きくなっている。しかし、黒鉛粉末の添加量が0.5%の試料番号22の試料では、焼結合金のFe基地が強化され、バルブシートの摩耗量が著しく低下している。また、黒鉛粉末の添加量が1.0%までは黒鉛粉末の添加量の増加に伴いバルブシート摩耗量が低下する傾向を示す。そして、黒鉛粉末の添加量が1.0〜1.5%までの試料では、焼結合金のFe基地が硬くかつ脆くなり、バルブシート摩耗量が増加するともに、バルブ摩耗量が若干増加する傾向を示しているが、未だ合計摩耗量は実用上問題ない程度の値を示す。一方、黒鉛粉末の添加量が1.5%を超える試料番号26の試料では、上記の傾向がいっそう顕著となり、バルブシートの摩耗量が著しく増加するとともに、バルブシートの摩耗粉がバルブを攻撃してバルブの摩耗量も著しく増加している。以上の結果より、黒鉛粉末の添加量(全体組成中のC量)が0.5〜1.5%の範囲で、バルブシートおよびバルブの摩耗量が小さくなることが確認された。   From Table 4, the influence of the added amount of graphite powder (the amount of C in the entire composition) can be examined. In the sample No. 21 in which the amount of graphite powder added is less than 0.5%, the Fe base of the sintered alloy is not sufficiently strengthened, and the wear amount of the valve seat is large. However, in the sample of Sample No. 22 in which the added amount of graphite powder is 0.5%, the Fe base of the sintered alloy is strengthened, and the wear amount of the valve seat is remarkably reduced. Further, when the addition amount of the graphite powder is up to 1.0%, the valve seat wear amount tends to decrease as the addition amount of the graphite powder increases. In addition, in samples with an addition amount of graphite powder of 1.0 to 1.5%, the Fe base of the sintered alloy becomes hard and brittle, the valve seat wear amount increases, and the valve wear amount tends to increase slightly. However, the total wear amount still shows a value that does not cause a problem in practice. On the other hand, in the sample No. 26 in which the amount of graphite powder added exceeds 1.5%, the above tendency becomes more remarkable, the amount of wear of the valve seat increases remarkably, and the wear powder of the valve seat attacks the valve. As a result, the amount of wear on the valve has also increased significantly. From the above results, it was confirmed that the amount of wear of the valve seat and the valve becomes small when the amount of graphite powder added (the amount of C in the entire composition) is in the range of 0.5 to 1.5%.

[第5実施例]
第1実施例で用いた鉄合金粉末(Fe-2%Ni-1%Mo-0.5%Cr-0.3%Mn粉末)、黒鉛粉末と、表5に示すように第1実施例の試料番号04で用いた硬質相形成粉末(Co-30%Cr-20%Mo-17%Fe-3%Si粉末)とCoとFeの比率が異なる組成の硬質相形成粉末を用いて、鉄合金粉末に硬質相形成粉末を35%と黒鉛粉末を1%添加し、混合した混合粉末100質量部に、さらに成形潤滑剤としてステアリン酸亜鉛0.8質量部を配合し、混合して得られた原料粉末を第1実施例と同様に成形、焼結して試料番号27〜32の試料を作製した。これらの試料について、第1実施例と同様にして耐摩耗性の評価を行った。この結果を第1実施例の試料番号04の試料の値とともに表5に示す。
[Fifth embodiment]
The iron alloy powder (Fe-2% Ni-1% Mo-0.5% Cr-0.3% Mn powder) used in the first example, the graphite powder, and the sample number 04 of the first example as shown in Table 5 Using the hard phase forming powder used (Co-30% Cr-20% Mo-17% Fe-3% Si powder) and the hard phase forming powder with a different ratio of Co and Fe, 35% of the forming powder and 1% of the graphite powder were added, and 100 parts by mass of the mixed powder was further mixed with 0.8 parts by mass of zinc stearate as a molding lubricant. Samples Nos. 27 to 32 were produced by molding and sintering in the same manner as in Example 1. These samples were evaluated for wear resistance in the same manner as in the first example. The results are shown in Table 5 together with the value of the sample No. 04 of the first example.

