JP3821073B2 - Hot-rolled material for hydroform forming steel pipe and method for producing the same - Google Patents

Hot-rolled material for hydroform forming steel pipe and method for producing the same Download PDF

Info

Publication number
JP3821073B2
JP3821073B2 JP2002260339A JP2002260339A JP3821073B2 JP 3821073 B2 JP3821073 B2 JP 3821073B2 JP 2002260339 A JP2002260339 A JP 2002260339A JP 2002260339 A JP2002260339 A JP 2002260339A JP 3821073 B2 JP3821073 B2 JP 3821073B2
Authority
JP
Japan
Prior art keywords
less
hot
steel pipe
rolling
rolled material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002260339A
Other languages
Japanese (ja)
Other versions
JP2004099935A (en
Inventor
力 上
慎 松盛
俊吾 田中
裕二 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002260339A priority Critical patent/JP3821073B2/en
Publication of JP2004099935A publication Critical patent/JP2004099935A/en
Application granted granted Critical
Publication of JP3821073B2 publication Critical patent/JP3821073B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ハイドロフォーム成形用鋼管の熱延素材およびその製造方法に関する。ここで、熱延素材とは、熱延ままの鋼板、これを焼鈍した鋼板、前二者のいずれかを酸洗した鋼板、この酸洗した鋼板に耐錆性を付与する表面処理を施した鋼板のうちのいずれかを指す。また、表面処理とは、溶融亜鉛メッキまたは電気亜鉛メッキを指す。
【0002】
【従来の技術】
自動車の衝突安全性が強く要求されるようになり、補強強度部材の採用により車体重量が増加する傾向があった。そこで、鋼材の高強度化および部品構造の改良により車体重量の軽量化が図られるようになった。最近では、さらに部品点数の削減などの要求からハイドロフォーム成形などの新しい加工方法が取り入れられつつある。このハイドロフォーム成形は、コスト削減や設計の自由度が広がるなどの利点が期待されている。
【0003】
このハイドロフォーム成形に適した材料が必要となり、強軸押しモードのハイドロフォーム成形が実施される場合は、鋼管の長手方向のr値が高いことが要求される。また、管端固定モードではn値が高いことが要求される。しかしながら、自動車の足回り部品などに用いられる厚肉の熱延鋼板では、圧延方向のr値(rL )は、圧延方向から45度方向のr値(rD )および圧延方向から90度方向のr値(rC )に比較し低く、L方向、D方向、C方向(圧延方向から0度、45度、90度)の順に並べると、逆V字型の異方性を示す。
【0004】
なお、特許文献1では、特定化学組成を有し引張強度=320 〜600MPa、rL ≧1.3 になる高強度冷延鋼板およびこれを素材とした鋼管が提案されている。
【0005】
【特許文献1】
特開2001−279330号公報
【0006】
【発明が解決しようとする課題】
しかし、ハイドロフォーム成形用鋼管の素材として、要求される板厚は1.4 mm以上の厚物材が多く、熱延鋼板を適用できれば冷延鋼板の場合よりもさらにコストを削減することができる。既存の熱延鋼板はrL が低く、かつΔr(=(rL +rC )/2−rD )も大きいので、とくにrL を向上させることが必要である。r値異方性を低減させることにより鋼管長手方向のr値を高めることができる。また、実際のハイドロフォーム加工では、強軸押しモードだけではなく、管端固定モードの成形加工要素も実施されるため、n値も要求される。
【0007】
本発明は、これらの点に鑑み、rL が高く、かつΔrの絶対値が小さくすなわち異方性が小さく、加えてn値も優れた、ハイドロフォーム成形用鋼管の熱延素材およびその製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、成形性に優れたハイドロフォーム用鋼管を得るため、熱延素材のrL を高め、Δrの絶対値を小さくし、n値を高くする手段を鋭意検討した結果完成されたものであり、その要旨は以下のとおりである。
(1)質量% で、C:0.05〜0.20% 、Si:0.001 〜0.80% 、Mn:0.30〜1.8%、S:0.01% 以下、P:0.02% 以下、Al:0.01〜0.10% 、O:0.005%以下、N:0.01% 以下を含有し、残部Feおよび不可避的不純物からなり、引張強度が370 〜610 MPa 、rL が0.85以上、|Δr|が0.10以下であることを特徴とするハイドロフォーム成形用鋼管の熱延素材。
【0009】
(2)さらに、質量% で、Cu:0.01〜0.3%、Ni:0.01〜0.3%、Mo:0.01〜0.2%、V:0.01〜0.05% 、Ca:0.0015〜0.0040% のうち1種または2種以上を含有することを特徴とする(1)記載のハイドロフォーム成形用鋼管の熱延素材。
(3)n値が0.18以上であることを特徴とする(1)または(2)に記載のハイドロフォーム成形用鋼管の熱延素材。
【0010】
(4)質量% で、C:0.05〜0.20% 、Si:0.001 〜0.80% 、Mn:0.30〜1.8%、S:0.01% 以下、P:0.02% 以下、Al:0.01〜0.10% 、O:0.005%以下、N:0.01% 以下を含有し、あるいはさらに、Cu:0.01〜0.3%、Ni:0.01〜0.3%、Mo:0.01〜0.2%、V:0.01〜0.05% 、Ca:0.0015〜0.0040% のうち1種または2種以上を含有し、残部Feおよび不可避的不純物からなるスラブを、1000℃以上に加熱し、次いで熱間圧延する際、仕上圧延後段の合計圧下率を75% 以上、仕上圧延終了温度を下記A3 (℃)+50℃以上とし、仕上圧延終了から1秒以上放冷後、冷却速度35℃/s以下で強制冷却し巻き取ることを特徴とするハイドロフォーム成形用鋼管の熱延素材の製造方法。
【0011】

