JPS6369922A - Production of extremely thin cold rolled mild steel sheet having excellent ductility and deep drawability by low temperature annealing - Google Patents

Production of extremely thin cold rolled mild steel sheet having excellent ductility and deep drawability by low temperature annealing

Info

Publication number
JPS6369922A
JPS6369922A JP21481786A JP21481786A JPS6369922A JP S6369922 A JPS6369922 A JP S6369922A JP 21481786 A JP21481786 A JP 21481786A JP 21481786 A JP21481786 A JP 21481786A JP S6369922 A JPS6369922 A JP S6369922A
Authority
JP
Japan
Prior art keywords
annealing
cold rolling
temperature
steel
deep drawability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21481786A
Other languages
Japanese (ja)
Other versions
JPH0586456B2 (en
Inventor
Hidenori Shirasawa
白沢 秀則
Takafusa Iwai
岩井 隆房
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP21481786A priority Critical patent/JPS6369922A/en
Publication of JPS6369922A publication Critical patent/JPS6369922A/en
Publication of JPH0586456B2 publication Critical patent/JPH0586456B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To permit production of an cold rolled mild steel sheet having excellent ductility and deep drawability without generating seizure, by working an extremely low carbon ingot contg. Mn, S, N, O, etc., at low ratios to an extremely thin sheet by two passes of cold rolling and annealing including secondary annealing of a relatively low temp. CONSTITUTION:The extremely low carbon ingot contg., by weight %, 0.001-0.005% C, 0.03-0.25% Mn, 0.001-0.006% S, 0.005% P, 0.02-0.06% Al, 0.001-0.004% N, 0.0010-0.0050% O and contg. either of 0.008-0.020% Ti (where Ti/C>=4) or 0.005-0.020% Nb as an element for improving the deep drawability and ductility is subjected to hot rolling then to finish rolling at the finishing temp. above the Ar3 point and coiled at 650-720 deg.C. After the coil is subjected to a pickling treatment, the sheet is subjected to primary cold rolling at 60-90% cold rolling draft and is subjected to the primary annealing at the recrystallization temp. or above; in succession, the sheet is subjected to the secondary cold rolling at 40-85% cold rolling draft to the final sheet thickness. The sheet is coiled to a tight coil and is subjected to the secondary annealing at a low temp. of 580-650 deg.C. The extremely thin cold rolled steel sheet which is free from seizure of the steel sheets to each other in the tight coil is thus obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、延性及び深絞り性にすぐれる板厚0゜5 +
+n以下の極薄冷延軟鋼板を低温焼鈍法によって製造す
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is applicable to a sheet having a thickness of 0°5 + with excellent ductility and deep drawability.
The present invention relates to a method of manufacturing an ultra-thin cold-rolled mild steel plate having a thickness of +n or less by a low-temperature annealing method.

従来の技術 近年、冷延鋼板の利用はますます多様化すると共に、そ
の要求特性もまた、過酷さを増しつつある。従来、プレ
ス成形用の軟鋼板は、板厚が0.6〜1.0 tmの範
囲が大部分を占め、これが多量に用いられている。しか
し、近年においては、自動車部材の分野において、車体
の軽量化要求が一層高まりつつあり、同時に、騒音や振
動防止を目的として、鋼板間に樹脂層を積層した所謂割
振鋼板の利用が試みられるに至っている。このような制
振鋼板は、通常、樹脂層の厚さが約0.1nであって、
この樹脂層に対する鋼板の板厚比率が比較的高いもので
あるが、最近においては、鋼板の板厚が0゜511以下
であって、樹脂層厚さの比率の高い所謂ラミネート鋼板
又は軽量鋼板の適用も試みられるに至っている。このよ
うなラミネートri!tfiも、上記制振鋼板の一種で
はあるが、鋼板の板厚が極度に薄いために、前記した自
動車車体の軽量化に好適であり、ボンネットやトランク
リッド等への適用が試みられている。
BACKGROUND OF THE INVENTION In recent years, the uses of cold-rolled steel sheets have become increasingly diverse, and the required properties have also become more severe. Conventionally, most mild steel plates for press forming have a thickness in the range of 0.6 to 1.0 tm, and are used in large quantities. However, in recent years, in the field of automobile parts, there has been an increasing demand for lighter vehicle bodies, and at the same time, attempts have been made to use so-called distributed steel plates, in which a resin layer is laminated between steel plates, for the purpose of noise and vibration prevention. It has been reached. Such damping steel plates usually have a resin layer thickness of about 0.1 nm,
The thickness ratio of the steel plate to the resin layer is relatively high, but recently, so-called laminated steel plates or lightweight steel plates with a thickness of 0°511 or less and a high resin layer thickness ratio have been developed. Applications have also been attempted. Laminate like this! TFI is also a type of vibration-damping steel plate, but because the steel plate is extremely thin, it is suitable for reducing the weight of the above-mentioned automobile bodies, and its application to bonnets, trunk lids, etc. is being attempted.