Figure 2010144237
Figure 2010144237

表5より、硬質相形成粉末中のCoをFeで置換する場合のFeの置換率(硬質相形成粉末中のCo量とFe量の総和に対する硬質相形成粉末中のFe量の百分率)の影響を調べることができる。試料番号27の試料は硬質相形成粉末中のCoをFeで置換しておらず、これまでの実施例中最も摩耗量が少なく、良好な耐摩耗性を示している。ここで、硬質相形成粉末中のCoをFeで置換するとともに、Feの置換率を増加させて行くと、摩耗量が増加する傾向を示す。ただし、Feの置換率が約80%まで(試料番号04,28〜30の試料)は、実用上問題ない程度の摩耗量に抑制されている。しかしながら、Feの置換率が約80%を超えて増加させた試料番号31,32の試料の試料では、Coの効果が乏しくなり、摩耗量が著しく増加している。以上の結果より、硬質相形成粉末中のCoをFeで置換することはできるが、硬質相形成粉末中のCoをFeで置換する場合のFeの置換率は80%以下に止めるべきであることが確認された。なお、Feの置換率は約60%以下とすることがより好ましい。   From Table 5, the influence of the substitution rate of Fe when Co in the hard phase forming powder is replaced with Fe (the percentage of the Fe amount in the hard phase forming powder with respect to the total amount of Co and Fe in the hard phase forming powder) Can be examined. Sample No. 27 does not replace Co in the hard phase forming powder with Fe, and has the least amount of wear in the examples so far and shows good wear resistance. Here, when Co in the hard phase forming powder is substituted with Fe and the substitution rate of Fe is increased, the amount of wear tends to increase. However, when the substitution rate of Fe is up to about 80% (samples 04, 28 to 30), the amount of wear is suppressed to a level that does not cause any practical problems. However, in the samples of Sample Nos. 31 and 32 in which the substitution rate of Fe is increased by more than about 80%, the effect of Co is poor and the wear amount is remarkably increased. From the above results, it is possible to replace Co in the hard phase forming powder with Fe, but the substitution rate of Fe when replacing Co in the hard phase forming powder with Fe should be 80% or less. Was confirmed. The substitution rate of Fe is more preferably about 60% or less.

[第6実施例]
第1実施例で用いた鉄合金粉末(Fe-2%Ni-1%Mo-0.5%Cr-0.3%Mn粉末)、黒鉛粉末と、表6に示すように第1実施例の試料番号04で用いた硬質相形成粉末(Co-30%Cr-20%Mo-17%Fe-3%Si粉末)に異なる含有量のMnを含有させた硬質相形成粉末を用いて、鉄合金粉末に硬質相形成粉末を35%と黒鉛粉末を1%添加し、混合した混合粉末100質量部に、さらに成形潤滑剤としてステアリン酸亜鉛0.8質量部を配合し、混合して得られた原料粉末を第1実施例と同様に成形、焼結して試料番号30〜33の試料を作製した。これらの試料について、第1実施例と同様にして耐摩耗性の評価を行った。この結果を第1実施例の試料番号04の試料の値とともに表6に示す。
[Sixth embodiment]
The iron alloy powder (Fe-2% Ni-1% Mo-0.5% Cr-0.3% Mn powder), graphite powder used in the first example, and the sample number 04 of the first example as shown in Table 6 The hard phase forming powder (Co-30% Cr-20% Mo-17% Fe-3% Si powder) containing different contents of Mn is used to form a hard phase in the iron alloy powder. 35% of the forming powder and 1% of the graphite powder were added, and 100 parts by mass of the mixed powder was further mixed with 0.8 parts by mass of zinc stearate as a molding lubricant. Samples Nos. 30 to 33 were produced by molding and sintering in the same manner as in Example 1. These samples were evaluated for wear resistance in the same manner as in the first example. The results are shown in Table 6 together with the value of the sample No. 04 of the first example.