3 =910-310*C-80*Mn+40*Si-20*Cu-50*Ni-80*Mo+100*V
右辺の元素記号=同号元素の鋼中成分含有量(質量% )、*=積演算子
(5)巻き取り温度を700 ℃以下とすることを特徴とする(4)記載のハイドロフォーム成形用鋼管の熱延素材の製造方法。
【0012】
【発明の実施の形態】
以下、本発明について詳細に説明する。
まず、化学組成の限定理由を述べる。
C:0.05〜0.20%
370MPa以上の引張強度を得るためにはC量を0.05% 以上とする必要がある。これ未満では強度を確保するのが難しい。一方、C量が0.20% を超えると溶接性およびr値の低下が顕著になるので0.20% 以下とした。
【0013】
Si:0.001 〜0.80%
Siは固溶強化により鋼強度を高める働きがあり、所望の引張強度に応じて添加する。Si量が0.001%未満となるように添加するのは製鋼技術上困難であるため0.001%以上とした。一方、Si量が0.80% を超えると融点が低いスケール(ファイヤライトなど)が形成しやすく、表面外観を損なう虞があるので0.80% 以下とした。なお、好ましくは0.50% 以下である。
【0014】
Mn:0.30〜1.8%
Mnは強度を増加させるのに有効な固溶強化元素であり、所望の引張強度に応じて添加量を変更する。MnS 析出によりSの粒界偏析を防止するためにMn量は0.30% 以上が必要である。一方、Mn量が1.8%を超えると、熱延後に強い変態集合組織が形成し、rL の低下および|Δr|の増大を招くので、1.8%以下とした。好ましくは0.50〜1.0%である。
【0015】
S:0.01% 以下
S量が0.01% を超えると熱間圧延時に粒界割れを引き起こす懸念があるので、0.01% 以下とした。好ましくは0.006%以下である。
P:0.02% 以下
Pは電縫溶接性に悪影響を及ぼし、特に溶接部の疲労強度を低下させる。電縫溶接部の不具合を防止する観点からPは0.02% 以下とする。
【0016】
Al:0.01〜0.10%
Alは、溶製時に脱酸剤として添加するが、脱酸を確実にする観点から、脱酸に消費されてアルミナ系酸化物となって浮上した残りのAlの含有量が0.01% 以上となるよう添加するものとした。一方、Al量が0.10% を超えるような添加では表面性状の不具合を生じる懸念があるので、0.10% 以下とした。
【0017】
O:0.005%以下
鋼中酸化物の増加はハイドロフォーム成形時のバースト発生の原因になる懸念があるため、O量は0.005%以下とした。
N:0.01% 以下
過剰なNは成形性を低下させるため、N量は0.01% 以下とした。なお、r値をさらに良くする観点から、固溶N量が30ppm (質量ppm の意、以下同じ)以下であることが好ましい。
【0018】
本発明の熱延素材は、さらに、必要に応じて、Cu:0.01〜0.3%、Ni:0.01〜0.3%、Mo:0.01〜0.2%、V:0.01〜0.05% 、Ca:0.0015〜0.0040% を含むものであってもよい。Cu、Ni、Mo、Vは高強度化に有効な元素であり、上記の範囲内であればrL を低下させることなく用いることができる。
また、CaはCa硫化物を形成することにより、粗大伸展性向をもつ酸化物系介在物の形成を防止し、溶接部の靭性および強度を改善する効果がある上記範囲で添加することができる。かかるCaの効果は0.0015% 未満では不充分であり、一方、0.0040% 超では前記効果が飽和するばかりでなく加工性を低下させる懸念がある。
【0019】
次に、機械的性質の限定理由を述べる。
本発明の熱延素材では、ハイドロフォーム用鋼管の加工モードが強軸押しモードの場合、特に管軸方向(圧延方向に一致)のr値(熱延素材のrL に対応)が高いことが要求されるため、rL を0.85以上に規制し、かつ異方性をなくすため|Δr|を0.10以下に規制する。これにより、ハイドロフォーム成形性が良くなる。
【0020】
また、実部品では単純な強軸押しモードによる加工以外に管端固定モードでも成形される場合が多いのであるが、本発明では、n値を0.18以上と規制すると、管端固定モードのハイドロフォーム成形性も向上するので好ましい。
なお、本発明の熱延素材では、フェライトの平均結晶粒径が8μm 超のものとすると、r値およびn値がさらに高くなるので、より一層好ましい。
【0021】
本発明でrL 、Δr、あるいはさらにn値を上記のように定めた拠所にした実験とその結果について以下に述べる。
上記本発明範囲の化学組成を有する熱延まま鋼板のうちrL 、Δrおよびn値の異なるものを素材として、肉厚1.6mm ×外径63.5mmの鋼管を電縫溶接法により管軸方向を鋼板圧延方向に一致させて作製し、自由バルジ試験を行なった。自由バルジ試験とは、両端部を金型で拘束し中央部は無拘束とした管にその一端または両端から内圧を加え、強軸押しモードまたは管端固定モードで中央部を拡径させる試験をいう。
【0022】
図1は、自由バルジ試験における限界拡管率LBR (Limiting Buldging Ratio) に及ぼすrL 、Δrの影響を示したものである。ここで、LBR はd/d0-1 (×100%)(ただしd:バーストなしに拡管する最大拡管径、d0:素管径)で定義される。図1より、LBR を高めるためには、単にrL を高めるだけでは不充分で、rL 、Δrを特定範囲すなわちrL ≧0.85かつ|Δr|≦0.10にすることが重要であることが判る。
【0023】
図2は、管端移動を伴わない時の限界拡管率LBR(0)に及ぼすn値、rL の影響を示すもので、これは管端固定モードの成形性を表している。明らかに、n値とrL の双方を高めることによりLBR(0)が増大し、成形性が良くなることが判る。特に、rL ≧0.85、n値≧0.18の範囲では良好である。このように、管端固定モードおよび強軸押しモードという双方の成形モードに対応した鋼管が得られる。
【0024】
引張強度(TS)については、これが370MPa未満では十分な軽量化効果が得られず、一方、610MPa超では延性が低下してハイドロフォーム成形が困難となるので、370 〜610MPaとする。
次に、製造方法について述べる。
スラブの加熱温度は、低すぎると熱延時の変形抵抗が増大したり、初期組織が熱延に継承されるようになるため1000℃以上とする。なお、加熱温度は、高すぎると表面スケール生成量が増加するため1350℃以下とするのが好ましい。
【0025】
本発明において、仕上圧延後段の合計圧下率、仕上圧延終了温度、冷却開始タイミングおよび冷却速度は重要であり、これらの条件を組合わせ制御して初めてrL ≧0.85、|Δr|≦0.10、n≧0.18の熱延鋼板を安定的に製造できる。
仕上圧延後段の合計圧下率:仕上圧延に用いるタンデム圧延機の後段の合計圧下率(=累積圧下率)を75% 以上とする。ここで、後段とは、仕上圧延の全パス数をNとすると、Nが奇数のとき第(N+1)/2パスから最終の第Nパスまでを指し、Nが偶数のとき第N/2パスから最終の第Nパスまでを指す。後段の合計圧下率が75% 未満では、オーステナイト組織の均一化が不充分であり、rL が低下し、|Δr|の増加を招く。
【0026】
仕上圧延終了温度(FDT)と冷却開始タイミング(Cst):FDT を下記A3 (℃)+50℃以上とし、Cst を仕上最終パス終了から1秒以上経過(この間は放冷)後とする必要がある。

