JPH0418014B2 - - Google Patents

Info

Publication number
JPH0418014B2
JPH0418014B2 JP62147011A JP14701187A JPH0418014B2 JP H0418014 B2 JPH0418014 B2 JP H0418014B2 JP 62147011 A JP62147011 A JP 62147011A JP 14701187 A JP14701187 A JP 14701187A JP H0418014 B2 JPH0418014 B2 JP H0418014B2
Authority
JP
Japan
Prior art keywords
less
steel
ultra
temperature
continuous annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62147011A
Other languages
Japanese (ja)
Other versions
JPS63310924A (en
Inventor
Masatoshi Shinozaki
Susumu Okada
Yoshihiro Matsumoto
Takashi Obara
Kozo Sumyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP14701187A priority Critical patent/JPS63310924A/en
Publication of JPS63310924A publication Critical patent/JPS63310924A/en
Publication of JPH0418014B2 publication Critical patent/JPH0418014B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は、面内異方性の小さい極薄鋼板の製
造方法に関し、とくに良好な加工性が要求される
複合鋼板用素材としての用途に用いて好適なもの
である。 (従来の技術) 加工性、とくに深絞り性を改善した冷延鋼板の
主たる用途は自動車の内・外装板である。従つて
従来、自動車用部品としてプレス成形される場合
を念頭において主に材料開発が進められてきた。
とくに自動車用鋼板の場合、多種多用のデザイン
に適応する必要上、深絞り性に対応するr値の改
善、あるいは形状凍結性の観点から低降伏応力
化、高加工硬化率化などが重要視される。 ところで近年、鋼板の間に樹脂がサンドイツチ
されたいわゆる複合鋼板が自動車にも適用される
ようになつてきたが、かような複合鋼板において
も当然のことながら優れた成形加工性が要求され
る。 (発明が解決しようとする問題点) かような鋼板の素材としては0.15〜0.60mm厚の
極薄鋼板が多用されるが、その場合、従来の鋼成
分および従来の製造方法で単に薄い鋼板を製造し
た場合には次に示すような問題があつた。 すなわち、 (イ) 冷延圧下率が過度に高くなるため、r値は低
く、一方r値の異方性を示すΔrは逆に高くな
り、そのため絞り加工後にイヤリングが発生す
る、 (ロ) 素材鋼板が薄いため、伸びが小さく、成形時
に割れが発生しやすい、 (ハ) 伸びを改善するために高温焼鈍を施したもの
はY.S.が低くなり、かじりによつて縦壁に割れ
が発生しやすい、 (ニ) またCALにおいて薄物軟質のため破断しや
すい、 などである。 この発明は、上記の問題を有利に解決するもの
で、鋼板成分の調整と製造工程の適切な制御との
組合わせによつて、Y.S.が低すぎず、Elが大き
く、しかもr値が高くかつΔrの小さい極薄冷延
鋼板を製造することができる有利な方法を提案す
ることを目的とする。 (問題点を解決するための手段) さて発明者らは、上記の問題を解決すべく鋭意
研究を重ねた結果、以下に述べる知見を得た。 すなわち (1) r値とElを改善するにはC量の低減が有効で
あり、かかる極低炭素鋼板には材質改善のため
通常TiやNbの微量添加が有効であることは知
られているが、さらに微量のBを添加すること
により、r値が低下することなく、Δrが低下
する。 (2) また最終板厚を薄くするために冷間圧下率を
高くすると再結晶温度が低下し、焼鈍温度を従
来採用されている800〜900℃にするとΔrが高
くなつてしまうけれども、Ti−Nb−B添加極
低炭素鋼板では90%程度と非常に高い冷延圧下
率をとるほうがΔrが小さくなる。 (3) さらに本成分系では薄物の連続焼鈍時の板破
断が大いに減少する。 この発明は、上記の知見に立脚するものであ
る。すなわちこの発明は C:0.004wt%以下(以下単に%で示す)、 Si:0.1%以下、 Mn:0.5%未満、 P:0.025%以下、 S:0.025%以下、 N:0.006%以下、 Al:0.001〜0.100%、 Ti:0.01〜0.10%でかつ Ti≧{(48/12)C+(48/14)N}、 Nb:0.003〜0.03%および B:0.0001〜0.0010% を含み、残部は不可避不純物を除き実質的にFe
の組成になる鋼板を、熱延仕上げ温度:850〜900
℃、巻取り温度:300〜600℃の条件下に熱間圧延
したのち、冷間圧延、連続焼鈍ついでスキンパス
圧延を施して0.15〜0.60mm厚の極薄鋼板を製造す
るに当り、冷延圧下率を85〜95%とすると共に連
続焼鈍温度を650〜750℃とすることからなる面内
異方性の小さい極薄鋼板の製造方法である。 以下この発明を具体的に説明する。 まず、この発明における鋼成分を上記の範囲に
限定した理由について説明する。 C: 鋼を軟質化させ、Elとr値を改善するにはC含
有量を下げることが有効である。C含有量が
0.004%を超えると材質が大幅に劣化しはじめる
ので、上限を0.004%とした。 Si,Mn: これらはいずれも脱酸剤として有効に寄与する
が、過剰に含有されると延性を害する原因ともな
るので、それぞれ0.1%以下、0.5%未満に限定し
た。 P,S: いずれも不純物元素であり、極力低減させるこ
とが望ましいが、ともに0.025%以下程度なら許
容できる。 Al: Alは製鋼時の脱酸剤として、また固溶Nを
AlNとして固定する元素として有用であり、少
なくとも0.001%の添加は必要である。しかしな
がらあまりに多量の添加は溶鋼コストを上昇させ
ることから上限は0.100%とした。 N: NはCと同様、結晶粒を微細にし加工性を低下
させる他、耐時効性も劣化させてしまうことか
ら、Nの含有量は0.006%以下とする必要がある。 Ti: C,N,S等の固溶成分の固定に有用であるば
かりでなく、これら元素との析出物形成による材
質改善の面でも効果がある。しかしながら含有量
が0.01%に満たないとその添加効果に乏しく、一
方0.10%より多く添加しても効果の増加が望めな
いので、含有量は0.01〜0.10%の範囲に限定し
た。 またこの発明では、このTiでCとNとを完全
