JPS63227757A - Method for thermally spraying wear-resistant ceramics - Google Patents

Method for thermally spraying wear-resistant ceramics

Info

Publication number
JPS63227757A
JPS63227757A JP62061446A JP6144687A JPS63227757A JP S63227757 A JPS63227757 A JP S63227757A JP 62061446 A JP62061446 A JP 62061446A JP 6144687 A JP6144687 A JP 6144687A JP S63227757 A JPS63227757 A JP S63227757A
Authority
JP
Japan
Prior art keywords
tic
powder
metal
sprayed layer
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62061446A
Other languages
Japanese (ja)
Other versions
JPH0645859B2 (en
Inventor
Takashi Tomota
隆司 友田
Noritaka Miyamoto
典孝 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP62061446A priority Critical patent/JPH0645859B2/en
Publication of JPS63227757A publication Critical patent/JPS63227757A/en
Publication of JPH0645859B2 publication Critical patent/JPH0645859B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE:To form a ceramics thermally sprayed layer having high hardness and excellent in wear resistance, by mixing a composite grain powder in which TiC and metal are integrally compounded with a prescribed amount of TiC powder and by thermally spraying a base material with the resulting powder mixture. CONSTITUTION:A composite grain powder in which TiC and a metal such as Ni, Co, Ni-Cr alloy, etc., are integrally compounded is previously prepared. Subsequently, the grain powder mixture is mixed with a TiC powder so that TiC powder comprises 10-50wt.%. Then, the resulting powder mixture is thermally sprayed on a base material to form a wear-resistant ceramics layer. In this thermally spraying method, it is desirable that thermally spraying method of this invention is applied to an undercoat thermally sprayed layer consisting, e.g., of an Ni-base alloy such as Ni-Al alloy, Ni-Cr alloy, etc., which is previously formed on a substrate.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、内燃機関用ピストンシリンダボア、その他
各種の部材において、表面の耐摩耗性や耐熱性、断熱性
等の特性を向上させるためにセラミックスを基材に溶射
する方法に関するものであり、特に耐摩耗性の優れたT
iC主体の溶射層を形成する方法に関するものでおる。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention uses ceramics-based materials to improve surface wear resistance, heat resistance, heat insulation, and other properties in piston cylinder bores for internal combustion engines and various other members. This relates to the method of thermal spraying on materials, especially T, which has excellent wear resistance.
The present invention relates to a method of forming a sprayed layer mainly composed of iC.

従来の技術 各種セラミック材料のうちでも特にTiC(炭化チタン
)は高融点材料であって硬度が高く、耐熱性、耐摩耗性
、耐食性、耐酸化性に優れた材料として知られており、
そこでTiCは従来から上述のような性能が要求される
用途において主として焼結材料として使用されている。
Prior art Among various ceramic materials, TiC (titanium carbide) is a high melting point material, has high hardness, and is known as a material with excellent heat resistance, abrasion resistance, corrosion resistance, and oxidation resistance.
Therefore, TiC has conventionally been used mainly as a sintering material in applications where the above-mentioned performance is required.

ところで一般に焼結法により得られたセラミック材料(
焼結セラミックス)は、強度、特に靭性に欠ける問題か
あり、一方前述のような耐摩耗性、耐熱性、耐酸化性、
耐食性は表面層のみ充足していれば良い場合が多いこと
から、金属等からなる基材の表面層のみをセラミックス
により局部的に被覆することが望ましい場合が多く、ま
たその場合の被覆方法としては溶射法を利用することが
多い。しかしながらTiCは融点(約3160℃)に対
して(昇華点的3300℃)が比較的近接しており、そ
のためTiC自体を直接プラズマ溶射法などにより溶射
した場合、昇華や分解が生じやすく、したがって基材表
面に密着したTiC被覆層を形成することが困難なこと
が多かったのである。
By the way, generally ceramic materials obtained by sintering method (
Sintered ceramics) have the problem of lacking strength, especially toughness, but on the other hand, they do not have the aforementioned wear resistance, heat resistance, oxidation resistance,
In many cases, corrosion resistance is sufficient if only the surface layer is sufficient, so it is often desirable to locally coat only the surface layer of a base material made of metal etc. with ceramics. Thermal spraying is often used. However, TiC has a melting point (approximately 3160°C) and a sublimation point of 3300°C, which is relatively close to each other. Therefore, when TiC itself is directly sprayed by plasma spraying, sublimation and decomposition easily occur, and the base It was often difficult to form a TiC coating layer that adhered to the surface of the material.