このようなプレス成形に用いるには、かかる軟鋼板は、
深絞り性は勿論、引張試験より求まる全伸び、n値(加
工硬化指数)、更には、伸びフランジ性(極限変形能)
にすぐれることが要求される。特に、かかる特性にすぐ
れるラミネート鋼板を得るためには、その原板である極
薄鋼板の全伸び及び7値がすぐれていなければならない
。しかしながら、ラミネート鋼板の原板の板厚は、通常
、0.2H程度と極度に薄いために、従来の技術によれ
ば、全伸びは約40%が限界とみられている。
In order to use this type of press forming, such a mild steel plate is
In addition to deep drawability, total elongation determined from tensile tests, n value (work hardening index), and stretch flangeability (ultimate deformability)
It is required to be excellent. In particular, in order to obtain a laminated steel sheet with such excellent properties, the ultra-thin steel sheet that is the original sheet must have excellent total elongation and 7 value. However, since the thickness of the original plate of a laminated steel plate is usually extremely thin, about 0.2H, the total elongation is considered to be limited to about 40% according to the conventional technology.

ここに、この全伸びを48%以上、好ましくは50%以
上とすることができ、しかも、7値1.9以上の極薄原
板を得ることができれば、ラミネート鋼板の成形性も著
しく改善することができる。
Here, if this total elongation can be made 48% or more, preferably 50% or more, and an ultra-thin original sheet with a 7 value of 1.9 or more can be obtained, the formability of the laminated steel sheet will be significantly improved. Can be done.

かかる観点から、既に、特公昭52−14204号公報
には、CI0.OO1〜0.020%であり、T i 
/ C重量比4以上にてTiを0.020〜0.5%の
範囲で含有する鋼を温度650″C以上、Ar3点以下
にて二次焼鈍を施す2回冷延焼鈍法、即ち、−次冷延、
−次焼鈍、二次冷延及び二次焼鈍を行なう方法による超
深絞り用冷延綱板の製造方法が提案されている。
From this point of view, CI0. OO1~0.020%, T i
A two-time cold rolling annealing method in which steel containing Ti in the range of 0.020 to 0.5% with a /C weight ratio of 4 or more is subjected to secondary annealing at a temperature of 650"C or more and an Ar point of 3 or less, that is, −Next cold rolling,
- A method of manufacturing a cold-rolled steel sheet for ultra-deep drawing has been proposed by performing secondary annealing, secondary cold rolling, and secondary annealing.

明が解決しようとする問題点 一般に、650℃以下のような低温度にて焼鈍を行なう
場合は、冷間圧延後の加工歪が十分に除去されない結果
、プレス成形性が損なわれるので、従来、焼鈍には65
0℃以上の温度が必要であるとされており、上記方法も
これに沿うものである。
Problems that Ming attempts to solve Generally, when annealing is performed at a low temperature such as 650°C or lower, the processing strain after cold rolling is not sufficiently removed, resulting in impaired press formability. 65 for annealing
It is said that a temperature of 0° C. or higher is required, and the above method also conforms to this.