3 =910-310*C-80*Mn+40*Si-20*Cu-50*Ni-80*Mo+100*V
右辺の元素記号=同号元素の鋼中成分含有量(質量% )、*=積演算子
これは、FDT をフェライト変態開始温度よりも高め、かつ冷却開始を遅延させることにより、十分に再結晶が進行したオーステナイト組織からフェライト変態させ、変態集合組織の形成を抑える手段であって、これにより、|Δr|の低減化およびrL の増大が具現する。さらに、十分に再結晶が進行したオーステナイト組織からフェライト変態させるので、該変態後のフェライト粒は、平均結晶粒径が8μm 超の比較的粗大な整粒となることから、n値が増大する。
【0027】
冷却速度:熱延後強制冷却(ホットランクーリング)の冷却速度の増加に伴い、平均r値は増加するもののrL は低下し、その結果、例えば図3に示すようにΔrが-0.10 を大きく下回るようになるので、冷却速度を35℃/s以下に制御するものとした。冷却速度が35℃/sを超えると組成的過冷により、フェライト変態核の生成に選択性が生じるため好ましくないと考える。なお、冷却速度が小さすぎるとフェライト粒の異常粒成長による不均一な粗大化が起こり、材質のバラツキが生じる懸念があるので、冷却速度は10℃/s以上とするのが好ましい。
【0028】
巻き取り温度:巻き取り温度が700 ℃を超えると、フェライト粒の異常粒成長による不均一な粗大化が起こり、材質のバラツキが生じる懸念があるので、巻き取り温度は700 ℃以下とするのが好ましい。
【0029】
【実施例】
表1に示す化学組成になる鋼を溶製し、表2に示す熱延条件で圧延した。得られた熱延鋼板(熱延ままの鋼板)の機械的特性を、固溶N量、平均フェライト結晶粒径と併せて表3に示す。熱延鋼板の機械的特性の評価はJIS 5号引張試験片を作製して実施し、r値の測定は10% または15% 引張にて実施した(均一伸びが15% 未満の場合、10% 引張とした)。
【0030】
表3より明らかなとおり、本発明範囲内にある発明例は良好なrL 、Δr、n値を示し、本発明範囲外にある比較例は特性を満足しない。
また、これら熱延鋼板を素材として肉厚1.6mm ×外径63.5mmφ形状の電縫鋼管(素材鋼板の圧延方向が管軸方向に一致)を作製し、自由バルジ試験を行なった。自由バルジ試験における強軸押しモードでの限界拡管率LBR と管端固定モードでのLBR(0)を求め、表3に併記した。発明例は両モードで良好なハイドロフォーム成形性を示した。
【0031】
【表1】