Figure 2010144237
Figure 2010144237

表6より、硬質相形成粉末(硬質相)にMnを含有させる効果を調べることができる。硬質相形成粉末にMnを含有しない試料番号04の試料に比して、硬質相形成粉末にMnを5%以下含有する試料番号33〜35の試料では、硬質相の合金基地がMnにより強化されて、バルブシートの摩耗量が小さくなっている。一方で硬質相が強化されることから、バルブの摩耗量は、Mnの含有量の増加につれて若干増加する傾向が見られる。また、硬質相形成粉末にMnを5%を超えて含有する試料番号36の試料では、硬質相形成粉末が硬くなって原料粉末の圧縮性が著しく低下するため、バルブシートの摩耗量が著しく増加するとともに、バルブシートの摩耗粉がバルブを攻撃してバルブの摩耗量も著しく増加している。以上の結果より、硬質相形成粉末にMnを含有させることで、いっそうの耐摩耗性向上が果たせるが、硬質相形成粉末のMnの含有量は5%以下に止めるべきであることが確認された。   From Table 6, the effect of containing Mn in the hard phase forming powder (hard phase) can be examined. Compared with the sample No. 04 in which the hard phase forming powder does not contain Mn, in the samples No. 33 to 35 in which the hard phase forming powder contains 5% or less of Mn, the alloy base of the hard phase is strengthened by Mn. Thus, the wear amount of the valve seat is small. On the other hand, since the hard phase is strengthened, the wear amount of the valve tends to slightly increase as the Mn content increases. In the sample No. 36 containing Mn in the hard phase forming powder in excess of 5%, the hard phase forming powder becomes hard and the compressibility of the raw material powder is remarkably lowered, so that the wear amount of the valve seat is remarkably increased. At the same time, the wear powder of the valve seat attacks the valve, and the amount of wear of the valve is remarkably increased. From the above results, it was confirmed that by adding Mn to the hard phase forming powder, the wear resistance could be further improved, but the Mn content of the hard phase forming powder should be kept to 5% or less. .

[第7実施例]
第1実施例で用いた鉄合金粉末(Fe-2%Ni-1%Mo-0.5%Cr-0.3%Mn粉末)、第1実施例の試料番号04で用いた硬質相形成粉末(Co-30%Cr-20%Mo-17%Fe-3%Si粉末)、黒鉛粉末およびニッケル粉末を用い、鉄合金粉末に硬質相形成粉末を35%と黒鉛粉末1%と表7に示す割合のニッケル粉末を添加し、混合した混合粉末100質量部に、さらに成形潤滑剤としてステアリン酸亜鉛0.8質量部を配合し、混合を行って得られた原料粉末を第1実施例と同様に成形、焼結して試料番号37〜43の試料を作製した。これらの試料について、第1実施例と同様にして耐摩耗性の評価を行った。この結果を第1実施例の試料番号04の試料の値とともに表7に示す。
[Seventh embodiment]
Iron alloy powder (Fe-2% Ni-1% Mo-0.5% Cr-0.3% Mn powder) used in the first example, hard phase forming powder (Co-30) used in sample number 04 of the first example % Cr-20% Mo-17% Fe-3% Si powder), graphite powder and nickel powder, 35% hard phase forming powder in iron alloy powder, 1% graphite powder and nickel powder in the ratio shown in Table 7 Was added to 100 parts by mass of the mixed powder and 0.8 parts by mass of zinc stearate as a molding lubricant, and the raw material powder obtained by mixing was molded and sintered in the same manner as in the first example. As a result, samples Nos. 37 to 43 were prepared. These samples were evaluated for wear resistance in the same manner as in the first example. The results are shown in Table 7 together with the value of the sample No. 04 of the first example.