一方、セラミック材料の溶射方法の一つとして、特開昭
59−64766号公報においては、予めセラミック粉
末粒子の表面にGOやNi等の金属をコーティングして
おき、そのコーティングされた粉末粒子を溶射して、金
属の結合力により溶射1を形成する方法が提案されてい
る。そこでTiCについても、この方法を利用して予め
TiC粒子にNiやCO等の金属をコーティングしてお
き、その粉末を溶射すればTiCは金属により包み込ま
れるため分解や昇華が生じにくくなり、また金属の結合
力により基材上に充分にv!i着させることができると
考えられる。
On the other hand, as one of the thermal spraying methods for ceramic materials, Japanese Patent Application Laid-Open No. 59-64766 discloses that the surface of ceramic powder particles is coated with a metal such as GO or Ni in advance, and then the coated powder particles are thermally sprayed. Accordingly, a method has been proposed in which the thermal spray 1 is formed by the bonding force of metals. Therefore, with respect to TiC, if TiC particles are coated with a metal such as Ni or CO in advance using this method and the powder is thermally sprayed, the TiC will be wrapped in the metal, making it difficult to decompose or sublimate. The bonding force of v! is sufficient to form on the base material. It is thought that it is possible to make it wear i.

発明が解決すべき問題点 前記提案の方法にしたがってTiC粉末粒子にGoヤN
1などの金属をコーティングして基材1上に溶射した場
合、第5図に示すように溶射層3はCOやN1等の金属
相5中にTiC粒子4が分散した状態となる。そのため
溶射層3自体の硬さは、TiCが本来有する硬さくHv
3000程度)よりも著しく低くなってむしろNiやG
oなどの金属層自体の硬さに近い硬さくHv500〜1
000程度)しか得られず、そのため耐摩耗性もTiC
単独の場合はどは高くならず、NiやGoと同程度の耐
摩耗性しか得られない。もちろん、TiC粉末粒子に対
するNiやCo等の金属のコーティング厚みを薄くすれ
ば、溶射層中におけるTiC分散量も増大して溶射層の
硬さも高くなると考えられるが、実際上は微細な粉末粒
子における表面のコーティ。
Problems to be Solved by the Invention According to the method proposed above, GoYN is applied to TiC powder particles.
When a metal such as 1 is coated and sprayed onto the base material 1, the sprayed layer 3 becomes a state in which TiC particles 4 are dispersed in a metal phase 5 such as CO or N1, as shown in FIG. Therefore, the hardness of the sprayed layer 3 itself is Hv
(approximately 3,000), rather than Ni and G.
Hardness close to that of the metal layer itself, such as o, Hv500~1
TiC
When used alone, the wear resistance is not high and only the same level of wear resistance as Ni or Go can be obtained. Of course, if the coating thickness of metal such as Ni or Co on TiC powder particles is reduced, the amount of TiC dispersed in the sprayed layer will increase and the hardness of the sprayed layer will also increase. surface coati.

ング厚みを著しく薄くすることは困難であってその薄肉
化には制約があり、したがって前記提案の方法では溶射
層中のTiC分散優を必る程度以上大きくすることはで
きず、溶射層の硬さ、ひいては耐摩耗性を充分に高める
ことはできなかったのでおる。
It is difficult to significantly reduce the thickness of the thermally sprayed layer, and there are restrictions on its thinning. Therefore, with the method proposed above, it is not possible to increase the TiC dispersion in the thermally sprayed layer more than necessary, and the hardness of the thermally sprayed layer Furthermore, it was not possible to sufficiently improve the wear resistance.

このように前記提案の方法では、折角高硬度を有するT
iCを用いても、その特性を充分に発揮させて、優れた
耐摩耗性を有する溶射層を形成することが困難であった
In this way, in the proposed method, T
Even when using iC, it has been difficult to fully exhibit its properties and form a thermal sprayed layer with excellent wear resistance.