Figure 0003821073
【0032】
【表2】
Figure 0003821073
【0033】
【表3】
Figure 0003821073
【0034】
なお、この実施例では、熱延素材が熱延ままの鋼板である場合を示したが、本発明は、これに限るものではなく、熱延素材が、熱延ままの鋼板を焼鈍した鋼板、この焼鈍した鋼板もしくは熱延ままの鋼板を酸洗した鋼板、この酸洗した鋼板に耐錆性を付与する表面処理を施した鋼板のうちのいずれである場合でも、同様の効果が得られることはいうまでもない。
【0035】
【発明の効果】
本発明によれば、rL が高く、異方性が小さい、加えてn値も優れたハイドロフォーム用鋼管の熱延素材を提供できるようになるという効果を奏する。また、実際のハイドロフォーム加工では強軸押しモードだけではなく管端固定モードの成形加工要素も必要とされるが、本発明の熱延素材は、このような複合成形に適用できる鋼管の安定製造供給を可能にするので、例えば、自動車車体の製造コスト低減および衝突安全性向上に寄与する。
【図面の簡単な説明】
【図1】 LBR に及ぼすrL 、Δrの影響を示す図である。
【図2】 LBR(0)に及ぼすn値、rL の影響を示す図である。
【図3】Δrに及ぼす冷却速度の影響を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hot-rolled material for a steel pipe for hydroforming and a method for producing the same. Here, the hot-rolled material is a hot-rolled steel plate, a steel plate that has been annealed, a steel plate that has been pickled either of the former two, and a surface treatment that imparts rust resistance to the pickled steel plate. It refers to one of the steel plates. The surface treatment refers to hot dip galvanization or electrogalvanization.
[0002]
[Prior art]
There has been a strong demand for collision safety of automobiles, and there has been a tendency for the weight of the vehicle body to increase due to the use of reinforcing members. Therefore, the weight of the vehicle body has been reduced by increasing the strength of the steel material and improving the part structure. Recently, new processing methods such as hydroform molding are being introduced to meet the demand for reducing the number of parts. This hydroform molding is expected to have advantages such as cost reduction and increased design freedom.
[0003]
When a material suitable for this hydroforming is required and hydroforming in the strong axial push mode is performed, the r value in the longitudinal direction of the steel pipe is required to be high. In the tube end fixing mode, a high n value is required. However, in a thick hot-rolled steel sheet used for automobile undercarriage parts, the r value (r L ) in the rolling direction is the r value (r D ) in the 45 ° direction from the rolling direction and the 90 ° direction from the rolling direction. Compared to the r value (r C ) of the film, it is low and compared to the L direction, D direction, and C direction (0 degrees, 45 degrees, 90 degrees from the rolling direction), and exhibits an inverted V-shaped anisotropy.
[0004]
Patent Document 1 proposes a high-strength cold-rolled steel sheet having a specific chemical composition, tensile strength = 320 to 600 MPa, and r L ≧ 1.3, and a steel pipe made from the same.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-279330 [0006]
[Problems to be solved by the invention]
However, as a material for a steel pipe for hydroforming, there are many required thickness materials of 1.4 mm or more. If a hot-rolled steel sheet can be applied, the cost can be further reduced as compared with a cold-rolled steel sheet. Since the existing hot-rolled steel sheet has a low r L and a large Δr (= (r L + r C ) / 2−r D ), it is particularly necessary to improve r L. The r value in the longitudinal direction of the steel pipe can be increased by reducing the r value anisotropy. Further, in actual hydroforming, not only the strong shaft pressing mode but also the forming element in the tube end fixing mode is performed, so an n value is also required.
[0007]
In view of these points, the present invention provides a hot-rolling material for a steel tube for hydroforming, which has a high r L , a small absolute value of Δr, that is, a small anisotropy, and an excellent n value, and a method for producing the same. The purpose is to provide.
[0008]
[Means for Solving the Problems]
The present invention has been completed as a result of intensive investigations on means for increasing the r L of the hot-rolled material, decreasing the absolute value of Δr, and increasing the n value in order to obtain a hydroforming steel pipe excellent in formability. Yes, the summary is as follows.
(1) By mass%, C: 0.05 to 0.20%, Si: 0.001 to 0.80%, Mn: 0.30 to 1.8%, S: 0.01% or less, P: 0.02% or less, Al: 0.01 to 0.10%, O: 0.005 % Or less, N: 0.01% or less, consisting of remaining Fe and inevitable impurities, tensile strength of 370 to 610 MPa, r L of 0.85 or more, and | Δr | of 0.10 or less Hot rolled material for forming steel pipe.
[0009]
(2) Further, by mass%, Cu: 0.01 to 0.3%, Ni: 0.01 to 0.3%, Mo: 0.01 to 0.2%, V: 0.01 to 0.05%, Ca: 0.0015 to 0.0040% The hot-rolling material for a steel pipe for hydroforming as set forth in (1), which contains the above.
(3) The hot-rolled material for a steel pipe for hydroforming as described in (1) or (2), wherein the n value is 0.18 or more.
[0010]
(4)% by mass, C: 0.05 to 0.20%, Si: 0.001 to 0.80%, Mn: 0.30 to 1.8%, S: 0.01% or less, P: 0.02% or less, Al: 0.01 to 0.10%, O: 0.005 N: 0.01% or less, or Cu: 0.01 to 0.3%, Ni: 0.01 to 0.3%, Mo: 0.01 to 0.2%, V: 0.01 to 0.05%, Ca: 0.0015 to 0.0040% Finish rolling with a total rolling reduction of 75% or more after finishing rolling, when slabs containing one or more of them, the balance Fe and unavoidable impurities are heated to 1000 ° C or higher and then hot rolled The heat of hydroforming steel pipe is characterized in that the end temperature is A 3 (° C) + 50 ° C or higher, and after cooling for 1 second or longer after finishing rolling, the steel tube is forcedly cooled and wound at a cooling rate of 35 ° C / s or lower. A manufacturing method for rolled material.
[0011]
A 3 = 910-310 * C-80 * Mn + 40 * Si-20 * Cu-50 * Ni-80 * Mo + 100 * V
The element symbol on the right side = component content in steel of the same element (mass%), * = product operator (5) The hydroforming temperature is set to 700 ° C or less for hydroforming A method of manufacturing a hot-rolled material for steel pipes.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
First, the reasons for limiting the chemical composition will be described.
C: 0.05 to 0.20%
In order to obtain a tensile strength of 370 MPa or more, the C content needs to be 0.05% or more. Below this, it is difficult to ensure strength. On the other hand, if the C content exceeds 0.20%, the weldability and the r-value decrease significantly.
[0013]
Si: 0.001 to 0.80%
Si has a function of increasing steel strength by solid solution strengthening, and is added according to a desired tensile strength. It is difficult to add Si so that the amount of Si is less than 0.001% in terms of steelmaking technology. On the other hand, if the Si content exceeds 0.80%, a scale with a low melting point (such as firelite) is likely to be formed, and the surface appearance may be impaired. In addition, Preferably it is 0.50% or less.
[0014]
Mn: 0.30 to 1.8%
Mn is a solid solution strengthening element effective for increasing the strength, and the addition amount is changed according to the desired tensile strength. In order to prevent segregation of S grain boundaries due to MnS precipitation, the Mn content should be 0.30% or more. On the other hand, if the amount of Mn exceeds 1.8%, a strong transformation texture is formed after hot rolling, leading to a decrease in r L and an increase in | Δr |. Preferably it is 0.50 to 1.0%.
[0015]
S: 0.01% or less If the amount of S exceeds 0.01%, there is a concern of causing grain boundary cracking during hot rolling. Preferably it is 0.006% or less.
P: 0.02% or less P adversely affects ERW weldability, and in particular reduces the fatigue strength of the weld. P is set to 0.02% or less from the viewpoint of preventing defects in the ERW weld.
[0016]
Al: 0.01-0.10%
Al is added as a deoxidizer at the time of melting, but from the viewpoint of ensuring deoxidation, the content of the remaining Al that is consumed in deoxidation and floats as an alumina oxide becomes 0.01% or more. It was supposed to be added. On the other hand, if the Al content exceeds 0.10%, there is a concern that defects in surface properties may occur, so the content was made 0.10% or less.
[0017]
O: 0.005% or less Since an increase in the oxide in steel may cause a burst during hydroforming, the O content is set to 0.005% or less.
N: 0.01% or less Excessive N lowers the moldability, so the N content is set to 0.01% or less. From the viewpoint of further improving the r value, the amount of solid solution N is preferably 30 ppm (meaning mass ppm, the same shall apply hereinafter) or less.
[0018]
The hot-rolled material of the present invention further includes Cu: 0.01 to 0.3%, Ni: 0.01 to 0.3%, Mo: 0.01 to 0.2%, V: 0.01 to 0.05%, Ca: 0.0015 to 0.0040% as necessary. It may be included. Cu, Ni, Mo, and V are effective elements for increasing the strength, and can be used without reducing r L within the above range.
Further, Ca can be added in the above-described range, which has the effect of preventing the formation of oxide inclusions having a tendency toward coarse extensibility by forming Ca sulfide and improving the toughness and strength of the weld. If the Ca effect is less than 0.0015%, it is insufficient. On the other hand, if it exceeds 0.0040%, the effect is not only saturated but also the workability may be lowered.
[0019]
Next, the reasons for limiting the mechanical properties will be described.
