JPS6051549B2 - thermal spray material - Google Patents

thermal spray material

Info

Publication number
JPS6051549B2
JPS6051549B2 JP12075179A JP12075179A JPS6051549B2 JP S6051549 B2 JPS6051549 B2 JP S6051549B2 JP 12075179 A JP12075179 A JP 12075179A JP 12075179 A JP12075179 A JP 12075179A JP S6051549 B2 JPS6051549 B2 JP S6051549B2
Authority
JP
Japan
Prior art keywords
copper
molybdenum disulfide
powder
coating
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12075179A
Other languages
Japanese (ja)
Other versions
JPS5644762A (en
Inventor
昌之 土井
直達 朝日
敏夫 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12075179A priority Critical patent/JPS6051549B2/en
Publication of JPS5644762A publication Critical patent/JPS5644762A/en
Publication of JPS6051549B2 publication Critical patent/JPS6051549B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)

Description

【発明の詳細な説明】 本発明は溶射材料に係り、特に被加工物表面に被加工
物と異なつた性質の層を付与するための溶射材料に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thermal spray material, and more particularly to a thermal spray material for applying a layer with different properties to the surface of a workpiece.

構造物、機械類などの被加工物の表面に被加工物とは
異なつた性質の層を付与する一方法として溶射法がある
Thermal spraying is one method for applying a layer with properties different from those of the workpiece to the surface of the workpiece, such as structures and machinery.

これは被加工物と異なつた性質を具備する材料を酸素−
アセチレン炎あるいは酸素−水素炎等の化学燃焼炎、電
弧あるいはプラズマジェット等の電気エネルギーで溶融
し、これを噴霧状の微細粒子として被加工物に吹付けて
被覆層を形成するものである。この溶射材料としては防
錆、防食、耐摩耗性、耐焼付性あるいは耐熱性等を高
めるものが使用される。一般に溶射法による被覆は溶射
により急冷凝固するために同一成分の溶製材とは著しく
異なつた性質となる。同一成分でも溶射被覆は溶製材に
くらべ硬さが高い。また、被膜中には気孔が存在するた
め潤滑性を具備させることができ、一般的には耐摩耗性
を向上で きる。 特に耐摩耗性を付与させるための溶
射材料としては、金属材料と非金属材料とがある。
This is because the material with different properties from the workpiece is exposed to oxygen.
It is melted using a chemical combustion flame such as an acetylene flame or an oxygen-hydrogen flame, or electric energy such as an electric arc or a plasma jet, and is sprayed onto the workpiece as fine particles in the form of a spray to form a coating layer. The thermal spraying material used is one that enhances rust prevention, corrosion resistance, wear resistance, seizure resistance, heat resistance, etc. In general, coatings made by thermal spraying are rapidly solidified by thermal spraying, and therefore have properties that are significantly different from melted materials with the same components. Even with the same composition, thermal sprayed coatings have higher hardness than cast lumber. In addition, the presence of pores in the coating provides lubricity and generally improves wear resistance. In particular, thermal spray materials for imparting wear resistance include metal materials and non-metal materials.

金属材料としては鉄鋼、鋳鉄、アルミニウム−シリコン
系合金、アルミニウム又はアルミニウム系合金、銅又は
銅系合金、自溶性合金、超硬合金などがあり、これらは
稼動条件あるいは摩擦条件により使い分けられているが
、下記に示す如く、長所を有するとともに短所をも有す
る。 先ず鉄鋼であるが、この溶射層は溶射により一部
マルテンサイト化するため硬くなり耐摩耗性が高い。
Metal materials include steel, cast iron, aluminum-silicon alloys, aluminum or aluminum alloys, copper or copper alloys, self-fusing alloys, cemented carbide, etc., and these are used depending on operating conditions or friction conditions. , as shown below, has both advantages and disadvantages. First of all, regarding steel, this thermal spray layer partially becomes martensite due to thermal spraying, so it becomes hard and has high wear resistance.