しかしながら、板厚0.5 ta以下の極薄鋼板の場合
には、二次焼鈍温度を650’C以上として箱焼鈍を行
なうとき、鋼板が相互に接着する焼付現象が生じる。こ
れを防止するために、スペーサを用いるオーブンコイル
焼鈍によれば、腰折れと称されるコイル変形による不良
が生じる。他方、コイル焼鈍によらない連続焼鈍法の採
用も可能であるが、この場合は、板厚が薄い軟tilv
iは、炉内通板中に板幅が減少する所謂絞り込みが発生
し、コイルの破断をきたすという問題を有している。
However, in the case of ultra-thin steel plates with a thickness of 0.5 ta or less, when box annealing is performed at a secondary annealing temperature of 650'C or higher, a seizure phenomenon occurs in which the steel plates adhere to each other. In order to prevent this, if oven coil annealing is performed using a spacer, a defect due to coil deformation called buckling occurs. On the other hand, it is also possible to adopt a continuous annealing method that does not involve coil annealing, but in this case, it is necessary to
i has the problem that so-called squeezing, in which the width of the sheet decreases, occurs during the sheet passing through the furnace, resulting in breakage of the coil.

本発明は、板厚0.5 w以下であって、延性及び深絞
り性にすぐれる極薄冷延軟鋼板の製造における上記した
問題を解決するためになされたものであって、焼鈍温度
を650℃以下のような低温としても、上記したような
不良現象を生じることなしに、高延性及び高深絞り性を
兼備した極薄冷延鋼板を製造する方法を提供することを
目的とする。
The present invention was made in order to solve the above-mentioned problems in the production of ultra-thin cold-rolled mild steel sheets having a thickness of 0.5 W or less and having excellent ductility and deep drawability. It is an object of the present invention to provide a method for manufacturing an ultra-thin cold rolled steel sheet having both high ductility and high deep drawability without causing the above-mentioned defective phenomena even at low temperatures such as 650° C. or lower.

問題へを解決するための手 本発明による延性及び深絞り性にすぐれる板厚0、5 
w以下の極薄冷延軟鋼板の低温焼鈍による製造方法は、
重量%で (a)C   0.001〜0.005%、Mn  0
.03〜0.25%、 S   0.001〜0.006%、 P   0.001〜0.005%、 Aj20.02〜0.06%、 N   0.001〜0.004%、 0  0.0010〜0.0050%を含み、更に、(
blT i  0.008〜0.020%(但し、T 
i / C≧4)又は Nb  0.005〜0.020% のいずれか一種を含み、 残部鉄及び不可避的不純物よりなる鋼片を仕上温度Ar
1点以上で熱間仕上圧延し、650〜720℃の温度で
巻取り、この熱延コイルを酸洗した後、冷延率60〜9
0%で一次冷間圧延し、これに引き続く一次焼鈍を再結
晶温度以上で行ない、次いで、冷延率40〜85%にて
二次冷間圧延し、タイトコイル焼鈍にて580〜650
℃の温度にて二次焼鈍を行なうことを特徴とする。
Method for solving the problem Plate thickness 0, 5 with excellent ductility and deep drawability according to the present invention
The method for producing ultra-thin cold-rolled mild steel sheets with a thickness of less than W by low-temperature annealing is as follows:
In weight% (a) C 0.001-0.005%, Mn 0
.. 03-0.25%, S 0.001-0.006%, P 0.001-0.005%, Aj20.02-0.06%, N 0.001-0.004%, 0 0.0010 Contains ~0.0050%, and further contains (
blT i 0.008-0.020% (however, T
i/C≧4) or Nb 0.005 to 0.020%, with the balance consisting of iron and unavoidable impurities, at a finishing temperature of Ar
After hot finish rolling at one or more points, coiling at a temperature of 650 to 720°C, and pickling the hot rolled coil, a cold rolling rate of 60 to 9 is applied.
0%, followed by primary annealing above the recrystallization temperature, then secondary cold rolling at a cold rolling rate of 40 to 85%, and tight coil annealing to 580 to 650.
It is characterized by performing secondary annealing at a temperature of °C.