In the hot-rolled material of the present invention, when the processing mode of the hydroforming steel pipe is the strong shaft pressing mode, the r value (corresponding to r L of the hot-rolled material) is particularly high in the tube axis direction (matching the rolling direction) Therefore, r L is restricted to 0.85 or more, and | Δr | is restricted to 0.10 or less in order to eliminate anisotropy. Thereby, hydroform moldability improves.
[0020]
In addition, actual parts are often molded in the tube end fixing mode in addition to the processing in the simple strong shaft pressing mode. However, in the present invention, when the n value is restricted to 0.18 or more, the hydroforming in the tube end fixing mode is performed. It is preferable because moldability is also improved.
In the hot rolled material of the present invention, it is more preferable that the average crystal grain size of ferrite exceeds 8 μm because the r value and the n value are further increased.
[0021]
In the present invention, an experiment in which r L , Δr, or n value is determined as described above, and the results thereof will be described below.
Of the hot-rolled steel sheets having the chemical composition within the scope of the present invention as described above, steel pipes having different r L , Δr and n values are used as raw materials, and a steel pipe having a wall thickness of 1.6 mm × outer diameter of 63.5 mm is changed in the direction of the pipe axis by the ERW method. A free bulge test was carried out in accordance with the rolling direction of the steel sheet. The free bulge test is a test in which both ends are constrained with a mold and the center is unconstrained, and internal pressure is applied from one end or both ends of the tube, and the center is expanded in the strong shaft push mode or tube end fixing mode. Say.
[0022]
FIG. 1 shows the effects of r L and Δr on the limiting bulging rate LBR (Limiting Buldging Ratio) in the free bulge test. Here, LBR is defined by d / d0-1 (× 100%) (where d is the maximum pipe diameter that can be expanded without a burst, and d0 is the pipe diameter). Than 1, in order to increase the LBR is simply insufficient only increases r L, r L, specific range i.e. r L ≧ 0.85 and a [Delta] r | [Delta] r | be a ≦ 0.10 It can be seen that it is important .
[0023]
FIG. 2 shows the influence of the n value and r L on the limit tube expansion ratio LBR (0) without pipe end movement, which shows the formability of the pipe end fixed mode. Obviously, increasing both the n value and r L increases LBR (0), which improves the moldability. In particular, it is good in the range of r L ≧ 0.85 and n value ≧ 0.18. Thus, a steel pipe corresponding to both forming modes of the tube end fixing mode and the strong shaft pushing mode is obtained.
[0024]
With respect to the tensile strength (TS), if it is less than 370 MPa, a sufficient lightening effect cannot be obtained. On the other hand, if it exceeds 610 MPa, the ductility is lowered and hydroform molding becomes difficult, so 370 to 610 MPa.
Next, a manufacturing method will be described.
If the heating temperature of the slab is too low, the deformation resistance at the time of hot rolling will increase, or the initial structure will be inherited by hot rolling, so it will be 1000 ° C. or higher. The heating temperature is preferably set to 1350 ° C. or lower because the amount of surface scale generation increases if it is too high.
[0025]
In the present invention, the total rolling reduction after the finish rolling, the finish rolling end temperature, the cooling start timing and the cooling rate are important. Only when these conditions are combined and controlled, r L ≧ 0.85, | Δr | ≦ 0.10, n ≧ 0.18 hot-rolled steel sheet can be manufactured stably.
Total rolling reduction after finishing rolling: The total rolling reduction (= cumulative rolling reduction) at the latter stage of the tandem rolling mill used for finishing rolling is 75% or more. Here, when the number of all passes of finish rolling is N, the latter stage refers to the (N + 1) / 2 pass to the final N pass when N is an odd number, and the N / 2 pass when N is an even number. To the final Nth pass. If the total reduction ratio in the subsequent stage is less than 75%, the austenite structure is not sufficiently homogenized, r L is lowered, and | Δr | is increased.
[0026]
Finishing rolling finish temperature (FDT) and cooling start timing (Cst): FDT must be A 3 (° C) + 50 ° C or more below, and Cst must be 1 second or more after the finish final pass (cooling during this time) is there.
A 3 = 910-310 * C-80 * Mn + 40 * Si-20 * Cu-50 * Ni-80 * Mo + 100 * V
Element symbol on the right side = content of the same element in steel (mass%), * = product operator This is enough to recrystallize by increasing the FDT above the ferrite transformation start temperature and delaying the start of cooling. Is a means for suppressing the formation of a transformation texture by transforming ferrite from the austenite structure in which advancing, and this realizes a reduction in | Δr | and an increase in r L. Furthermore, since ferrite transformation is performed from an austenite structure in which recrystallization has sufficiently progressed, the ferrite grains after the transformation become relatively coarse sized grains having an average crystal grain size exceeding 8 μm, and thus the n value increases.
[0027]
Cooling rate: As the cooling rate of forced cooling after hot rolling (hot ranking) increases, the average r value increases, but r L decreases. As a result, for example, as shown in FIG. 3, Δr is much less than −0.10. Therefore, the cooling rate was controlled to 35 ° C./s or less. When the cooling rate exceeds 35 ° C./s, it is considered undesirable because compositional supercooling causes selectivity in the formation of ferrite transformation nuclei. In addition, if the cooling rate is too low, non-uniform coarsening occurs due to abnormal grain growth of ferrite grains, and there is a concern that the material may vary. Therefore, the cooling rate is preferably 10 ° C./s or more.
[0028]
Winding temperature: If the winding temperature exceeds 700 ° C, there is a risk of uneven coarsening due to abnormal grain growth of ferrite grains, resulting in material variations. Therefore, the winding temperature should be 700 ° C or less. preferable.
[0029]
【Example】
Steel having the chemical composition shown in Table 1 was melted and rolled under the hot rolling conditions shown in Table 2. Table 3 shows the mechanical properties of the obtained hot-rolled steel sheet (as-rolled steel sheet) together with the amount of solute N and the average ferrite crystal grain size. The mechanical properties of the hot-rolled steel sheet were evaluated by preparing JIS No. 5 tensile test pieces, and the r value was measured by 10% or 15% tension (if the uniform elongation is less than 15%, 10% (Tensed).
[0030]
As is apparent from Table 3, the inventive examples within the scope of the present invention show good r L , Δr, and n values, and the comparative examples outside the scope of the present invention do not satisfy the characteristics.
In addition, an electric resistance welded steel pipe having a thickness of 1.6 mm × outer diameter of 63.5 mmφ (the rolling direction of the material steel sheet coincides with the pipe axis direction) was produced from these hot-rolled steel sheets, and a free bulge test was performed. In the free bulge test, the critical expansion ratio LBR in the strong shaft push mode and the LBR (0) in the tube end fixed mode were determined and are shown together in Table 3. The inventive examples showed good hydroform moldability in both modes.
[0031]
[Table 1]
Figure 0003821073
[0032]
[Table 2]
Figure 0003821073
[0033]
[Table 3]
Figure 0003821073
[0034]
In addition, in this example, the case where the hot-rolled material is a hot-rolled steel plate is shown, but the present invention is not limited thereto, and the hot-rolled material is a steel plate obtained by annealing a hot-rolled steel plate, The same effect can be obtained in any of the annealed steel sheet or the steel sheet obtained by pickling a hot-rolled steel sheet and the steel sheet subjected to surface treatment for imparting rust resistance to the pickled steel sheet. Needless to say.
[0035]
【The invention's effect】
According to the present invention, there is an effect that it is possible to provide a hot-rolled raw material for a steel pipe for hydroforming that has a high r L , a small anisotropy, and an excellent n value. In addition, the actual hydroforming requires not only the strong shaft push mode but also the tube end fixed mode forming element. However, the hot rolled material of the present invention is a stable production of steel pipe that can be applied to such composite forming. Since supply is enabled, it contributes to, for example, reducing the manufacturing cost of automobile bodies and improving collision safety.
[Brief description of the drawings]
FIG. 1 is a diagram showing the influence of r L and Δr on LBR.
FIG. 2 is a diagram showing the influence of n value and r L on LBR (0).
FIG. 3 is a diagram showing the influence of the cooling rate on Δr.