しかし、この被膜は脆く、耐焼付け性が低・いので、よ
り耐摩耗性を向上させる部材への応用には限界がある。
自溶性合金はニッケルあるいはコバルト基合金中に硼素
及び硅素を添加して共晶合金とするとともにフラックス
作用があり、また溶射後、被膜を溶融点以上に加熱する
ため密着力の高い材料である。この被膜は各種の硬質な
金属間化合物を有するので耐摩耗性が高いが、硼素の作
用て被膜が脆く、耐かじり性あるいは摺動面での相手材
料とのなじみ性の点で問題がある。耐摩耗性の高い超硬
合金は一般に高融点材料であるのでプラズマ溶射法によ
り被覆が行われている。この被覆は極めて硬質であり、
耐摩耗性が高いのでメカニカルシール、型類の摺動部に
多用されている。しかし、この被膜は耐摩耗性が高いが
硬質で脆く、仕上げ加工に長時間を要するという欠点が
あるので特殊な用途に限られている。アルミニウム及び
銅系合金の被膜は軟質で摺動面で部分的な塑性流動によ
りなじみ性がよく、靭性もあり仕上げ加工性も優れてい
るので摩擦面に使用されることがあるが、耐摩耗性、耐
焼付き、特に油切れを生ずるような部分での焼付き性の
点で問題がある。一方、非金属系溶射材料として、セラ
ミック材料が使用されており、セラミック材料を溶射す
ることにより得られた被膜は極めて硬質であり、耐摩耗
性が高いのでメカニカルシール、型類の摺動部に多用さ
れている。
However, this coating is brittle and has low seizure resistance, so there are limits to its application to parts that can further improve wear resistance.
A self-fusing alloy is a nickel- or cobalt-based alloy with boron and silicon added to form a eutectic alloy, which has a fluxing effect, and also has high adhesion because the coating is heated above its melting point after thermal spraying. This coating has various hard intermetallic compounds and has high wear resistance, but the coating is brittle due to the action of boron, and there are problems in terms of galling resistance and compatibility with mating materials on sliding surfaces. Since cemented carbide with high wear resistance is generally a high melting point material, coating is performed by plasma spraying. This coating is extremely hard;
Due to its high wear resistance, it is often used in mechanical seals and sliding parts of molds. However, although this coating has high wear resistance, it is hard and brittle and requires a long time for finishing, so it is limited to special uses. Coatings made of aluminum and copper alloys are soft and have good conformability due to partial plastic flow on sliding surfaces, and are also tough and have excellent finishing workability, so they are sometimes used on friction surfaces, but they are not wear resistant. However, there are problems in terms of seizure resistance, especially in areas where oil runs out. On the other hand, ceramic materials are used as non-metallic thermal spraying materials, and the coating obtained by thermal spraying ceramic materials is extremely hard and has high wear resistance, so it is suitable for mechanical seals and sliding parts of molds. It is widely used.

しかし、溶射材料として特にセラミック材料あるいは二
硫化モリブデンの如く非金属粉末を使用し、溶射層を形
成させる場合その溶射層の密着力が著しく低いという欠
点がある。
However, when a ceramic material or a non-metallic powder such as molybdenum disulfide is used as the thermal spray material to form a thermal spray layer, there is a drawback that the adhesion of the thermal spray layer is extremely low.

また、これらの非金属粉末と金属粉末とを単に混合させ
た場合も溶射層の密着力が低い。すなわち、これらの非
金属粉末は一般に表面が著しく凹凸しており、そのため
吸着ガスが多く、本発明者らの検討によれ一ば、溶射に
際して、この吸着ガスが金属粉末又は非金属同志の接合
力を低めていることが明らかになつた。本発明の目的は
、上記した従来技術の欠点を改善し、耐摩耗性、密着性
、耐かじり性、自己潤滑.性などに優れ、摺動部材など
を得るために好適な溶射材料を提供することにある。
Further, even when these nonmetallic powders and metal powders are simply mixed, the adhesion of the sprayed layer is low. In other words, these nonmetallic powders generally have a significantly uneven surface, and therefore a large amount of adsorbed gas is absorbed.According to the study by the present inventors, this adsorbed gas increases the bonding force between metal powders or nonmetals during thermal spraying. It became clear that the The purpose of the present invention is to improve the above-mentioned drawbacks of the prior art and improve wear resistance, adhesion, galling resistance, and self-lubrication. The object of the present invention is to provide a thermal spraying material that has excellent properties such as properties and is suitable for obtaining sliding members and the like.