この発明は以上の事情を背景としてなされたもので、高
硬度ではあるが昇華・分解しやすいTiCを用いた溶@
層を形成するにあたって、TiCの昇華・分解を抑えな
がら、TiCの有する機能を充分に発揮させて高硬度で
耐摩耗性が優れた溶射層を形成する方法を提供すること
を目的とするものである。
This invention was made against the background of the above-mentioned circumstances.
The purpose is to provide a method for forming a thermal sprayed layer with high hardness and excellent wear resistance by fully demonstrating the functions of TiC while suppressing sublimation and decomposition of TiC. be.

問題点を解決するための手段 この発明の耐摩耗性セラミックスの溶射方法は、TiC
を主体とする溶射層を形成するにあたって、予めTiC
と金属とを複合一体化した複合粒子からなる粉末を用意
しておき、この複合粒子粉末とTiC粉末とを、TiC
粉末が10〜50wt%を占めるように混合し、その混
合粉末を基材上に溶射することを特徴とするものである
Means for Solving the Problems The thermal spraying method for wear-resistant ceramics of the present invention is based on TiC
When forming the sprayed layer mainly composed of TiC,
A powder made of composite particles in which TiC and metal are integrated is prepared, and this composite particle powder and TiC powder are combined into TiC
The method is characterized in that the powder is mixed so as to account for 10 to 50 wt%, and the mixed powder is thermally sprayed onto a substrate.

ここで、前記複合粒子中の金属としては、Co、Ni、
Ni −Cr合金のうちから選ばれた1種以上を用いる
ことができる。
Here, the metals in the composite particles include Co, Ni,
One or more selected from Ni-Cr alloys can be used.

作  用 この発明の方法においては、予めTiCとNi、Qo−
1Ni−Cr合金等の金属とを複合一体化した複合粒子
からなる粉末と、TiC粉末(T i C単独の粉末〉
とを混合して基材上に溶射する。このとき、TiC−金
属複合粉末粒子中のTiCは金属によって覆われている
ため、容易には昇華・分解しない。またTiC粉末は複
合粉末中のTiCよりは昇華・分解し易いが、基材上に
到達した時点で直ちに複合粉末の金属によって包み込ま
れてしまうため、TiC粉末のみを単独で溶射する場合
と比較すれば格段に昇華・分解しにくく、その大部分は
溶射層中に充分に捕捉・残留される。
Function: In the method of the present invention, TiC, Ni and Qo-
1 Powder consisting of composite particles that are integrated with metal such as Ni-Cr alloy, and TiC powder (powder of TiC alone)
The mixture is then sprayed onto the base material. At this time, since TiC in the TiC-metal composite powder particles is covered with metal, it does not easily sublime and decompose. Furthermore, although TiC powder sublimes and decomposes more easily than TiC in composite powder, it is immediately engulfed by the metal of the composite powder when it reaches the base material, so it is less effective than spraying TiC powder alone. It is extremely difficult to sublime and decompose, and most of it is sufficiently captured and remains in the sprayed layer.

すなわち溶射層中のTICとしては、丁IC−金属複合
粉末中のTiCと、TiC粉末によるTiCとの両者が
分散することになり、溶射層の組織は、これらのTiC
がTiC−金属複合粉末に由来する金属によって結−合
された様相を呈することになる。したがってTiC−金
属複合粉末のみを溶射する場合と比較すれば、TiC−
金属複合粉末に混合してTiC粉末を溶射することによ
リ、そのTiC粉末の分だけ)容射層中のTiCの分散
量は多くなり、そのため溶射層の硬さはTiC−金属複
合粉末のみを用いた場合よりもTiC自体の硬さに近付
いて高硬度化され、その結果溶射層の耐摩耗性も向上さ
れる。
In other words, as TIC in the sprayed layer, both TiC in the IC-metal composite powder and TiC due to the TiC powder are dispersed, and the structure of the sprayed layer is composed of these TiC
The particles appear to be bonded by metal derived from the TiC-metal composite powder. Therefore, compared to spraying only TiC-metal composite powder, TiC-
By spraying TiC powder mixed with the metal composite powder, the amount of TiC dispersed in the sprayed layer increases by the amount of TiC powder, so the hardness of the sprayed layer is only that of the TiC-metal composite powder. The hardness is closer to that of TiC itself than when TiC is used, and as a result, the wear resistance of the sprayed layer is also improved.