Claims (5)

質量% で、C:0.05〜0.20% 、Si:0.001 〜0.80% 、Mn:0.30〜1.8%、S:0.01% 以下、P:0.02% 以下、Al:0.01〜0.10% 、O:0.005%以下、N:0.01% 以下を含有し、残部Feおよび不可避的不純物からなり、引張強度が370 〜610 MPa 、rL が0.85以上、|Δr|が0.10以下であることを特徴とするハイドロフォーム成形用鋼管の熱延素材。% By mass, C: 0.05 to 0.20%, Si: 0.001 to 0.80%, Mn: 0.30 to 1.8%, S: 0.01% or less, P: 0.02% or less, Al: 0.01 to 0.10%, O: 0.005% or less, N: 0.01% or less, comprising the remainder Fe and inevitable impurities, tensile strength of 370 to 610 MPa, r L of 0.85 or more, and | Δr | Hot rolled material. さらに、質量% で、Cu:0.01〜0.3%、Ni:0.01〜0.3%、Mo:0.01〜0.2%、V:0.01〜0.05% 、Ca:0.0015〜0.0040% のうち1種または2種以上を含有することを特徴とする請求項1記載のハイドロフォーム成形用鋼管の熱延素材。Furthermore, by mass%, Cu: 0.01 to 0.3%, Ni: 0.01 to 0.3%, Mo: 0.01 to 0.2%, V: 0.01 to 0.05%, Ca: 0.0015 to 0.0040%, or one or more of them The hot-rolling material for a steel pipe for forming a hydroform according to claim 1. n値が0.18以上であることを特徴とする請求項1または2に記載のハイドロフォーム成形用鋼管の熱延素材。The hot rolled material for a steel pipe for hydroforming according to claim 1 or 2, wherein the n value is 0.18 or more. 質量% で、C:0.05〜0.20% 、Si:0.001 〜0.80% 、Mn:0.30〜1.8%、S:0.01% 以下、P:0.02% 以下、Al:0.01〜0.10% 、O:0.005%以下、N:0.01% 以下を含有し、あるいはさらに、Cu:0.01〜0.3%、Ni:0.01〜0.3%、Mo:0.01〜0.2%、V:0.01〜0.05% 、Ca:0.0015〜0.0040% のうち1種または2種以上を含有し、残部Feおよび不可避的不純物からなるスラブを、1000℃以上に加熱し、次いで熱間圧延する際、仕上圧延後段の合計圧下率を75% 以上、仕上圧延終了温度を下記A3 (℃)+50℃以上とし、仕上圧延終了から1秒以上放冷後、冷却速度35℃/s以下で強制冷却し巻き取ることを特徴とするハイドロフォーム成形用鋼管の熱延素材の製造方法。