冷間圧延条件及び焼鈍条件の影響を明らかにするために
、本発明で規定する成分を有する綱A5即ち、 C0.002%、 Mn0.18%、 S   0.002%、 Al 0.03%、 N   0.003%、 0  0.003%、 Ti  0.018%、 残部鉄及び不可避的不純物よりなる鋼、及びTi量(0
,030%)が異なる以外は上記mAと同じ鋼Bを仕上
圧延温度920℃、仕上板厚3.2鶴になるように仕上
圧延し、720℃で巻取り、次いで、この鋼板を第1表
に示すように、製造方法■においては、冷間圧延した後
、焼鈍する1回冷延焼鈍法にて板厚0.2 mの冷延鋼
板IA及びIBを製造し、また、製造方法■においては
、−次冷間圧延、−次焼鈍、二次冷間圧延及び二次焼鈍
を行なう2回冷延焼鈍法にて板厚0.2flの冷延鋼板
■A及びnBを製造した。このようにして得られた冷延
鋼板の性質を第1表に示す。
In order to clarify the influence of cold rolling conditions and annealing conditions, a steel A5 having the components specified in the present invention, that is, C0.002%, Mn0.18%, S 0.002%, Al 0.03%, Steel consisting of N 0.003%, 0 0.003%, Ti 0.018%, balance iron and unavoidable impurities, and Ti amount (0
Steel B, which is the same as the above mA except for the difference in mA, was finish rolled at a finish rolling temperature of 920°C to a finished plate thickness of 3.2 mm, coiled at 720°C, and then this steel plate was prepared as shown in Table 1. As shown in Figure 2, in manufacturing method (2), cold rolled steel sheets IA and IB with a thickness of 0.2 m are manufactured by a single cold rolling annealing method in which cold rolling is performed and then annealing is performed. produced cold-rolled steel sheets ■A and nB with a thickness of 0.2 fl by a two-time cold rolling annealing method in which secondary cold rolling, secondary annealing, secondary cold rolling, and secondary annealing were performed. The properties of the cold-rolled steel sheet thus obtained are shown in Table 1.

1回冷延焼鈍法による場合、鋼IA及びIB共に再結晶
温度、即ち、冷延加工組織が完全に消失する温度が焼鈍
温度よりも高いために、加工Mi織が残存し、すべての
性質に劣る。しかし、2回冷延焼鈍法による場合は、T
i量による性質の差異が明瞭に現れ、0.018%Ti
鋼(鋼mA)では、すべての特性がすぐれているのに対
して、0.030%Ti鋼(![IIB)では、依然と
して多くの特性に劣る。このような材質上の差異が生じ
る原因は、再結晶温度の相違にある。即ち、本発明で規
定する成分を有するmAは、2回冷延焼鈍法によるとき
、再結晶温度が低いために、完全な再結晶組織が得られ
るためである。詳細な理由は尚、明らかではないが、T
iM、冷間圧延及び焼鈍条件によって、TiC,TiN
等の分散状態が異なるためであるとみられる。
In the case of the one-time cold rolling annealing method, the recrystallization temperature, that is, the temperature at which the cold rolled texture completely disappears, is higher than the annealing temperature for both steels IA and IB, so the processed Mi texture remains and all properties are affected. Inferior. However, when using the two-time cold rolling annealing method, T
Differences in properties depending on the amount of Ti are clearly visible, and 0.018% Ti
Steel (steel mA) is superior in all properties, whereas 0.030% Ti steel (! [IIB) is still inferior in many properties. The reason for this difference in material quality is the difference in recrystallization temperature. That is, when mA having the components specified in the present invention is subjected to the two-time cold rolling annealing method, a perfect recrystallized structure can be obtained because the recrystallization temperature is low. The detailed reason is still not clear, but T
iM, depending on cold rolling and annealing conditions, TiC, TiN
This seems to be due to the difference in the dispersion state of .