に固定できるように、TiはTi≧{(48/12)C+
(48/14)N}の範囲で添加するものとした。 Nb: Nbは、Tiとの複合添加により、高El、高r値
を確保した上で、Y.P.を高めるのに有効に寄与
する。その効果は0.003%以上で現れるが、0.030
%を超えるとY.P.の過度の上昇とElの低下を招
くため、Nb含有量は0.003〜0.030%の範囲に限定
した。 B: Bの微量の添加はr値の低下を招くことなしに
Δrの低下、すなわちr値の異方性の改善に有効
に寄与するが、あまりに多量に添加すると材質の
劣化をもたらす。そこでBは上述した効果が有効
に発現する0.0001〜0.001%の範囲で添加するも
のとした。 次にこの発明に従う製造工程条件の限定理由に
ついて説明する。 熱延仕上げ温度: 熱延仕上げ温度が、850℃未満になると歪の残
留によるr値の劣化を招き、一方900℃を超える
と結晶粒の粗大化によつてやはりr値の劣化を招
くため、熱延仕上げ温度は850〜900℃の範囲に限
定した。 巻取り温度: 高C.T.による過度の軟質化および熱延スケー
ルの増加を避けるためには600℃以下とする必要
があるが、冷却に要する時間や能力あるいは巻き
取つたコイルの形状を考慮してその下限は300℃
とした。 冷延圧下率:85〜95% 第1図に、Δrに及ぼす冷延圧下率の影響につ
いて調べた結果を示す。供試材としては、0.001
%C−0.049%Ti−0.005%Nb−0.0009%B−
BalFe(図中○印)、0.002%C−0.015%Ti−
balFe(同□印)、0.005%C−balFe(同△印)の3
成分を採用し、それぞれ次の条件で作成した。 熱延仕上げ温度:870℃ 巻取り温度:550℃ 冷延圧下率:70〜98% 連続焼鈍温度:700℃,60s スキンパス圧延:0.5% 同図より明らかなように、従来の極低炭素鋼や
Ti添加極低炭素鋼では、圧下率の上昇に伴つて
Δrが大きくなるのに対し、この発明に従うTi−
Nb−B添加極低炭素鋼は、圧下率が大きくなる
につれて、とくに圧下率:85%以上の範囲におい
て小さいΔr値を示す。しかしながら95%を超え
るような超高圧下率では冷延設備の負担が大きく
なるので上限は95%とした。 連続焼鈍温度:650〜750℃ 第2図に、0.001%C−0.049%Ti−0.005%Nb
−0.0009%B−BalFeの組成になる鋼スラブを、
熱間仕上げ温度:880℃、巻取り温度:500℃で熱
間圧延し、ついで75%および90%の圧下率でそれ
ぞれ圧延し、ついで600〜820℃の温度で連続焼鈍
したのち、スキンパス圧延を施して得た極薄鋼板
の材質に及ぼす連続焼鈍温度の影響について調べ
た結果を示す。 同図より明らかなように、材質と連続焼鈍温度
との関係は、通常の冷延圧下率(75%)の場合と
比べて90%の高圧下率では低焼鈍温度側に移行
し、650℃以上で優れた強度と延性が得られる。
しかしながらΔrは750℃を超えると0.6以上となつ
て面内異方性の劣化を招く。以上の結果から連続
焼鈍温度の範囲は650〜750℃の範囲に限定した。 なお製造工程の最終段階であるスキンパス圧延
は通常の方法、条件すなわち板厚%以下程度でよ
い。 以上に述べた成分調整と製造工程により、材質
の優れた複合鋼板用極薄鋼板が得られるのであ
る。 なおこの種の軟質極薄鋼板では、従来より連続
焼鈍時の板破断、とくに入側でのシーム溶接後の
溶接部ネツキングに起因する破断が問題となつて
いた。しかしながら発明成分鋼においては溶接部
のネツキングが非常に少ないことも大きな利点で
ある。表1に、板厚0.2mmの冷延鋼板を連続焼鈍
炉側にてナローラツプシーム溶接後、実験的に通
常より過大の張力を板にかけて通板した時のネツ
キング発生状況について調べた結果を示す。 同表より明らかなように、Ti−Nb−B添加鋼
はネツキングの発生が極めて少ないが、この理由
は溶接可能範囲が広くかつ溶接部の軟化が小さい
ためと考えられる。
(Industrial Application Field) The present invention relates to a method for manufacturing ultra-thin steel sheets with small in-plane anisotropy, and is particularly suitable for use as a material for composite steel sheets that require good workability. . (Prior Art) Cold-rolled steel sheets with improved workability, especially deep drawability, are mainly used as interior and exterior panels for automobiles. Therefore, material development has been carried out mainly with the use of press molding as automobile parts in mind.
Particularly in the case of steel sheets for automobiles, it is necessary to adapt them to a wide variety of designs, so there is emphasis on improving the r value to support deep drawability, or lowering yield stress and increasing work hardening rates from the perspective of shape fixability. Ru. By the way, in recent years, so-called composite steel plates in which resin is sandwiched between steel plates have come to be used in automobiles, and as a matter of course, such composite steel plates are also required to have excellent formability. (Problem to be solved by the invention) Ultra-thin steel plates with a thickness of 0.15 to 0.60 mm are often used as materials for such steel plates, but in that case, it is difficult to simply make thin steel plates using conventional steel compositions and conventional