ここで、TiC金属複合粉末に混合されるTiC粉末の
割合が50%を越える場合は、相対的にTiC−金属複
合粉末の割合が少なくなるため、溶射時に基材上に到達
したTiC粉末が複合粉末の金属によって充分に包み込
まれ得なくなり、そのためTiC粉末が昇華・分解する
割合が高くなり、溶射層中に多量の気孔が生じて溶射層
全体としての硬さが低下し、耐摩耗性も低下してしまう
Here, if the proportion of TiC powder mixed into the TiC metal composite powder exceeds 50%, the proportion of TiC-metal composite powder will be relatively small, so that the TiC powder that has reached the base material during thermal spraying will be mixed into the composite powder. The TiC powder cannot be sufficiently enveloped by the metal powder, which increases the rate of sublimation and decomposition of the TiC powder, creating a large number of pores in the sprayed layer, reducing the hardness of the sprayed layer as a whole and reducing wear resistance. Resulting in.

一方TiC粉末の割合が10%未満では、溶射層中のT
iCの分散量が少なく、すなわちTiC−金属複合粉末
のみを用いた場合よりわずかしかTiC分散量が増加せ
ず、そのため溶射層の硬さの上昇程度も不充分で、充分
な耐摩耗性が得られない。したがってTiC粉末の割合
は10〜50%の範囲内とした。
On the other hand, if the proportion of TiC powder is less than 10%, the T
The amount of iC dispersed is small, that is, the amount of TiC dispersed increases only slightly compared to when only TiC-metal composite powder is used, and therefore the degree of increase in hardness of the sprayed layer is insufficient, and sufficient wear resistance is not achieved. I can't. Therefore, the proportion of TiC powder was set within the range of 10 to 50%.

なおTiC−金属複合粒子粉末に用いる金属としては、
TiCとの濡れ性が良好であってしかも耐熱性も高いも
のを使用することが望ましく、Ni1CO1Ni−Cr
合金等が最適である。またTiC−金属複合粒子の複合
形態としては、要は少なくともTiC粒子の一部がNi
、co等の金属によって覆われていれば良いが、溶射時
のTiCの昇華、分散を可及的に防止するためには、T
iC粒子の全体がNi、Qo等の金属によって覆われて
いるもの、すなわちNi、Go等の金属によってコーテ
ィングされた粒子とすることが望ましい。またこのよう
な複合粒子を製造するための具体的手段は任意であり、
例えば加熱したTiC粒子の表面にNi、co等の金属
溶湯を直接接触させて複合一体化したり、あるいはTi
C粉末とNi、CO等の金属粉末とを混合して造粒して
、TiC粒子と金属とを機械的に圧着させるか、あるい
は適宜のバインダ物質を用いて接合一体化しても良く、
ざらにはメッキ法等を適用することも可能である。ざら
に、TiC−金属複合粉末におけるTiCと金属との組
成比は特に限定しないが、通常は重量比で2二8〜8:
2程度の範囲内とすることが望ましい。複合粉末粒子中
のTiCの割合がこれより少なければ溶射層中のTiC
量が過少となって充分な耐摩耗性が得られないおそれが
あり、一方これより金属の割合が少ない複合粉末粒子を
作成することは実操業上は困難となることが多い。
Note that the metals used for the TiC-metal composite particle powder include:
It is desirable to use a material that has good wettability with TiC and high heat resistance, and Ni1CO1Ni-Cr
Alloys etc. are optimal. In addition, as for the composite form of TiC-metal composite particles, at least a part of the TiC particles are Ni.
, Co, etc., but in order to prevent sublimation and dispersion of TiC during thermal spraying as much as possible, T
It is desirable that the entire iC particle be covered with a metal such as Ni or Qo, that is, a particle coated with a metal such as Ni or Go. Further, the specific means for producing such composite particles is arbitrary;
For example, molten metal such as Ni or co is brought into direct contact with the surface of heated TiC particles to form a composite, or
C powder and metal powder such as Ni or CO may be mixed and granulated, and TiC particles and metal may be mechanically compressed, or they may be joined and integrated using an appropriate binder substance.
It is also possible to apply a plating method or the like to the roughness. Roughly speaking, the composition ratio of TiC and metal in the TiC-metal composite powder is not particularly limited, but is usually 228 to 8 by weight.
It is desirable that it be within the range of about 2. If the proportion of TiC in the composite powder particles is less than this, TiC in the sprayed layer
If the amount is too small, there is a risk that sufficient wear resistance cannot be obtained, and on the other hand, it is often difficult in actual operation to create composite powder particles with a smaller proportion of metal.