このように、極低C′iAにitのTiを添加すると共
に、冷延焼鈍条件を最適化することによって、最終焼鈍
温度が650℃以下であっても、高延性及び高深絞り性
とを兼ね備えた極薄冷延鋼板を得ることができるが、こ
こに、かかる極薄冷延鋼板を得ることができる理由は、
更に、本発明に従って、Cのみならず、Mns 3% 
N及びO量を低減させることにもある。このような合金
元素量の低減は、再結晶温度の上昇を防止する。即ち、
本発明によれば、これら元素量を低減した極低Cw4に
二次焼鈍が650℃以下の低温焼鈍である2回冷延焼鈍
法を適用することによって、コイル変形や破断等の問題
なしに、高延性及び高深絞り性を兼ね備えた極薄冷延調
板を製造することができるのである。
In this way, by adding it Ti to extremely low C'iA and optimizing the cold rolling annealing conditions, even if the final annealing temperature is 650°C or less, high ductility and high deep drawability are achieved. The reason why such an ultra-thin cold-rolled steel sheet can be obtained is as follows.
Furthermore, according to the present invention, not only C but also Mns 3%
Another purpose is to reduce the amount of N and O. Such a reduction in the amount of alloying elements prevents the recrystallization temperature from increasing. That is,
According to the present invention, by applying the two-time cold rolling annealing method in which the secondary annealing is low-temperature annealing of 650°C or less to ultra-low Cw4 in which the content of these elements is reduced, problems such as coil deformation and breakage can be avoided. This makes it possible to produce an ultra-thin cold-rolled plate that has both high ductility and high deep drawability.

次に、本発明の方法において用いる鋼の化学成分につい
て説明する。
Next, the chemical composition of the steel used in the method of the present invention will be explained.

Cは、一般に、その添加量が増すとき、延性及び深絞り
性が劣化することが知られている。本発明の方法による
鋼板は、板厚0.2鴎にて用いられることが多いので、
C量が増すときは、板厚減少による延性の劣化を免れな
い。本発明においては、冷延柵板の高深絞り性を確保し
、また、再結晶温度の上昇を防止して、低温焼鈍を行な
い得るように、極低C化が必要である。更に、後述する
ように、Ti及びN b fJを再結晶温度の上昇防止
の観点からmlとするためにも、これらと結合するCの
低減を図ることが必須である。従って、本発明において
は、Cの添加量は0.005%以下とする。
It is generally known that when the amount of C added increases, the ductility and deep drawability deteriorate. Since the steel plate produced by the method of the present invention is often used with a plate thickness of 0.2 mm,
When the amount of C increases, deterioration of ductility due to decrease in plate thickness is inevitable. In the present invention, extremely low C is required to ensure high deep drawability of the cold-rolled fence plate, prevent an increase in recrystallization temperature, and enable low-temperature annealing. Furthermore, as will be described later, in order to reduce Ti and N b fJ to ml from the viewpoint of preventing an increase in the recrystallization temperature, it is essential to reduce the amount of C that combines with these. Therefore, in the present invention, the amount of C added is 0.005% or less.

しかし、0.001%よりも少ないときは、深絞り性の
改善や再結晶温度の低下効果が飽和し、しかも、製鋼技
術経済的にも好ましくない。従って、C量はo、ooi
〜o、 o o s%の範囲とする。
However, when it is less than 0.001%, the effects of improving deep drawability and lowering the recrystallization temperature are saturated, and it is also unfavorable from the technical and economical point of view of steel manufacturing. Therefore, the amount of C is o, ooi
~o, o o s% range.

Mnは、その添加量を低減させることによって、深絞り
性に寄与する(111)面を有する結晶粒の生成を促す
と共に、粒成長がよくなるため、深絞り性が改善され、
また、延性も高められる。本発明の方法においては、M
 n量の低減は、上記効果に加えて、再結晶温度の低下
にも寄与し、かくして、本発明によれば、低温焼鈍が容
易である。しかし、その添加量が余りに少ないときは、
MnSとじて固定されないSによる熱間脆性の問題が生
じるので、その添加量の下限を0.03%とする。他方
、過剰量の添加は、再結晶温度を上昇させるのみならず
、鋼板を硬質化して、延性及び深絞り性を劣化させるの
で、添加量の上限を0.25%とする。
By reducing the amount of Mn added, Mn promotes the generation of crystal grains having (111) planes that contribute to deep drawability, and improves grain growth, which improves deep drawability.
Moreover, ductility is also increased. In the method of the present invention, M
In addition to the above effects, reducing the amount of n also contributes to lowering the recrystallization temperature, and thus, according to the present invention, low-temperature annealing is easy. However, when the amount added is too small,
Since the problem of hot embrittlement occurs due to S that is not fixed together with MnS, the lower limit of its addition amount is set to 0.03%. On the other hand, addition of an excessive amount not only increases the recrystallization temperature but also hardens the steel sheet and deteriorates ductility and deep drawability, so the upper limit of the addition amount is set at 0.25%.