manufacturing methods. When manufactured, the following problems occurred. That is, (a) the cold rolling reduction ratio becomes excessively high, so the r value is low; on the other hand, Δr, which indicates the anisotropy of the r value, becomes high, which causes earrings after drawing; (b) the material Because the steel plate is thin, it has low elongation and is prone to cracking during forming. (c) Products that are annealed at high temperatures to improve elongation have a low YS and are prone to cracking on vertical walls due to galling. , (d) In addition, CAL is easy to break because it is thin and soft. This invention advantageously solves the above problems, and by combining the adjustment of steel plate components and appropriate control of the manufacturing process, YS is not too low, El is large, and r value is high. The purpose of this invention is to propose an advantageous method that can produce ultrathin cold-rolled steel sheets with a small Δr. (Means for Solving the Problems) As a result of extensive research to solve the above problems, the inventors have obtained the knowledge described below. In other words, (1) Reducing the amount of C is effective in improving the r value and El, and it is known that adding small amounts of Ti or Nb is usually effective in improving the material quality of such ultra-low carbon steel sheets. However, by adding a small amount of B, Δr is reduced without reducing the r value. (2) In addition, if the cold reduction rate is increased to reduce the final plate thickness, the recrystallization temperature will decrease, and if the annealing temperature is set to 800 to 900℃, which is the conventional method, Δr will increase. For Nb-B-added ultra-low carbon steel sheets, Δr becomes smaller when a very high cold rolling reduction of about 90% is used. (3) Furthermore, with this component system, plate breakage during continuous annealing of thin materials is greatly reduced. This invention is based on the above knowledge. That is, this invention has the following properties: C: 0.004wt% or less (hereinafter simply expressed as %), Si: 0.1% or less, Mn: less than 0.5%, P: 0.025% or less, S: 0.025% or less, N: 0.006% or less, Al: 0.001 to 0.100%, Ti: 0.01 to 0.10%, and contains Ti≧{(48/12)C+(48/14)N}, Nb: 0.003 to 0.03%, and B: 0.0001 to 0.0010%, the remainder being unavoidable impurities. Substantially Fe except
Hot-rolled steel plate with composition: 850-900
°C, coiling temperature: After hot rolling under the conditions of 300 to 600 °C, cold rolling, continuous annealing, and skin pass rolling are performed to produce ultra-thin steel sheets with a thickness of 0.15 to 0.60 mm. This is a method for producing ultra-thin steel sheets with small in-plane anisotropy, which comprises setting the annealing ratio to 85 to 95% and continuous annealing temperature to 650 to 750°C. This invention will be specifically explained below. First, the reason why the steel components in this invention are limited to the above range will be explained. C: Lowering the C content is effective in softening the steel and improving El and r values. C content is