なお、この発明の溶射方法は、アルミニウム合金や鋳鉄
からなる基材上に直接適用しても良いが、通常は侵の実
施例にも示しているように、基材の上に予め下地溶射層
例えばNi−A1合金、Ni−Cr合金、N 1−Cr
−A1合金、N1−Cr−A1−Y合金などのNi基合
金からなる下地溶射層を形成しておき、その上にこの発
明の溶射方法を適用することが望ましい。
The thermal spraying method of the present invention may be applied directly onto a base material made of aluminum alloy or cast iron, but usually a base thermal spray layer is applied on the base material in advance, as shown in the examples of corrosion. For example, Ni-A1 alloy, Ni-Cr alloy, N1-Cr
It is desirable to form a base thermal spray layer made of a Ni-based alloy such as -A1 alloy or N1-Cr-A1-Y alloy, and then apply the thermal spraying method of the present invention thereon.

実施例 以下にこの発明の方法に従って溶射した実施例およびこ
の発明の範囲外の比較例を記す。
EXAMPLES Below, examples in which thermal spraying was carried out according to the method of the present invention and comparative examples outside the scope of the present invention will be described.

基材として、幅6.35#、長さ15.7711111
1高ざ10.0顛の寸法のJIS Fe12からなる摩
耗試験用テストピースを用意し、その基材の表面を溶剤
としてのアセトンにより洗浄した後、ショツトブラスト
加工を施して表面に凹凸を形成した。その後プラズマ溶
9A装置により、Ni−4,5wt%A1合金からなる
アンダーコート層をO,imの厚さで形成した。
As a base material, width 6.35#, length 15.7711111
A test piece for an abrasion test made of JIS Fe12 with a height of 10.0 cm was prepared, and after cleaning the surface of the base material with acetone as a solvent, it was subjected to shot blasting to form irregularities on the surface. . Thereafter, an undercoat layer made of Ni-4.5 wt % A1 alloy was formed with a thickness of O.im using a plasma melting 9A apparatus.

一方、溶射材料として、粒径10〜50IJInのTi
C粉末と、粒径10〜50伽のTiC−50wt%CO
からなる複合粉末とを用意し、これらを第1表の配合条
件A−Kに示すような種々の配合割合で混合した。なお
ここでTiC−50wt%CO複合粉末としては、Ti
C粒子表面のほぼ全面にGoがコーティングされたもの
を用いた。
On the other hand, Ti with a particle size of 10 to 50 IJIn is used as a thermal spray material.
C powder and TiC-50wt%CO with a particle size of 10 to 50
A composite powder consisting of the following was prepared, and these were mixed at various blending ratios as shown in blending conditions A to K in Table 1. Note that here, the TiC-50wt%CO composite powder is Ti
C particles whose surfaces were almost entirely coated with Go were used.

上記の配合条件A−にの各混合粉末を、プラズマ溶射装
置を用いて前記アンダーコート層上に溶射した。具体的
には、Ar−H2混合ガスを用いて、Ar流1401/
mm、H2流量10 l / n++n s電流値40
0Aにて溶射し、また溶射厚みは300伽とした。
Each mixed powder under the above blending condition A- was thermally sprayed onto the undercoat layer using a plasma spraying device. Specifically, using Ar-H2 mixed gas, Ar flow 1401/
mm, H2 flow rate 10 l/n++ns current value 40
Thermal spraying was carried out at 0 A, and the spraying thickness was 300 mm.

各配合条件A−にの混合粉末で溶射した溶射層の硬さを
調べた結果を第1表中に併せて示す。なお比較例の1つ
として、通常の粉末冶金法により得られた焼結体TiC
について硬さを調べた結果を、記号りとして第1表中に
示す。
Table 1 also shows the results of examining the hardness of the sprayed layer sprayed with the mixed powder under each compounding condition A-. As one of the comparative examples, a sintered TiC body obtained by a normal powder metallurgy method was used.
The hardness results are shown in Table 1 as symbols.