Sは、前述したように、延性及び再結晶温度を左右する
成分であるので、本発明の方法において、その含有量を
低減規制することは重要である。Sは、後述するTiと
も結合し、これによって、深絞り性に有害な影響を与え
る固溶Cを固着するためのTi量が鋼中において低減す
るので、slが多いときは、それだけ多量のTiを必要
とする。
As mentioned above, since S is a component that influences ductility and recrystallization temperature, it is important to reduce and control its content in the method of the present invention. S also combines with Ti, which will be described later, and this reduces the amount of Ti in the steel for fixing solid solution C, which has a detrimental effect on deep drawability. Requires.

極薄鋼板において、高延性を確保し、再結晶温度の上昇
を防止し、更に、Ti量の低減を図るためには、S含有
量は0.006%以下とすべきである。
In an ultra-thin steel sheet, in order to ensure high ductility, prevent an increase in recrystallization temperature, and further reduce the amount of Ti, the S content should be 0.006% or less.

しかし、含有量を余りに少なくしても、上記の効果力l
色和するのみならず、脱硫処理に長時間を要して、鋼製
造の技術経済的観点から好ましくないので、Sの下限量
を0.001%とする。
However, even if the content is too low, the above effect l
The lower limit of S is set at 0.001% because it not only causes color discoloration but also requires a long time for desulfurization treatment, which is unfavorable from the technical and economical point of view of steel manufacturing.

5olAnは、脱酸剤として添加される。本発明の方法
においては、後述する○量の低減のために、添加量は少
なくとも0.02%を必要とする。しかし、過多に添加
するときは、A1□03やAIN等の析出物の量を増加
させ、フェライト地の延性を劣化させるので、その上限
を0.06%とする。
5olAn is added as a deoxidizing agent. In the method of the present invention, the addition amount needs to be at least 0.02% in order to reduce the amount of ○ described later. However, when added in excess, the amount of precipitates such as A1□03 and AIN increases and the ductility of the ferrite base deteriorates, so the upper limit is set at 0.06%.

Nは、一般には、鋼中に多量に残存するときは、歪時効
による延性の劣化を引き起こすが、しかし、本発明にお
いては、Nと結合力の強いTi又はNbを鋼に添加する
ので、Nによる歪時効による延性の劣化は生じない。し
かし、Nfiが余りに多い場合は、これに結合するTi
及びNb量も当然に増加するため、前述したSの場合と
同様に、固溶Cを固着するためのTi及びNb1Jが減
少し、固溶C量の増加による深絞り性の劣化や、析出物
の増加による延性の劣化を招く。他方、TiやNb量を
増加すれば、再結晶温度を上昇させ、また、製造費用を
高くする。従って、本発明においては、]]は、0.0
04%以下とすることが必要である。しかし、余りに少
なくするときは、製鋼上の困難を生じるので、その下限
を0.001%とする。
Generally, when a large amount of N remains in steel, it causes deterioration of ductility due to strain aging, but in the present invention, Ti or Nb, which has a strong bonding force with N, is added to the steel, so N No deterioration of ductility occurs due to strain aging. However, if Nfi is too large, the Ti bonded to it
Since the amount of C and Nb naturally increases, as in the case of S mentioned above, Ti and Nb1J for fixing solid solute C decrease, resulting in deterioration of deep drawability due to an increase in the amount of solute C and the formation of precipitates. This leads to a deterioration of ductility due to an increase in On the other hand, increasing the amount of Ti or Nb increases the recrystallization temperature and increases the manufacturing cost. Therefore, in the present invention, ]] is 0.0
It is necessary to keep it below 0.04%. However, if it is too small, it will cause difficulties in steel manufacturing, so the lower limit is set at 0.001%.