If the content exceeds 0.004%, the material begins to deteriorate significantly, so the upper limit was set at 0.004%. Si, Mn: Both of these contribute effectively as deoxidizing agents, but if contained in excess, they may impair ductility, so they are limited to 0.1% or less and less than 0.5%, respectively. P, S: Both are impurity elements, and it is desirable to reduce them as much as possible, but both are acceptable if they are about 0.025% or less. Al: Al is used as a deoxidizing agent during steel manufacturing and as a solid solution N.
It is useful as an element to be fixed as AlN, and it is necessary to add at least 0.001%. However, adding too much increases the cost of molten steel, so the upper limit was set at 0.100%. N: Like C, N makes crystal grains finer and reduces workability, as well as deteriorating aging resistance, so the content of N needs to be 0.006% or less. Ti: Not only is Ti useful for fixing solid solution components such as C, N, and S, but it is also effective in improving material quality by forming precipitates with these elements. However, if the content is less than 0.01%, the effect of adding it will be poor, and if it is added more than 0.10%, no increase in the effect can be expected, so the content was limited to a range of 0.01 to 0.10%. In addition, in this invention, Ti is Ti≧{(48/12)C+ so that C and N can be completely fixed with this Ti.
(48/14)N}. Nb: By adding Nb in combination with Ti, it effectively contributes to increasing YP while ensuring high El and high r value. The effect appears above 0.003%, but 0.030
Nb content was limited to a range of 0.003 to 0.030% because exceeding % would lead to an excessive increase in YP and decrease in El. B: Addition of a small amount of B effectively contributes to reducing Δr, that is, improving the anisotropy of r value, without causing a decrease in r value, but adding too much B causes deterioration of the material. Therefore, B was added in a range of 0.0001 to 0.001% so that the above-mentioned effects are effectively exhibited. Next, the reasons for limiting the manufacturing process conditions according to the present invention will be explained. Hot rolling finishing temperature: If the hot rolling finishing temperature is less than 850°C, the r value will deteriorate due to residual strain, while if it exceeds 900°C, the r value will also deteriorate due to coarsening of the crystal grains. The hot rolling finishing temperature was limited to a range of 850 to 900°C. Coiling temperature: In order to avoid excessive softening and increase in hot-roll scale due to high CT, it is necessary to keep the temperature below 600°C, but the temperature should be set in consideration of the time and capacity required for cooling and the shape of the coil to be wound. Lower limit is 300℃
And so. Cold rolling reduction ratio: 85 to 95% Figure 1 shows the results of an investigation into the influence of the cold rolling reduction ratio on Δr. As a sample material, 0.001