Figure 2010144237
Figure 2010144237

表7より、原料粉末にニッケル粉末を添加せず、基地中にNiを含有しない試料番号04の試料に比して、試料番号37〜42の試料のようにニッケル粉末を5%以下添加するとバルブシート摩耗量が低下して合計摩耗量が低下することがわかる。しかしながら、ニッケル粉末の添加量が5%を超える試料番号43の試料では、基地中に耐摩耗性の低いNiリッチのオーステナイトが多量に残留するようになって自己であるバルブシートの耐摩耗性が低下してバルブシート摩耗量が増加するとともに、硬質なマルテンサイトの量が増加して相手となるバルブの攻撃性が増加してバルブ摩耗量が増加して、合計摩耗量が急激に増大することとなる。このことからニッケル粉末を添加すると耐摩耗性の向上に効果があるが、その添加量は5.0%以下に止めるべきことが確認された。   According to Table 7, when nickel powder is not added to the raw material powder and nickel powder is not added to the base and sample number 04 does not contain Ni, the nickel powder is added at 5% or less as in sample numbers 37 to 42. It can be seen that the amount of seat wear decreases and the total amount of wear decreases. However, in the sample of Sample No. 43 in which the amount of nickel powder added exceeds 5%, a large amount of Ni-rich austenite having low wear resistance remains in the base, and the wear resistance of the valve seat itself is low. The amount of wear on the valve seat decreases, the amount of hard martensite increases, the aggressiveness of the counterpart valve increases, the amount of valve wear increases, and the total amount of wear increases rapidly. It becomes. From this, it was confirmed that the addition of nickel powder is effective in improving the wear resistance, but the amount added should be limited to 5.0% or less.

[第8実施例]
第1実施例で用いた鉄合金粉末(Fe-2%Ni-1%Mo-0.5%Cr-0.3%Mn粉末)、第1実施例の試料番号04で用いた硬質相形成粉末(Co-30%Cr-20%Mo-17%Fe-3%Si粉末)、黒鉛粉末および銅粉末を用い、鉄合金粉末に硬質相形成粉末を35%と黒鉛粉末1%と表8に示す割合の銅粉末を添加し、混合した混合粉末100質量部に、さらに成形潤滑剤としてステアリン酸亜鉛0.8質量部を配合し、混合を行って得られた原料粉末を第1実施例と同様に成形、焼結して試料番号44〜50の試料を作製した。これらの試料について、第1実施例と同様にして耐摩耗性の評価を行った。この結果を第1実施例の試料番号04の試料の値とともに表8に示す。
[Eighth embodiment]
Iron alloy powder (Fe-2% Ni-1% Mo-0.5% Cr-0.3% Mn powder) used in the first example, hard phase forming powder (Co-30) used in sample number 04 of the first example % Cr-20% Mo-17% Fe-3% Si powder), graphite powder and copper powder, 35% hard phase forming powder, 1% graphite powder and copper powder in the ratio shown in Table 8 Was added to 100 parts by mass of the mixed powder and 0.8 parts by mass of zinc stearate as a molding lubricant, and the raw material powder obtained by mixing was molded and sintered in the same manner as in the first example. As a result, samples Nos. 44 to 50 were prepared. These samples were evaluated for wear resistance in the same manner as in the first example. The results are shown in Table 8 together with the value of the sample No. 04 of the first example.

Figure 2010144237
Figure 2010144237

表8より、原料粉末に銅粉末を添加せず、基地中にCuを含有しない試料番号04の試料に比して、試料番号44〜49の試料のように銅粉末を5%以下添加するとバルブシート摩耗量が低下して合計摩耗量が低下することがわかる。しかしながら、銅粉末の添加量が5%を超える試料番号50の試料では、基地中に固溶しきれず遊離した銅相が分散するようになって、基地の強度が低下してバルブシート摩耗量が増加するとともに、硬質なマルテンサイトの量が増加して相手となるバルブの攻撃性が増加してバルブ摩耗量が増加して、合計摩耗量が急激に増大することとなる。このことから銅粉末を添加すると耐摩耗性の向上に効果があるが、その添加量は5.0%以下に止めるべきことが確認された。   According to Table 8, when copper powder is not added to the raw material powder, but less than 5% of copper powder is added as in the sample numbers 44 to 49 as compared with the sample number 04 which does not contain Cu in the base, the valve It can be seen that the amount of seat wear decreases and the total amount of wear decreases. However, in the sample of Sample No. 50 in which the amount of copper powder added exceeds 5%, the free copper phase cannot be completely dissolved in the matrix and the free copper phase is dispersed. As the amount increases, the amount of hard martensite increases, the aggressiveness of the counterpart valve increases, the amount of valve wear increases, and the total amount of wear increases rapidly. From this, it was confirmed that the addition of copper powder is effective in improving the wear resistance, but the amount added should be limited to 5.0% or less.