Pは、鋼板を高強度化し、また、結晶粒を細粒化させて
、延性を劣化させるので、o、oio%以下とし、好ま
しくは0.002〜0.005%の範囲とする。
P increases the strength of the steel sheet and also makes the crystal grains finer, thereby deteriorating the ductility, so the content should be less than or equal to 0.0%, preferably in the range of 0.002 to 0.005%.

0は、含有量が多いとき、延性を劣化させると共に、再
結晶温度の上昇を招き、更に、0量が増大すると、酸化
物介在物が増し、その部分は、再結晶核生成場所となる
ために、そこで再結晶粒が多量に発生し、結晶粒の細粒
化が生じる。しかし、本発明の方法においては、低温焼
鈍によって高延性を達成するため、結晶粒の細粒化は好
ましくない。通常、Alキルド綱における0量は0.O
O30〜o、ooso%であるので、本発明においては
、0量は0.0010〜0.0050%の範囲とする。
When the content of 0 is large, the ductility deteriorates and the recrystallization temperature increases. Furthermore, as the amount of 0 increases, the number of oxide inclusions increases, and that part becomes a site for recrystallization nucleation. Then, a large amount of recrystallized grains are generated there, resulting in grain refinement. However, in the method of the present invention, since high ductility is achieved by low-temperature annealing, grain refinement is not preferred. Usually, the amount of 0 in the Al-killed class is 0. O
Since O30~o, ooso%, in the present invention, the 0 amount is in the range of 0.0010~0.0050%.

Tiは、前述したように、主として、鋼中のCと結合し
て、残存する固溶C量を低減させることによって、鋼板
の深絞り性を改善する元素として、従来より知られてお
り、従来、知られている通常の深絞り用冷延鋼板におい
ては、Tiは0.05%以上添加されている。しかし、
本発明においては、前述したように、Ti量を増加する
ときは、再結晶温度を上昇させるので、650℃以下の
温度で二次焼鈍を行なっても、加工組織が残存するため
に、延性及び深絞りを確保することができない。
As mentioned above, Ti has been known as an element that mainly combines with C in steel to reduce the amount of solid solution C, thereby improving the deep drawability of steel sheets. In known conventional cold-rolled steel sheets for deep drawing, 0.05% or more of Ti is added. but,
In the present invention, as mentioned above, when increasing the amount of Ti, the recrystallization temperature is increased, so even if secondary annealing is performed at a temperature of 650°C or lower, the processed structure remains, so the ductility and Deep drawing cannot be ensured.

従って、本発明においては、延性及び深絞り性を共に確
保し、再結晶温度の上昇を防止するために、Ti量は0
.020%以下とすることが必要である。
Therefore, in the present invention, in order to ensure both ductility and deep drawability and to prevent an increase in recrystallization temperature, the amount of Ti is reduced to 0.
.. 0.020% or less.

しかし、Ti量を余りに少なくするときは、前述した効
果を有効に得ることができないので、本発明においては
、Ti量の下限を0.008%とする。
However, if the amount of Ti is too small, the aforementioned effects cannot be effectively obtained, so in the present invention, the lower limit of the amount of Ti is set to 0.008%.

更に、Tiは、C量と密接な関係にあり、深絞り性をよ
り向上させるためには、再結晶焼鈍前に固溶Cの大部分
をTiによってTiC析出物として結合させておく必要
があるので、本発明においてはT i / C重量比を
4以上とする。T i / C重量比が4よりも小さい
ときは、深絞り性の低下がみられる。
Furthermore, Ti has a close relationship with the amount of C, and in order to further improve deep drawability, it is necessary to combine most of the solid solution C with Ti as TiC precipitates before recrystallization annealing. Therefore, in the present invention, the T i /C weight ratio is set to 4 or more. When the T i /C weight ratio is smaller than 4, a decrease in deep drawability is observed.