%C-0.049%Ti-0.005%Nb-0.0009%B-
BalFe (○ mark in the figure), 0.002%C-0.015%Ti-
3: balFe (same □ mark), 0.005%C-balFe (same △ mark)
Each component was used and prepared under the following conditions. Hot rolling finishing temperature: 870℃ Coiling temperature: 550℃ Cold rolling reduction: 70-98% Continuous annealing temperature: 700℃, 60s Skin pass rolling: 0.5% As is clear from the figure, conventional ultra-low carbon steel
In Ti-added ultra-low carbon steel, Δr increases as the rolling reduction increases;
Nb-B-added ultra-low carbon steel exhibits a small Δr value as the rolling reduction increases, particularly in the range of rolling reduction of 85% or more. However, an ultra-high reduction rate exceeding 95% places a heavy burden on the cold rolling equipment, so the upper limit was set at 95%. Continuous annealing temperature: 650-750℃ Figure 2 shows 0.001%C-0.049%Ti-0.005%Nb
A steel slab with a composition of -0.0009%B-BalFe,
Hot rolling at a hot finishing temperature of 880°C and a winding temperature of 500°C, followed by rolling at rolling reductions of 75% and 90%, followed by continuous annealing at a temperature of 600 to 820°C, followed by skin pass rolling. The results of an investigation into the effect of continuous annealing temperature on the material properties of the ultra-thin steel sheets obtained by this process are shown below. As is clear from the figure, the relationship between the material and the continuous annealing temperature shifts to a lower annealing temperature at a high rolling reduction of 90% compared to the normal cold rolling reduction (75%), and at 650℃ With the above, excellent strength and ductility can be obtained.
However, when Δr exceeds 750°C, it becomes 0.6 or more, leading to deterioration of in-plane anisotropy. Based on the above results, the continuous annealing temperature range was limited to 650 to 750°C. Note that skin pass rolling, which is the final stage of the manufacturing process, may be carried out using normal methods and conditions, that is, approximately % of the plate thickness or less. Through the component adjustment and manufacturing process described above, an ultra-thin steel sheet for composite steel sheets with excellent material quality can be obtained. It should be noted that this type of soft ultra-thin steel plate has conventionally had a problem of plate breakage during continuous annealing, particularly breakage due to weld netting after seam welding on the entry side. However, another major advantage of the invention component steel is that there is very little netting in the weld. Table 1 shows the results of an investigation into the occurrence of netting when cold-rolled steel plates with a thickness of 0.2 mm were subjected to narrow seam welding in a continuous annealing furnace and then subjected to an experimentally higher tension than normal. show. As is clear from the table, the Ti-Nb-B additive steel has extremely low occurrence of necking, which is thought to be because the weldable range is wide and the softening of the welded part is small.