本発明の要旨は、金属粉末と、金属により被覆された二
硫化モリブデン粉末とからなることを特徴とする溶射材
料にある。
The gist of the present invention resides in a thermal spray material characterized by comprising metal powder and molybdenum disulfide powder coated with metal.

金属粉末としては、前記した金属系溶射材料、すなわち
鉄鋼、鋳鉄、アルミニウム−シリコン系合金、アルミニ
ウム又はアルミニウム系合金、銅又は銅系合金、自溶性
合金、超硬合金などが挙げられる。
Examples of the metal powder include the above-mentioned metallic thermal spray materials, ie, steel, cast iron, aluminum-silicon alloy, aluminum or aluminum alloy, copper or copper alloy, self-fusing alloy, cemented carbide, and the like.

又、二硫化モリブデンを被覆するための被覆金属は、前
記金属粉末と固溶するか又は共晶などにより金属的に結
合するもの、更に硬さが同程度のものが好ましい。
Further, the coating metal for coating molybdenum disulfide is preferably one that forms a solid solution with the metal powder or is metallically bonded to the metal powder through eutectic or the like, and further has a similar hardness.

このような被覆金属としては前記金属粉末と同一の成分
のもの又は前記金属粉末の主成分と同一の成分のものが
用いられ、更に前記金属粉末と異なる成分のものも用い
られる。本発明においては、二硫化モリブデンと被覆金
・属とが互いに反応したり、相容化したりしてはならな
い。両者が反応乃至相容化すると、二硫化モリブデンの
特性を活かすことができなくなるからである。従つて被
覆金属の選択にあたつては上記の如き配慮が必要となる
。被覆金属は二硫化モリブデンを包囲しており、溶射に
よりニ硫化モリブデンが均一に分散されるとともに、被
覆金属が同志で及び被加工物や前記金属粉末と合金化す
るので、密着力が大きく、耐摩耗性、耐かじり性、自己
潤滑性などに優れた溶射層を得ることができる。
As such a coating metal, one having the same composition as the metal powder or the same as the main component of the metal powder can be used, and a metal having a different composition from the metal powder can also be used. In the present invention, molybdenum disulfide and the coating metal must not react with each other or be compatible with each other. This is because if the two react or become compatible, the properties of molybdenum disulfide cannot be utilized. Therefore, the above considerations must be taken when selecting the coating metal. The coating metal surrounds the molybdenum disulfide, and the molybdenum disulfide is uniformly dispersed by thermal spraying, and the coating metal is alloyed with itself, the workpiece, and the metal powder, resulting in strong adhesion and durability. A thermally sprayed layer with excellent wear resistance, anti-galling properties, self-lubricating properties, etc. can be obtained.

被覆金属による二硫化モリブデンの被覆は化学めつきに
よつて行なうのが好ましい。
The coating of molybdenum disulfide with the coating metal is preferably carried out by chemical plating.