Claims (14)

質量比で、全体組成が、Cr:1.58〜18.55質量%、Ni:0.54〜2.54質量%、Mo:2.67〜16.84質量%、Si:0.15〜4.5質量%、Co:2.25〜33.30質量%、Mn:0.05〜0.42質量%、C:0.5〜1.5質量%、および残部がFeと不可避不純物からなり、
Fe−Ni−Mo−C系合金基地中に、
組成が、Mo:15〜35%、Si:1〜10%、Cr:10〜40%、および残部がCoと不可避不純物からなる硬質相が15〜45%分散する
金属組織を呈することを特徴とする耐摩耗性焼結合金。
In terms of mass ratio, the overall composition was Cr: 1.58 to 18.55 mass%, Ni: 0.54 to 2.54 mass%, Mo: 2.67 to 16.84 mass%, Si: 0.15 4.5 mass%, Co: 2.25 to 33.30 mass%, Mn: 0.05 to 0.42 mass%, C: 0.5 to 1.5 mass%, and the balance from Fe and inevitable impurities Become
In the Fe-Ni-Mo-C alloy base,
The composition is characterized by exhibiting a metal structure in which Mo: 15 to 35%, Si: 1 to 10%, Cr: 10 to 40%, and the balance of the hard phase composed of Co and inevitable impurities is dispersed by 15 to 45%. Wear-resistant sintered alloy.
前記硬質相の組成において、前記Coの一部をFeで置換することを特徴とする請求項1に記載の耐摩耗性焼結合金。   The wear-resistant sintered alloy according to claim 1, wherein a part of the Co is substituted with Fe in the composition of the hard phase. 前記全体組成において、Mn:2.25質量%以下となるように、前記硬質相の組成にMn:5質量%以下を追加することを特徴とする請求項1または2に記載の耐摩耗性焼結合金。   3. The wear-resistant firing according to claim 1, wherein Mn: 5% by mass or less is added to the composition of the hard phase so that Mn is 2.25% by mass or less in the overall composition. Bond money. 前記Fe−Ni−Mo−C系合金基地中に、さらにNiが、全体組成に対して5.0質量%以下含有されていることを特徴とする請求項1〜3のいずれかに記載の耐摩耗性焼結合金。   The Ni-Mo-C-based alloy base further contains Ni in an amount of 5.0% by mass or less based on the entire composition. Wear-resistant sintered alloy. 前記Fe−Ni−Mo−C系合金基地中に、さらにCuが、全体組成に対して5.0質量%以下含有されていることを特徴とする請求項1〜4のいずれかに記載の耐摩耗性焼結合金。   The Fe-Ni-Mo-C-based alloy base further contains Cu in an amount of 5.0% by mass or less based on the entire composition. Wear-resistant sintered alloy. 前記焼結合金の気孔および粒界に、鉛、二硫化モリブデン、硫化マンガン、窒化硼素、メタ珪酸カルシウム系鉱物、弗化カルシウムの群より選ばれる少なくとも1種の被削性改善物質の粉末を0.3〜2質量%さらに分散させることを特徴とする請求項1〜5のいずれかに記載の耐摩耗性焼結合金。   At least one machinability improving substance powder selected from the group consisting of lead, molybdenum disulfide, manganese sulfide, boron nitride, calcium metasilicate mineral, calcium fluoride is added to the pores and grain boundaries of the sintered alloy. The wear-resistant sintered alloy according to any one of claims 1 to 5, further dispersed by 3 to 2% by mass. 前記焼結合金の気孔中に、鉛、鉛合金、銅、銅合金およびアクリル樹脂のうちの1種が充填されていることを特徴とする請求項1〜6のいずれかに記載の耐摩耗性焼結合金。   The wear resistance according to any one of claims 1 to 6, wherein pores of the sintered alloy are filled with one of lead, lead alloy, copper, copper alloy, and acrylic resin. Sintered alloy. 組成が、質量比で、Ni:1〜3質量%、Mo:0.5〜2質量%、Cr:0.1〜1質量%、Mn:0.1〜0.5質量%、残部がFeと不可避不純物からなる鉄合金粉末に、組成が、質量比で、Mo:15〜35%、Si:1〜10%、Cr:10〜40%、および残部がCoと不可避不純物からなる硬質相形成粉末:15〜45%と、黒鉛粉末:0.5〜1.5%とを添加し、混合した原料粉末を所望の形状に圧粉成形し、得られた成形体を焼結することを特徴とする耐摩耗性焼結合金の製造方法。   Composition is mass ratio, Ni: 1-3 mass%, Mo: 0.5-2 mass%, Cr: 0.1-1 mass%, Mn: 0.1-0.5 mass%, balance is Fe And a hard phase formed of an iron alloy powder composed of unavoidable impurities and a mass ratio of Mo: 15 to 35%, Si: 1 to 10%, Cr: 10 to 40%, and the balance of Co and unavoidable impurities Powder: 15 to 45% and graphite powder: 0.5 to 1.5% are added, the mixed raw material powder is compacted into a desired shape, and the resulting compact is sintered. A method for producing a wear-resistant sintered alloy. 