第1表 また第1図に配合条件C−Gのこの発明の実施例の条件
で得られた溶射層の断面状況を模式的に示し、第2図に
配合条件A、すなわちTiC粉末のみを用いた比較例(
従来法)もしくはTiC粉未配合割合が過少の条件Bに
よる溶射層の断面状況を模式的に示し、第3図に配合条
件H−にの比較例の条件すなわちTiC粉末の配合割合
が過剰であった例による溶射層の断面状況を模式的に示
T、第1図〜第3図において、1は基材、2はアンダー
コート層、3はこの発明の対象とするセラミック溶射層
であって、その溶射層3中の符号4はTiC相(T i
 C粉末に由来するものおよびT i C−Go複合粉
末に由来するものの両者を含む)、5はCO相(金属相
)を示す。さらに6は空孔を示す。
Table 1 and Fig. 1 schematically show the cross-sectional state of the thermal sprayed layer obtained under the conditions of the embodiment of this invention with compounding conditions C-G. Comparative example (
Figure 3 schematically shows the cross-sectional state of the sprayed layer under condition B, where the proportion of TiC powder not blended is too low (conventional method) or the proportion of TiC powder not blended is too low. In FIGS. 1 to 3, 1 is a base material, 2 is an undercoat layer, and 3 is a ceramic spray layer which is the object of the present invention. The symbol 4 in the sprayed layer 3 is a TiC phase (Ti
(including both those derived from C powder and those derived from T i C-Go composite powder), 5 indicates a CO phase (metallic phase). Furthermore, 6 indicates a hole.

第1表に示すように、TiC粉末の配合割合が0〜30
%まで(記号A−E)はTiC粉未配合量の増大ととも
に溶射層の硬さが大きくなるが、それ以上TiC粉末の
配合割合が増大すれば(記号F−K>、逆に溶射層の硬
さが低くなり、特にTiC粉未配合割合が50%を越え
るH−にでは急激に溶射層の硬さが低くなる。これは、
TiC粉末が過剰となれば、金属で包み込まれないTi
C粒子が増加してそのTiC粒子が昇華もしくは分解し
、その部分が第3図に示すように気孔6として溶射層3
中に残り、組織が脆くなって硬さが低下するものと考え
られる。
As shown in Table 1, the blending ratio of TiC powder is 0 to 30.
% (symbols A-E), the hardness of the sprayed layer increases as the amount of TiC powder not mixed increases, but if the blending ratio of TiC powder increases beyond that (symbol F-K>), the hardness of the sprayed layer increases. The hardness of the sprayed layer decreases, especially when the proportion of TiC powder not added exceeds 50%, the hardness of the sprayed layer decreases rapidly.
If TiC powder is excessive, Ti that is not wrapped in metal
As the C particles increase, the TiC particles sublimate or decompose, and the resulting portions form pores 6 in the sprayed layer 3, as shown in FIG.
It is thought that the particles remain inside, making the structure brittle and decreasing its hardness.

次に、上記の各条件A−Kにより溶射されたテストピー
スおよび記号りの焼結TiCについて、LFW摩擦摩耗
試験機を用いて耐摩耗性を評価した。相手材としては5
O3−2焼入品のリング(硬さ:Hv 720)を用い
、評価条件は相手材リング回転数200r回、押付荷重
150に9、油浴潤滑で行なった。
Next, the wear resistance of the test piece and the sintered TiC shown in the symbol, which were thermally sprayed under each of the conditions A to K above, was evaluated using an LFW friction and wear tester. 5 as a mating material
An O3-2 hardened ring (hardness: Hv 720) was used, and the evaluation conditions were a mating ring rotation speed of 200 r times, a pressing load of 150 to 9, and oil bath lubrication.

その結果を第4図に示す。なお摩耗量はテストピース溶
射面の摩耗深さで測定した。
The results are shown in FIG. The amount of wear was measured by the depth of wear on the sprayed surface of the test piece.