被覆を化学めつきによつて行うと二硫化モリブデンの表
面に吸着しているガスを追い出すことができ、溶射によ
つて密着力が高く、さらに空孔のない溶射層を得ること
ができるからである。すなわち、本発明者らは二硫化モ
リブデン中にガスが吸着されていると吸着ガスが溶射に
際して膨脹するので、溶射層に空孔を形成する原因とな
ることを究明した。金属被覆二硫化モリブデンを被溶射
材表面に強固に密着させるには溶射粒子を、熱源中で少
なくともその表面部の一部を溶融させて、被溶射材面に
飛来させ、その運動エネルギーにより偏平化し、拡がる
ようにすることが必要である。二硫化モリブデンは酸素
が混入すると燃焼するとともに基地材料とは固溶しない
ので、従来法によれば基地材料中に直接二硫化モリブデ
ン粉末を機械的に混合して溶射しているが、被溶射材表
面で二硫化モリブデンが飛散して被膜内に殆んど残らな
い。また含まれた場合でも二硫化モリブデンは必然的に
大気中から溶射熱源に混入してくる酸素ガスと燃焼しな
がら付着するのて基地材料との間に空間を有し極めて脆
弱な被膜となり摺動材として不適当である。一般に摺動
部材として適用するにはある程度の強度あるいは耐圧縮
強度が必要である。本発明者らは、本発明の溶射材料の
最も好ましい態様は、銅又は銅系合金粉末と、銅又は銅
系合金を被覆した二硫化モリブデン粉末とからなること
及び二硫化モリブデン表面に基地となる銅又は銅系合金
と固溶限のある銅又は銅系合金を化学めつきして、これ
を基地となる銅又は銅系合金粉末と混合して溶射するこ
とにより、耐摩耗性、密着性、耐かじり性、自己潤滑性
などが特に優れた溶射層が得られることを見い出した。
二硫化モリブデンの粒度は溶射の作業性、被膜中の均一
性に影響を及ぼすので5〜100pmが良く、望ましく
は20〜74μmである。化学めつきの際、めつき液中
に浮上するのを防止し、個々の粒子の表面に均一な厚さ
のめつきを形成するには5μm以上の粒子がよい。銅又
は銅系合金をめつきした二硫化モリブデンは溶射の際、
表面の金属部分が溶融し基地と反応して強固に結合し、
二硫化モリブデン部分が偏平化せすに元のままて残存す
る。一方、基地となる銅又は銅系合金は溶融して吹付け
られるので被溶射材表面で大きく偏平化する。したがつ
て、銅被覆二硫化モリブデンの粒径は緻密な溶射層にす
るのに100pm以下が好ましい。めつき膜の厚さは1
〜70pm(望ましくは5〜10pm)がよい。すなわ
ち、1μm以上にすると、溶射の際、溶融した銅めつき
膜が表面張力で凝集し、二硫化モリブデンの一部が露出
して密着されなくなるのを防止することができるからて
ある。又、必要な二硫化モリブデン量を確保し、耐摩耗
性の点から70μm以下がよい。耐摩耗摺動部として銅
被覆二硫化モリブデン量は、耐摩耗性の低下を防ぐため
5容積%以上が良い。又、二硫化モリブデン量が増加す
るほど耐摩耗性、耐焼付き性が改善されるが、密着力の
高い被膜にするためには、銅被覆二硫化モリブデン量を
7喀積%以下とするのが良い。又、二硫化モリブデンの
表面に銅又は銅系合金を化学めつきした銅被覆二硫化モ
リブデン粉末を銅又は銅系合金中に分散鋳造した場合に
は、銅被覆二硫化モリブデンに酸素が混入すると分散あ
るいは燃焼してしまうので、二硫化モリブデンが殆んど
残らないのに対し、二硫化モリブデンに銅めつきした銅
被覆二硫化モリブデン粉末を銅又は銅系合金粉末と混合
して溶射することにより、溶射層中に二硫化モリブデン
を強固に密着させることができることが明らかになつた
This is because coating by chemical plating can drive out the gas adsorbed on the surface of molybdenum disulfide, and by thermal spraying, it is possible to obtain a thermally sprayed layer with high adhesion and no pores. be. That is, the present inventors have found that when gas is adsorbed in molybdenum disulfide, the adsorbed gas expands during thermal spraying, which causes pores to be formed in the thermal sprayed layer. In order to firmly adhere the metal-coated molybdenum disulfide to the surface of the material to be thermally sprayed, at least a part of the surface of the thermal spray particles is melted in a heat source, and the particles are flown onto the surface of the material to be thermally sprayed, and their kinetic energy is used to flatten them. , it is necessary to make it expand. Molybdenum disulfide burns when mixed with oxygen and does not form a solid solution with the base material. According to the conventional method, molybdenum disulfide powder is mechanically mixed directly into the base material and then thermally sprayed. Molybdenum disulfide scatters on the surface and hardly remains in the coating. Furthermore, even if molybdenum disulfide is included, it will inevitably adhere to the oxygen gas that comes into the thermal spray heat source from the atmosphere while burning, so there will be spaces between it and the base material, resulting in an extremely fragile coating and sliding. It is unsuitable as a material. Generally, a certain degree of strength or compressive strength is required for application as a sliding member. The present inventors have found that the most preferred embodiment of the thermal spraying material of the present invention is that it is composed of copper or copper-based alloy powder and molybdenum disulfide powder coated with copper or copper-based alloy, and that the material is formed as a base on the surface of molybdenum disulfide. By chemically plating copper or copper-based alloys with copper or copper-based alloys that have solid solubility limits, and then mixing this with base copper or copper-based alloy powder and thermal spraying, it is possible to improve wear resistance, adhesion, It has been found that a thermal sprayed layer with particularly excellent galling resistance and self-lubricating properties can be obtained.
The particle size of molybdenum disulfide affects the workability of thermal spraying and the uniformity in the coating, so it is preferably 5 to 100 pm, preferably 20 to 74 pm. During chemical plating, particles with a diameter of 5 μm or more are preferable in order to prevent them from floating in the plating solution and to form plating with a uniform thickness on the surface of each particle. When molybdenum disulfide plated with copper or copper-based alloys is thermally sprayed,
The metal part on the surface melts and reacts with the base to form a strong bond.
The molybdenum disulfide portion remains intact even though it is flattened. On the other hand, since the base copper or copper-based alloy is melted and sprayed, the surface of the material to be thermally sprayed becomes largely flattened. Therefore, the particle size of the copper-coated molybdenum disulfide is preferably 100 pm or less in order to form a dense sprayed layer. The thickness of the plating film is 1
-70 pm (preferably 5-10 pm) is good. That is, if the thickness is 1 μm or more, it is possible to prevent the molten copper plating film from agglomerating due to surface tension during thermal spraying, thereby preventing part of the molybdenum disulfide from being exposed and not being tightly adhered. Further, from the viewpoint of ensuring the necessary amount of molybdenum disulfide and wear resistance, the thickness is preferably 70 μm or less. The amount of molybdenum disulfide coated with copper as a wear-resistant sliding part is preferably 5% by volume or more to prevent a decrease in wear resistance. In addition, as the amount of molybdenum disulfide increases, the wear resistance and seizure resistance improve, but in order to obtain a coating with high adhesion, it is recommended that the amount of molybdenum disulfide coated with copper be 7% by volume or less. good. In addition, when copper-coated molybdenum disulfide powder, which is made by chemically plating copper or a copper-based alloy on the surface of molybdenum disulfide, is dispersed and cast into copper or copper-based alloy, when oxygen mixes with the copper-coated molybdenum disulfide, the dispersion occurs. Alternatively, molybdenum disulfide is burned, leaving almost no molybdenum disulfide, but by thermal spraying copper-coated molybdenum disulfide powder, which is copper-plated molybdenum disulfide, mixed with copper or copper-based alloy powder, It has become clear that molybdenum disulfide can be firmly adhered to the sprayed layer.