前記硬質相形成粉末の前記Coの一部をFeで置換することを特徴とする請求項8に記載の耐摩耗性焼結合金の製造方法。   The method for producing a wear-resistant sintered alloy according to claim 8, wherein a part of the Co in the hard phase forming powder is replaced with Fe. 前記硬質相形成粉末に、Mn:5質量%以下をさらに含有させることを特徴とする請求項8または9に記載の耐摩耗性焼結合金の製造方法。   The method for producing a wear-resistant sintered alloy according to claim 8 or 9, wherein the hard phase forming powder further contains Mn: 5 mass% or less. 前記混合粉末に、ニッケル粉末を5質量%以下をさらに混合することを特徴とする請求
項8〜10のいずれかに記載の耐摩耗性焼結合金の製造方法。
The method for producing a wear-resistant sintered alloy according to any one of claims 8 to 10, wherein 5% by mass or less of nickel powder is further mixed with the mixed powder.
前記混合粉末に、銅粉末を5質量%以下をさらに混合することを特徴とする請求
項8〜11のいずれかに記載の耐摩耗性焼結合金の製造方法。
The method for producing a wear-resistant sintered alloy according to any one of claims 8 to 11, wherein 5% by mass or less of copper powder is further mixed with the mixed powder.
前記原料粉末に、鉛粉末、二硫化モリブデン粉末、硫化マンガン粉末、窒化硼素粉末、メタ珪酸カルシウム系鉱物粉末、弗化カルシウム粉末の群より選ばれる少なくとも1種の被削性改善物質の粉末を0.3〜2質量%さらに添加したことを特徴とする請求項8〜12のいずれかに記載の耐摩耗性焼結合金の製造方法。   The raw material powder is 0 powder of at least one machinability improving substance selected from the group consisting of lead powder, molybdenum disulfide powder, manganese sulfide powder, boron nitride powder, calcium metasilicate mineral powder, and calcium fluoride powder. The method for producing a wear-resistant sintered alloy according to any one of claims 8 to 12, further comprising 3 to 2% by mass. 前記焼結により得られた耐摩耗性焼結合金の気孔中に、鉛、鉛合金、銅、銅合金、アクリル樹脂のうちの何れかを溶浸もしくは含浸させることを特徴とする請求項8〜13のいずれかに記載の耐摩耗性焼結合金の製造方法。   9. The pores of the wear-resistant sintered alloy obtained by the sintering are infiltrated or impregnated with any of lead, lead alloy, copper, copper alloy, and acrylic resin. 14. A method for producing a wear-resistant sintered alloy according to any one of 13 above.
JP2008325076A 2008-07-03 2008-12-22 Wear-resistant sintered alloy and method for producing the same Pending JP2010144237A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008325076A JP2010144237A (en) 2008-12-22 2008-12-22 Wear-resistant sintered alloy and method for producing the same
US12/458,063 US20100008812A1 (en) 2008-07-03 2009-06-30 Hard phase forming alloy powder, wear resistant sintered alloy, and production method for wear resistant sintered alloy
DE102009031390A DE102009031390A1 (en) 2008-07-03 2009-07-01 Hard phase forming alloy powder, wear resistant sintered alloy, and manufacturing method for wear resistant sintered alloy
KR1020090060216A KR101117361B1 (en) 2008-07-03 2009-07-02 Alloy powder for forming hard phase, method for manufacturing wear resistance sintered alloy, and wear resistance sintered alloy
US13/707,235 US9260772B2 (en) 2008-07-03 2012-12-06 Hard phase forming alloy powder, wear resistant sintered alloy, and production method for wear resistant sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008325076A JP2010144237A (en) 2008-12-22 2008-12-22 Wear-resistant sintered alloy and method for producing the same