【表】 (実施例) 表2に示した種々の成分組成になる溶鋼を連続
鋳造し、1150℃に加熱した後、仕上げ温度:860
〜900℃、巻取り温度:約550℃で熱間圧延し、つ
いで表3に示す圧下率および温度でそれぞれ冷間
圧延および連続焼鈍を行つたのち0.4%のスキン
パス圧延を施した。 得られた薄板の板厚ならびに材質について調べ
た結果は表3に示したとおりである。
[Table] (Example) Molten steel having various compositions shown in Table 2 was continuously cast, heated to 1150℃, and finished at a temperature of 860℃.
Hot rolling was carried out at ~900°C and a winding temperature of about 550°C, followed by cold rolling and continuous annealing at the rolling reduction and temperature shown in Table 3, respectively, followed by 0.4% skin pass rolling. Table 3 shows the results of examining the thickness and material of the obtained thin plate.

【表】【table】

【表】【table】

【表】 この発明の組成および製造工程条件を満足する
(No.1〜3)においてはいずれも、Y.S.19Kg
f/mm2,T.S.30Kgf/mm2、El45%、r2.0の
優れた材質が得られており、かつΔr0.4と内面
異方性をほとんど示していない。 これに対し成分組成は好適でも製造工程条件が
適正範囲を外れているもの(No.4〜6)は、Y.S.
が低く、かつΔrが0.8を超えていた。また比較鋼
の組成を有するものでは製造工程条件がこの発明
の適正範囲内であるかないかの如何を問わず、
Δr値が0.7を超えており、この発明で所期したほ
ど良好な特性は得られていない。 上述したとおり、この発明で規定する組成と製
造条件を併せて満足する鋼のみが優れた特性を示
す極薄鋼板となつている。なおこれらの鋼板を貼
り合わせて制振鋼板となし、エリクセン試験機に
より円筒深絞り試験を実施したところ、いずれも
限界絞り比が2.0以上のすぐれた値を呈し、また
イヤリングはほとんど発生しなかつた。 (発明の効果) かくしてこの発明によれば、成形加工性に優れ
かつ面内異方性が小さく、しかも連続焼鈍時にお
ける破断もない極薄鋼板を得ることができ、従つ
てこの発明鋼板を制振鋼板や軽量鋼板用の素材と
して使用し、プラスチツクなどと貼り合わせて製
造した複合鋼板は優れた成形性を示し、自動車業
界その他にもたらす効果は大きい。 さらにこの発明鋼板は、複合鋼板素材として使
用される場合に限らず、単独で使用される場合に
おいても優れた成形性を有することから、表面処
理鋼板用原板あるいは裸のままで多方面に使用す
ることも可能である。
[Table] In all cases (Nos. 1 to 3) that satisfy the composition and manufacturing process conditions of this invention, YS19Kg
An excellent material with f/mm 2 , TS30Kgf/mm 2 , El 45%, and r2.0 was obtained, and Δr0.4, showing almost no internal anisotropy. On the other hand, those whose component composition is suitable but whose manufacturing process conditions are outside the appropriate range (Nos. 4 to 6) are YS
was low, and Δr exceeded 0.8. In addition, for those having the composition of the comparative steel, regardless of whether the manufacturing process conditions are within the appropriate range of this invention or not,
The Δr value exceeds 0.7, and characteristics as good as expected were not obtained in this invention. As described above, only steel that satisfies both the composition and manufacturing conditions specified in the present invention is an ultra-thin steel sheet that exhibits excellent properties. When these steel plates were laminated together to form a damping steel plate and a cylindrical deep drawing test was conducted using an Erichsen testing machine, all of them exhibited excellent critical drawing ratios of 2.0 or higher, and almost no earring occurred. . (Effects of the Invention) Thus, according to the present invention, it is possible to obtain an ultra-thin steel plate that has excellent formability, low in-plane anisotropy, and does not break during continuous annealing. Composite steel plates, which are used as materials for shaken steel plates and lightweight steel plates and are manufactured by laminating them with plastics, exhibit excellent formability and have a great effect on the automobile industry and other industries. Furthermore, the steel sheet of this invention has excellent formability not only when used as a composite steel sheet material but also when used alone, so it can be used in many ways as an original sheet for surface-treated steel sheets or as a bare sheet. It is also possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は冷延圧下率とΔrとの関係を示したグ
ラフ、第2図は、連続焼鈍温度と機械的諸特性と
の関係を示したグラフである。
FIG. 1 is a graph showing the relationship between cold rolling reduction and Δr, and FIG. 2 is a graph showing the relationship between continuous annealing temperature and various mechanical properties.