以下、実施例により本発明を更に説明する。The present invention will be further explained below with reference to Examples.

実施例1粒径37〜78μmの銅系合金粉末(アルミニ
ウム11重量%一残部銅)と、44〜78μmの二硫化
モリブデン粉末に銅を無電解化学めつき法により5μm
の厚さに被覆した粉末とを後者が0,5,10,20,
30,40,50,60,7喀積%となるように混合し
て得た粉末を酸素−アセチレン法、酸素一水素法及びプ
ラズマ法(400A(7)Ar,N2プラズマ)により
直径25TWLの丸棒端面及び厚さ30wn18h17
?の軟鋼表面に溶射した。
Example 1 Copper was coated with a particle size of 5 μm by electroless chemical plating on copper-based alloy powder (11% by weight aluminum, balance copper) with a particle size of 37 to 78 μm and molybdenum disulfide powder with a particle size of 44 to 78 μm.
powder coated to a thickness of 0,5,10,20,
The powder obtained by mixing to give a volume% of 30, 40, 50, 60, 7% by volume was made into a circle with a diameter of 25 TWL by the oxygen-acetylene method, the oxygen-hydrogen method, and the plasma method (400A (7) Ar, N2 plasma). Rod end face and thickness 30wn18h17
? Thermal spraying was applied to the mild steel surface.