第4図から明らかなように、TiC粉末の配合割合が1
0〜50%の場合(C〜G)には、TiC焼結材(記号
L)なみの耐摩耗性が得られた。これは、第1図に示す
ように金属(CO)相5で包み込まれたTiC相4が表
面を含め全体に緻密分散しているため、全体の硬さでは
TiC焼結材に及ばないものの、TiC本来の耐摩耗の
良さを分散粒子で発揮させることができたためと考えら
れる。
As is clear from Figure 4, the blending ratio of TiC powder is 1
In the case of 0 to 50% (C to G), wear resistance comparable to that of TiC sintered material (symbol L) was obtained. This is because, as shown in Figure 1, the TiC phase 4 surrounded by the metal (CO) phase 5 is densely dispersed throughout the entire surface including the surface, so although the overall hardness is not as high as that of TiC sintered material, This is thought to be due to the fact that the TiC's inherent good wear resistance was able to be demonstrated in the dispersed particles.

一方、TiC粉末を配合しなかったAおよびTIC配合
量が10%に満たないBでは、TiCの含有率が少なく
て、第2図に示すようにTiCの分散度合も少ないため
、耐摩耗性も充分ではなかった。
On the other hand, in A, which did not contain TiC powder, and B, in which the TIC content was less than 10%, the TiC content was low, and as shown in Figure 2, the degree of TiC dispersion was also low, so the wear resistance was poor. It wasn't enough.

またTiC粉末の配合割合が50%を越える場合(H−
K)では、第3図について既に説明したように、気孔6
が増加して全体の硬さが低くなるとともに組織自体も脆
くなり、耐摩耗性が劣化していた。
In addition, when the blending ratio of TiC powder exceeds 50% (H-
K), as already explained with reference to FIG.
increased, the overall hardness decreased, the structure itself became brittle, and wear resistance deteriorated.

発明の効果 この発明の方法によれば、耐摩耗性や耐熱性等の特性面
では優れているが溶射時に昇華・分解し易いTiCを用
いてセラミックス溶射層を形成するにあたり、溶射材料
としてTiC粉末とTiC−金属複合粉末との混合粉末
を用いて、T i C−金属複合粉末の金属によりTi
C粉末粒子を包み込むように溶射することによってTi
Cの昇華、分解を防止することができ、しかもそればか
りでなく、TIC粉末とTiC−金属複合粉末の両者を
用いることによって溶射層中のTiC分散量を多くし、
これによりTiC本来の機能を充分に発揮させて優れた
耐摩耗性を有する溶射層を得ることができる。
Effects of the Invention According to the method of the present invention, TiC powder is used as a thermal spraying material when forming a ceramic thermal spray layer using TiC, which has excellent properties such as wear resistance and heat resistance, but easily sublimes and decomposes during thermal spraying. Using a mixed powder of TiC-metal composite powder and TiC-metal composite powder, Ti
Ti is coated by thermal spraying to envelop C powder particles.
Sublimation and decomposition of C can be prevented, and by using both TIC powder and TiC-metal composite powder, the amount of TiC dispersed in the sprayed layer can be increased.
Thereby, it is possible to obtain a thermal sprayed layer that fully exhibits the original function of TiC and has excellent wear resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例により得られた溶射層を示す
模式的な縦断面図、第2図および第3図はそれぞれ比較
例により得られた溶射層を示す模式的な縦断面図、第4
図はTiC粉未配合量と溶射層の耐摩耗性との関係を示
すグラフ、第5図は従来の方法により得られた溶射層の
一例を示す模式的な縦断面図である。 1・・・基材、 2・・・アンダーコート層、 3・・
・溶射層、 4・・・TiC相、 5・・・金属相(C
o相)。
FIG. 1 is a schematic vertical cross-sectional view showing a sprayed layer obtained by an example of the present invention, and FIGS. 2 and 3 are schematic longitudinal cross-sectional views showing a thermal sprayed layer obtained by a comparative example, respectively. Fourth
The figure is a graph showing the relationship between the amount of TiC powder not added and the wear resistance of the sprayed layer, and FIG. 5 is a schematic vertical cross-sectional view showing an example of the sprayed layer obtained by the conventional method. 1... Base material, 2... Undercoat layer, 3...
・Thermal spray layer, 4... TiC phase, 5... Metal phase (C
o phase).