Claims (1)

【特許請求の範囲】 1 C:0.004wt%以下、 Si:0.1wt%以下、 Mn:0.5wt%未満、 P:0.025wt%以下、 S:0.025wt%以下、 N:0.006wt%以下、 Al:0.001〜0.100wt%、 Ti:0.01〜0.10wt%でかつ Ti≧{(48/12)C+(48/14)N}、 Nb:0.003〜0.03wt%および B:0.0001〜0.0010wt% を含み、残部は不可避不純物を除き実質的にFe
の組成になる鋼板を、熱延仕上げ温度:850〜900
℃、巻取り温度:300〜600℃の条件下に熱間圧延
したのち、冷間圧延、連続焼鈍ついでスキンパス
圧延を施して0.15〜0.60mm厚の極薄鋼板を製造す
るに当り、 冷延圧下率を85〜95%とすると共に連続焼鈍温
度を650〜750℃とすることを特徴とする面内異方
性の小さい極薄鋼板の製造方法。
[Claims] 1 C: 0.004wt% or less, Si: 0.1wt% or less, Mn: less than 0.5wt%, P: 0.025wt% or less, S: 0.025wt% or less, N: 0.006wt% or less, Al : 0.001 to 0.100wt%, Ti: 0.01 to 0.10wt%, and includes Ti≧{(48/12)C+(48/14)N}, Nb: 0.003 to 0.03wt%, and B: 0.0001 to 0.0010wt%. , the remainder is essentially Fe, excluding unavoidable impurities.
Hot-rolled steel plate with composition: 850-900
℃, coiling temperature: After hot rolling under the conditions of 300 to 600℃, cold rolling, continuous annealing, and skin pass rolling are performed to produce ultra-thin steel sheets with a thickness of 0.15 to 0.60 mm. A method for producing an ultra-thin steel sheet with small in-plane anisotropy, characterized in that the annealing rate is 85 to 95% and the continuous annealing temperature is 650 to 750°C.
JP14701187A 1987-06-15 1987-06-15 Production of extra thin steel plate having small in-plane anisotropy Granted JPS63310924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14701187A JPS63310924A (en) 1987-06-15 1987-06-15 Production of extra thin steel plate having small in-plane anisotropy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14701187A JPS63310924A (en) 1987-06-15 1987-06-15 Production of extra thin steel plate having small in-plane anisotropy

Publications (2)

Publication Number Publication Date
JPS63310924A JPS63310924A (en) 1988-12-19
JPH0418014B2 true JPH0418014B2 (en) 1992-03-26

Family

ID=15420531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14701187A Granted JPS63310924A (en) 1987-06-15 1987-06-15 Production of extra thin steel plate having small in-plane anisotropy

Country Status (1)