3 =910-310*C-80*Mn+40*Si-20*Cu-50*Ni-80*Mo+100*V
右辺の元素記号=同号元素の鋼中成分含有量(質量% )、*=積演算子
% By mass, C: 0.05 to 0.20%, Si: 0.001 to 0.80%, Mn: 0.30 to 1.8%, S: 0.01% or less, P: 0.02% or less, Al: 0.01 to 0.10%, O: 0.005% or less, N: 0.01% or less, or Cu: 0.01-0.3%, Ni: 0.01-0.3%, Mo: 0.01-0.2%, V: 0.01-0.05%, Ca: 0.0015-0.0040% Alternatively, when the slab containing two or more types, the balance Fe and inevitable impurities is heated to 1000 ° C. or higher and then hot rolled, the total rolling reduction after the finish rolling is 75% or more, and the finish rolling finish temperature is A hot rolled material of a steel pipe for hydroforming, characterized by the following A 3 (° C.) + 50 ° C. or higher, cooling for 1 second or more after finishing rolling and then forcibly cooling and winding at a cooling rate of 35 ° C./s or less. Production method.
A 3 = 910-310 * C-80 * Mn + 40 * Si-20 * Cu-50 * Ni-80 * Mo + 100 * V
Element symbol on right side = component content in steel of same element (mass%), * = product operator
巻き取り温度を700 ℃以下とすることを特徴とする請求項4記載のハイドロフォーム成形用鋼管の熱延素材の製造方法。The method for producing a hot-rolled raw material for a steel pipe for hydroforming according to claim 4, wherein the winding temperature is 700 ° C or lower.
JP2002260339A 2002-09-05 2002-09-05 Hot-rolled material for hydroform forming steel pipe and method for producing the same Expired - Lifetime JP3821073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002260339A JP3821073B2 (en) 2002-09-05 2002-09-05 Hot-rolled material for hydroform forming steel pipe and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002260339A JP3821073B2 (en) 2002-09-05 2002-09-05 Hot-rolled material for hydroform forming steel pipe and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004099935A JP2004099935A (en) 2004-04-02
JP3821073B2 true JP3821073B2 (en) 2006-09-13