Claims (2)

【特許請求の範囲】[Claims] (1)予めTiCと金属とを複合一体化した複合粒子か
らなる粉末を用意しておき、この複合粒子粉末とTiC
粉末とを、TiC粉末が10〜50wt%を占めるよう
に混合し、その混合粉末を基材上に溶射することを特徴
とする耐摩耗性セラミックスの溶射方法。
(1) Prepare a powder made of composite particles in which TiC and metal are integrated into a composite in advance, and combine this composite particle powder with TiC
1. A thermal spraying method for wear-resistant ceramics, which comprises mixing TiC powder so that TiC powder accounts for 10 to 50 wt%, and spraying the mixed powder onto a base material.
(2)前記複合粒子中の金属として、Co、Ni、Ni
−Cr合金のうちから選ばれた1種以上が用いられてい
る特許請求の範囲第1項記載の耐摩耗性セラミックスの
溶射方法。
(2) Co, Ni, Ni as metals in the composite particles
2. The thermal spraying method for wear-resistant ceramics according to claim 1, wherein one or more selected from -Cr alloys are used.
JP62061446A 1987-03-17 1987-03-17 Abrasion resistant ceramic spraying method Expired - Lifetime JPH0645859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62061446A JPH0645859B2 (en) 1987-03-17 1987-03-17 Abrasion resistant ceramic spraying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62061446A JPH0645859B2 (en) 1987-03-17 1987-03-17 Abrasion resistant ceramic spraying method

Publications (2)

Publication Number Publication Date
JPS63227757A true JPS63227757A (en) 1988-09-22
JPH0645859B2 JPH0645859B2 (en) 1994-06-15

Family

ID=13171297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62061446A Expired - Lifetime JPH0645859B2 (en) 1987-03-17 1987-03-17 Abrasion resistant ceramic spraying method

Country Status (1)

Country Link
JP (1) JPH0645859B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0694141A (en) * 1991-09-24 1994-04-05 Tokyo Yogyo Co Ltd Faucet valve member and its manufacture
JP2008534782A (en) * 2005-03-28 2008-08-28 サルツァー・メトコ・ヴェンチャー・エルエルシー Thermal spray raw material composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112128081A (en) 2019-06-24 2020-12-25 广东美芝精密制造有限公司 Compressor reservoir and compressor with same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0694141A (en) * 1991-09-24 1994-04-05 Tokyo Yogyo Co Ltd Faucet valve member and its manufacture
JP2008534782A (en) * 2005-03-28 2008-08-28 サルツァー・メトコ・ヴェンチャー・エルエルシー Thermal spray raw material composition

Also Published As

Publication number Publication date
JPH0645859B2 (en) 1994-06-15

Similar Documents

Publication Publication Date Title
US4563329A (en) Powder alloy sheet for forming a wear resistant layer on a workpiece
US3896244A (en) Method of producing plasma sprayed titanium carbide tool steel coatings
US7964239B2 (en) Bearing material coated slide member and method for manufacturing the same
US3779720A (en) Plasma sprayed titanium carbide tool steel coating
CA2567089C (en) Wear resistant alloy powders and coatings
JP4369757B2 (en) Thermal spray piston ring
JP2003064463A (en) Wear-resistant sprayed coating film on sliding member
EP0701005B1 (en) Thermal spray powder
JP2001503816A (en) Coated wear-resistant parts of internal combustion engines, in particular piston rings and methods for their production
JPH0645862B2 (en) Method for forming ceramic sprayed layer
JPS63227757A (en) Method for thermally spraying wear-resistant ceramics
JPH0748665A (en) Sliding material with flame sprayed film
US7401586B2 (en) Valve seat rings made of basic Co or Co/Mo alloys, and production thereof
JP4418660B2 (en) Piston ring and manufacturing method thereof
JPH06145845A (en) Sintered friction material
JPH01230760A (en) Sliding member
JP3753981B2 (en) Aluminum alloy sprayed layer and sliding material with excellent sliding properties
JPS59100263A (en) Plasma-sprayed piston ring
JP3460968B2 (en) Spray method
JPS6051549B2 (en) thermal spray material
JP2637500B2 (en) Sliding member
JPS59133360A (en) Melt-spraying material
JPS5854189B2 (en) thermal spray powder material
JPH01100207A (en) Production of infiltrated valve seat ring
JPS61163259A (en) Thermal spraying material