Country Link
JP (1) JPS63310924A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08246060A (en) * 1995-03-10 1996-09-24 Kawasaki Steel Corp Production of steel sheet for can
KR100242404B1 (en) * 1995-08-28 2000-03-02 에모토 간지 Organic film-coated zinc plated steel sheet
WO2007111188A1 (en) 2006-03-16 2007-10-04 Jfe Steel Corporation Cold-rolled steel sheet, process for producing the same, and cell and process for producing the same
EP2103703A4 (en) 2006-12-20 2010-06-16 Jfe Steel Corp Cold-rolled steel sheet and process for producing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5974233A (en) * 1982-10-21 1984-04-26 Nippon Steel Corp Production of cold-rolled steel sheet for press forming
JPS61113724A (en) * 1984-11-08 1986-05-31 Nippon Steel Corp Manufacture of cold rolled steel sheet extremely superior in press formability
JPS62287018A (en) * 1986-06-06 1987-12-12 Nippon Steel Corp Production of high-strength cold rolled steel sheet having excellent deep drawability
JPS63100134A (en) * 1986-10-15 1988-05-02 Kawasaki Steel Corp Manufacture of cold rolled steel sheet for extra deep drawing of thick product
JPS63103025A (en) * 1986-10-21 1988-05-07 Kawasaki Steel Corp Manufacture of cold rolled steel sheet for deep drawing from cast thin strip
JPS63243226A (en) * 1987-03-31 1988-10-11 Kawasaki Steel Corp Production of cold rolled steel sheet for ultra-deep drawing having excellent resistance to brittleness by secondary operation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5974233A (en) * 1982-10-21 1984-04-26 Nippon Steel Corp Production of cold-rolled steel sheet for press forming
JPS61113724A (en) * 1984-11-08 1986-05-31 Nippon Steel Corp Manufacture of cold rolled steel sheet extremely superior in press formability
JPS62287018A (en) * 1986-06-06 1987-12-12 Nippon Steel Corp Production of high-strength cold rolled steel sheet having excellent deep drawability
JPS63100134A (en) * 1986-10-15 1988-05-02 Kawasaki Steel Corp Manufacture of cold rolled steel sheet for extra deep drawing of thick product
JPS63103025A (en) * 1986-10-21 1988-05-07 Kawasaki Steel Corp Manufacture of cold rolled steel sheet for deep drawing from cast thin strip
JPS63243226A (en) * 1987-03-31 1988-10-11 Kawasaki Steel Corp Production of cold rolled steel sheet for ultra-deep drawing having excellent resistance to brittleness by secondary operation

Also Published As

Publication number Publication date
JPS63310924A (en) 1988-12-19

Similar Documents

Publication Publication Date Title
EP0672758A1 (en) Method of manufacturing canning steel sheet with non-aging property and superior workability
US5582658A (en) High strength steel sheet adapted for press forming and method of producing the same
JPH08295982A (en) Thick steel plate excellent in toughness at low temperature and its production
CN109804092B (en) Cold-rolled steel sheet for flux-cored wire and method for manufacturing same
JP2876968B2 (en) High-strength steel sheet having high ductility and method for producing the same
JPH04337026A (en) Production of hot rolled high strength steel plate excellent in fatigue strength and fatigue crack propagation resistance
JP4193228B2 (en) Steel plate for can and manufacturing method thereof
JPH0559187B2 (en)
JPH0418014B2 (en)
JP3280692B2 (en) Manufacturing method of high strength cold rolled steel sheet for deep drawing
KR102112172B1 (en) Cold-rolled steel sheet for flux cored wire and manufacturing the same
KR102134310B1 (en) Cold-rolled steel sheet for flux cored wire and manufacturing the same
KR101949025B1 (en) Cold rolled steel sheet for flux cored wire and method of manufacturing the same
JPH03170618A (en) Highly efficient production of cold-rolled steel sheet extremely excellent in workability
JPS63317625A (en) Production of extremely low carbon cold-rolled steel sheet having excellent fatigue characteristic in spot welded part
JP2581887B2 (en) High strength cold rolled steel sheet excellent in cold workability and method for producing the same
JP3863803B2 (en) High-strength hot-rolled steel sheet excellent in stretch flangeability and fatigue characteristics and method for producing the same
JP4094498B2 (en) Deep drawing high strength cold-rolled steel sheet and method for producing the same
KR102353730B1 (en) Cold-rolled steel sheet for flux cored wire and manufacturing the same
JP2000256786A (en) Cold rolled steel sheet minimal in inplane anisotropy and excellent in baking hardenability and aging resistance
JP3821073B2 (en) Hot-rolled material for hydroform forming steel pipe and method for producing the same
JPS63317649A (en) Dead-soft carbon cold-rolled steel sheet excellent in spot weldability and its production
JP3238460B2 (en) Manufacturing method of non-aged cold-rolled steel sheet for deep drawing
JPS6369922A (en) Production of extremely thin cold rolled mild steel sheet having excellent ductility and deep drawability by low temperature annealing
JPH0860298A (en) Steel sheet for di can, excellent in necking workability and pressure resisting strength