Publications (1)

Publication Number Publication Date
JP2010144237A true JP2010144237A (en) 2010-07-01

Family

ID=42564953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008325076A Pending JP2010144237A (en) 2008-07-03 2008-12-22 Wear-resistant sintered alloy and method for producing the same

Country Status (1)

Country Link
JP (1) JP2010144237A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102554223A (en) * 2011-11-28 2012-07-11 株洲硬质合金集团有限公司 Coating for sintering hard alloy product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102554223A (en) * 2011-11-28 2012-07-11 株洲硬质合金集团有限公司 Coating for sintering hard alloy product

Similar Documents

Publication Publication Date Title
JP5525986B2 (en) Sintered valve guide and manufacturing method thereof
US7601196B2 (en) Alloy powder for forming hard phase and ferriferous mixed powder using the same, and manufacturing method for wear resistant sintered alloy and wear resistant sintered alloy
JP4466957B2 (en) Wear-resistant sintered member and manufacturing method thereof
JP6142987B2 (en) Iron-based sintered sliding member
JP2005248234A (en) Iron-based sintered alloy for valve seat
US10619229B2 (en) Manufacturing method of wear-resistant iron-based sintered alloy and wear-resistant iron-based sintered alloy
KR100499896B1 (en) A sintered member having an abrasion resistance and a method for producing the same
JP4693170B2 (en) Wear-resistant sintered alloy and method for producing the same
JP4455390B2 (en) Wear-resistant sintered alloy and method for producing the same
JP4179550B2 (en) Wear-resistant sintered alloy and method for producing the same
JP5253132B2 (en) Wear-resistant sintered alloy and method for producing the same
JP5314950B2 (en) Alloy powder for hard phase formation
JP2010144235A (en) Wear-resistant sintered alloy and method for producing the same
JP5358131B2 (en) Wear-resistant sintered alloy and method for producing the same
JP2010144237A (en) Wear-resistant sintered alloy and method for producing the same
JP5253131B2 (en) Wear-resistant sintered alloy and method for producing the same
JP6341455B2 (en) Manufacturing method of iron-based sintered sliding member
JP6519955B2 (en) Iron-based sintered sliding member and method of manufacturing the same
JP4716366B2 (en) Sintered valve seat manufacturing method
JP3942136B2 (en) Iron-based sintered alloy
JPH09256120A (en) Powder metallurgy material excellent in wear resistance
JP2877211B2 (en) Iron-based sintered alloy for valve seat
JP2006274359A (en) Alloy powder for forming hard phase and ferrous powder mixture using the same
JP3763605B2 (en) Sintered alloy material for valve seats
JP3068127B2 (en) Wear-resistant iron-based sintered alloy and method for producing the same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Effective date: 20100603

Free format text: JAPANESE INTERMEDIATE CODE: A7422