被溶射面はグリツトブラスチングして粗面化した後、1
50℃に予熱をした。溶射厚さは約0.7WLである。
第1図は銅めつきで被覆した二硫化モリブデンを用いて
溶射したものの溶射層の密着力を測定した結果を示す線
図てある。
After roughening the surface to be sprayed by grit blasting,
Preheated to 50°C. The spray thickness is approximately 0.7WL.
FIG. 1 is a diagram showing the results of measuring the adhesion of a thermally sprayed layer of a material coated with copper plating and thermally sprayed using molybdenum disulfide.

密着力は銅被覆二硫化モリブデン量が多くなると低下す
るが、銅被覆二硫化モリブデン量が70容積%において
も約100kg/dという高い値を示した。比較例1実
施例1と同一の銅系合金粉末と、めつき被覆なしの二硫
化モリブデン粉末との混合物(二硫化モリブデン量20
,40および6喀積%)についてプラズマ溶射を行つた
が、いずれの場合も二硫化モリブデン粉末が酸化してほ
とんどなくなつてしまい、二硫化モリブデンの付着が見
られなかつた。
The adhesion strength decreased as the amount of copper-coated molybdenum disulfide increased, but it showed a high value of about 100 kg/d even when the amount of copper-coated molybdenum disulfide was 70% by volume. Comparative Example 1 A mixture of the same copper-based alloy powder as in Example 1 and molybdenum disulfide powder without plating coating (molybdenum disulfide amount 20
, 40 and 6 volume %), but in all cases, the molybdenum disulfide powder was oxidized and almost completely disappeared, and no adhesion of molybdenum disulfide was observed.

実施例237〜78μmの銅系合金粉末(アルミニウム
11重(′n%一残部銅)と、44〜78μmの二硫化
モリブデン粉末にニッケルを無電解めつき法により5μ
mの厚さに被覆した粉末とを後者が0,5,10,20
,30,40,50,60,7喀積%となるように混合
して得た粉末を酸素−アセチレン法、酸素一水素法、プ
ラズマ法(400A(7)Ar,N2プラズマ)により
直径257WLの丸棒端面及び厚さ30TWL、8−、
7瓢の軟鋼表面に溶射した。
Example 2 5 μm of nickel was applied to 37-78 μm copper-based alloy powder (aluminum 11 weight ('n%, balance copper) and 44-78 μm molybdenum disulfide powder by electroless plating).
powder coated to a thickness of m, the latter being 0,5,10,20
The powder obtained by mixing the powder to give a volume% of Round bar end face and thickness 30TWL, 8-,
It was sprayed onto the mild steel surface of 7 gourds.