Family

ID=32261087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002260339A Expired - Lifetime JP3821073B2 (en) 2002-09-05 2002-09-05 Hot-rolled material for hydroform forming steel pipe and method for producing the same

Country Status (1)

Country Link
JP (1) JP3821073B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7298777B2 (en) * 2020-10-30 2023-06-27 Jfeスチール株式会社 Hot-rolled steel sheet and manufacturing method thereof

Also Published As

Publication number Publication date
JP2004099935A (en) 2004-04-02

Similar Documents

Publication Publication Date Title
JP4470701B2 (en) High-strength thin steel sheet with excellent workability and surface properties and method for producing the same
JP4640130B2 (en) High-strength cold-rolled steel sheet with small variation in mechanical properties and method for producing the same
EP2589678B1 (en) High-strength steel sheet with excellent processability and process for producing same
JP4661306B2 (en) Manufacturing method of ultra-high strength hot-rolled steel sheet
JP2009545676A (en) High manganese-type high-strength steel sheet with excellent impact characteristics and manufacturing method thereof
EP2551366B1 (en) High-strength electrical-resistance-welded steel pipe and manufacturing method therefor
JP5005543B2 (en) High-strength thick-walled electric-welded steel pipe excellent in hardenability, hot workability and fatigue strength, and method for producing the same
CN110088331B (en) Hot-rolled steel sheet for electric resistance welded steel pipe having excellent weldability and method for producing same
CN109804092B (en) Cold-rolled steel sheet for flux-cored wire and method for manufacturing same
JP4333379B2 (en) Method for producing high-strength thin steel sheet with excellent workability, surface texture and flatness
TWI506146B (en) High strength cold rolled steel sheet excellent in weldability and method for manufacturing the same
JP4513552B2 (en) High-tensile hot-rolled steel sheet excellent in bake hardenability and room temperature aging resistance and method for producing the same
CN111511949B (en) Hot-rolled steel sheet having excellent expansibility and method for producing same
JP4519373B2 (en) High-tensile cold-rolled steel sheet excellent in formability, strain age hardening characteristics and room temperature aging resistance, and method for producing the same
JPH0987798A (en) High tensile strength hot rolled steel plate, having superfine grain and excellent in ductility, toughness, fatigue characteristic, and strength-ductility balance, and its production
JP3539545B2 (en) High-tensile steel sheet excellent in burring property and method for producing the same
CN114058942B (en) Steel plate for torsion beam and manufacturing method thereof, torsion beam and manufacturing method thereof
JP3821073B2 (en) Hot-rolled material for hydroform forming steel pipe and method for producing the same
JP2007177293A (en) Ultrahigh-strength steel sheet and manufacturing method therefor
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
JP4432725B2 (en) Cr-containing high-strength cold-rolled steel sheet excellent in stretch flangeability and manufacturing method thereof
JPH09184045A (en) Extremely thin hot rolled steel sheet excellent in impact resistance and its production
JP3348365B2 (en) Hot-rolled high-strength steel sheet for processing having excellent heat-softening property and excellent fatigue properties, and method for producing the same
JP2007224408A (en) Hot-rolled steel sheet having excellent strain aging property and method for producing the same
JP4396007B2 (en) High tensile high workability hot-rolled steel sheet excellent in strain age hardening characteristics and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060612

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4