被溶射面はグリツトブラスチングにより粗面化した後、
150℃に予熱し・た。溶射層厚さは約0.7Wr!n
である。第2図は実施例1および2並びに比較例1で軟
鋼板に溶射した溶射層を機械加工およびラッピング法に
よりJIS規格0.5Sに仕上げ、これを大越式摩耗試
験法により耐摩耗性試験を行つた結果を示す線図である
。aおよびbは実施例1で製造したもの、cは実施例2
で製造したものおよびdは比較例1で製造しためつき被
覆なしのものである。A,cおよびdは摩擦速度2.0
77!./秒およびbは摩擦速度0.67TL./秒に
よるデータである。摩耗試験の相手材はJIS規格SU
J2軸受鋼(硬さ800〜850HV)である。摩擦距
離が200rr]、荷重が18.9k9、および潤滑剤
がタービン油である。図に示す如く、本発明の溶射材料
を用いて溶射したものは銅被覆二硫化モリブデン量が多
くなるほど耐摩耗性が著しく向上する。
After the surface to be thermally sprayed is roughened by grit blasting,
Preheated to 150°C. The sprayed layer thickness is approximately 0.7Wr! n
It is. Figure 2 shows the thermal sprayed layers sprayed on mild steel plates in Examples 1 and 2 and Comparative Example 1, which were finished to JIS standard 0.5S by machining and lapping, and then subjected to wear resistance tests using the Ohkoshi abrasion test method. It is a diagram showing the results obtained. a and b were produced in Example 1, c was produced in Example 2
and d are those manufactured in Comparative Example 1 without a blind coating. A, c and d are friction speeds 2.0
77! .. /sec and b is the friction speed 0.67TL. /second data. The material used for the wear test is JIS standard SU.
J2 bearing steel (hardness 800-850HV). The friction distance is 200rr], the load is 18.9k9, and the lubricant is turbine oil. As shown in the figure, the wear resistance of the material sprayed using the thermal spraying material of the present invention increases significantly as the amount of molybdenum disulfide coated with copper increases.

特に銅系合金粉末に銅めつきした二硫化モリブデンを混
合したもの(a)はニッケルめつきした二硫化モリブデ
ンを混合したもの(c)より耐摩耗性が著しくすぐれて
いることがわかる。しかし、めつき被覆しないもの(d
)はほとんど二硫化モリブデンが溶射層中に残存せず、
そのため溶射材料中の二硫化モリブデン量を増加させる
と耐摩耗性が逆に低下する傾向を示す。以上のように、
本発明の溶射材料によつて得た溶射層が耐摩耗性にすぐ
れているのは二硫化モリブデンが含まれていることにも
よるが、密着力が大きいことも起因していると考えられ
る。
In particular, it can be seen that the mixture (a) in which copper-based alloy powder is mixed with copper-plated molybdenum disulfide has significantly better wear resistance than the mixture (c) in which nickel-plated molybdenum disulfide is mixed. However, those without plating coating (d
), almost no molybdenum disulfide remains in the sprayed layer.
Therefore, when the amount of molybdenum disulfide in the thermal spray material is increased, the wear resistance tends to decrease. As mentioned above,
The excellent abrasion resistance of the thermal sprayed layer obtained using the thermal spraying material of the present invention is due to the fact that it contains molybdenum disulfide, but it is also thought to be due to its high adhesion.

第3図は実施例1で製造した二硫化モリブデン量4喀積
%の場合の溶射層の10@の顕微鏡写真である。
FIG. 3 is a 10@ micrograph of the thermally sprayed layer produced in Example 1 with an amount of molybdenum disulfide of 4% by volume.

溶射層は殆んど気孔がなく、また被溶射材に密着して形
成されていた。以上の如く、本発明により耐摩耗性、密
着性、耐かじり性、自己潤滑性などに優れ、摺動部材な
どを得るために好適な溶射材料が提供された。
The sprayed layer had almost no pores and was formed in close contact with the material to be sprayed. As described above, the present invention provides a thermal spraying material that has excellent wear resistance, adhesion, galling resistance, self-lubricity, etc. and is suitable for obtaining sliding members and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はめつき被覆した二硫化モリブデンを使用して溶
射した溶射層の密着力と銅被覆二硫化モリブデン量との
関係を示す線図、第2図は比摩耗量と(銅被覆)二硫化
モリブデン量との関係を示す線図および第3図は本発明
の溶射材料を使用して得た溶射層の顕微鏡写真である。
Figure 1 is a diagram showing the relationship between the adhesion of a thermally sprayed layer using plating-coated molybdenum disulfide and the amount of copper-coated molybdenum disulfide, and Figure 2 is a diagram showing the relationship between the specific wear amount and (copper-coated) disulfide. A diagram showing the relationship with the amount of molybdenum and FIG. 3 are micrographs of a sprayed layer obtained using the sprayed material of the present invention.

Claims (1)

【特許請求の範囲】 1 金属粉末と、金属により被覆された二硫化モリブデ
ン粉末とからなることを特徴とする溶射材料。 2 二硫化モリブデンを被覆するための金属が、前記金
属粉末と固溶するか又は金属的に結合する材料であり、
且つ二硫化モリブデンと反応性乃至相容性を有しない材
料である特許請求の範囲第1項記載の溶射材料。 3 前記金属粉末が銅又は銅系合金粉末であり、二硫化
モリブデンを被覆する金属が銅又は銅系合金である特許
請求の範囲第1項記載の溶射材料。
[Scope of Claims] 1. A thermal spray material comprising metal powder and molybdenum disulfide powder coated with metal. 2. The metal for coating molybdenum disulfide is a material that is dissolved in solid solution or metallically combined with the metal powder,
The thermal spray material according to claim 1, which is a material that is neither reactive nor compatible with molybdenum disulfide. 3. The thermal spray material according to claim 1, wherein the metal powder is copper or copper-based alloy powder, and the metal coating molybdenum disulfide is copper or copper-based alloy.
JP12075179A 1979-09-21 1979-09-21 thermal spray material Expired JPS6051549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12075179A JPS6051549B2 (en) 1979-09-21 1979-09-21 thermal spray material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12075179A JPS6051549B2 (en) 1979-09-21 1979-09-21 thermal spray material

Publications (2)

Publication Number Publication Date
JPS5644762A JPS5644762A (en) 1981-04-24
JPS6051549B2 true JPS6051549B2 (en) 1985-11-14

Family

ID=14794078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12075179A Expired JPS6051549B2 (en) 1979-09-21 1979-09-21 thermal spray material

Country Status (1)

Country Link
JP (1) JPS6051549B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5549161A (en) * 1978-10-06 1980-04-09 Hitachi Ltd Centrifugal type contact apparatus
JPS58164785A (en) * 1982-03-25 1983-09-29 Showa Denko Kk Wear resistant composite powder for spraying
JP4724915B2 (en) * 1999-11-02 2011-07-13 株式会社豊田中央研究所 Thermal spray material
US7094474B2 (en) 2004-06-17 2006-08-22 Caterpillar, Inc. Composite powder and gall-resistant coating
JP2007023352A (en) * 2005-07-19 2007-02-01 Ishikawajima Harima Heavy Ind Co Ltd Film-forming method

Also Published As

Publication number Publication date
JPS5644762A (en) 1981-04-24

Similar Documents

Publication Publication Date Title
US5525246A (en) Sliding-Bearing Material
CN101435381B (en) Piston ring
GB2305939A (en) Thermally depositing a composite coating based on iron oxide
JPH08199327A (en) Swash plate for swash plate type compressor
JP4369757B2 (en) Thermal spray piston ring
JP2008280613A (en) Copper based sintered contact material and double-layered sintered contact member
CN101198712B (en) Method for coating a cylinder sleeve
JP2002506926A (en) Formation of sliding bearing lining
JP2007016288A (en) Method for manufacturing sliding member coated with bearing material and sliding member coated with bearing material
CN114930040A (en) Method for producing a sliding layer of a sliding bearing using an alloy and/or a material
KR100347825B1 (en) Swash plate of swash plate compressor
JPS6051549B2 (en) thermal spray material
CN112662977B (en) Preparation method of thermal spraying Ni-based alloy self-lubricating coating
JP3207863B2 (en) Aluminum alloy sliding material
JP2011112211A (en) Disk rotor for brake
JPS61163259A (en) Thermal spraying material
JPS60255963A (en) Thermal spraying material and its manufacture
JPS59133360A (en) Melt-spraying material
EP1013782A1 (en) Abradable material
JPH0564706B2 (en)
JPS5854189B2 (en) thermal spray powder material
JPS63227757A (en) Method for thermally spraying wear-resistant ceramics
JPH0258345B2 (en)
JP3262365B2 (en) Manufacturing method of brake disc
CN114540739A (en) Preparation method of coating for enhancing boundary lubrication performance of intermetallic compound