Nbも、Tiと同様の理由によって、深絞り性を改善す
る効果を有することが知られている。本発明においても
、深絞り性及び延性を向上させ、再結晶温度の上昇を防
止するためには、Nbは、0、020%以下の範囲で添
加することが必要であるが、しかし、余りに少ないとき
は、かかる効果を有効に得ることができないので、Nb
の添加量の下限を0.005%とする。
Nb is also known to have the effect of improving deep drawability for the same reason as Ti. In the present invention as well, in order to improve deep drawability and ductility and prevent an increase in recrystallization temperature, it is necessary to add Nb in a range of 0.020% or less, but if the amount is too low, Since such effects cannot be obtained effectively, Nb
The lower limit of the amount added is 0.005%.

本発明においては、上記した化学成分を有する鋼の溶製
法は、何ら制限されるものではなく、転炉、平炉、電気
炉いずれによって溶製されてもよい。本発明の方法にお
いては、かかる鋼を分塊圧延又は連続鋳造によってスラ
ブ化し、これを所定の条件下に熱間圧延し、冷間圧延し
た後、箱焼鈍する。
In the present invention, the method for producing steel having the above-mentioned chemical components is not limited in any way, and the steel may be produced in any of a converter furnace, an open hearth furnace, and an electric furnace. In the method of the present invention, such steel is formed into a slab by blooming rolling or continuous casting, hot rolling under predetermined conditions, cold rolling, and then box annealing.

次に、本発明の方法における熱間圧延条件、冷間圧延条
件及び焼鈍条件について説明する。
Next, hot rolling conditions, cold rolling conditions, and annealing conditions in the method of the present invention will be explained.

本発明の方法においては、上記した化学成分を存する鋼
を、常法に従って均熱保持し、仕上温度をArs点以上
として熱間圧延し、650〜720°Cの範囲の温度に
て巻取る。
In the method of the present invention, steel having the above-mentioned chemical components is soaked and maintained according to a conventional method, hot-rolled at a finishing temperature equal to or higher than the Ars point, and coiled at a temperature in the range of 650 to 720°C.

後述する箱焼鈍において、二次焼鈍後の7値を高めるた
めには、可能な限りにおいて、−次焼鈍後の下値を高め
ておくことが必要である。ここにおいて、仕上温度がA
r=点よりも低いときは、下値に不利な集合組織である
(200)面が発達して、下値を低めることとなる。従
って、本発明の方法においては、仕上温度は、Ar3点
以上とし、好ましくは880℃以上とする。
In the box annealing described below, in order to increase the 7 value after the secondary annealing, it is necessary to increase the lower value after the -second annealing as much as possible. Here, the finishing temperature is A
When r is lower than the point, the (200) plane, which is a texture unfavorable to the lower value, develops and lowers the lower value. Therefore, in the method of the present invention, the finishing temperature is set to 3 Ar points or higher, preferably 880°C or higher.

巻取温度は、Ti(C,N)やNb (C,N)等の炭
窒化物を冷延焼鈍前の熱間圧延板にて析出させるために
重要であって、本発明においては、巻取温度を650〜
720℃の範囲とする。650 ”Cよりも低いときは
、これら析出物の析出が起こらず、他方、720℃を越
えるときは、鋼板表面のスケールを除去し難くなるので
、酸洗性が低下する。
The coiling temperature is important for precipitating carbonitrides such as Ti (C, N) and Nb (C, N) in the hot rolled sheet before cold rolling annealing. Take temperature from 650
The temperature should be in the range of 720°C. When the temperature is lower than 650"C, precipitation of these precipitates does not occur. On the other hand, when the temperature exceeds 720"C, it becomes difficult to remove scale from the surface of the steel sheet, resulting in poor pickling properties.

このようにして、巻取られたコイルは、酸洗後、冷間圧
延される。本発明においては、7値1゜9以上の高深絞
り性と共に、伸び48%以上及びn値0.23以上の高
延性、更には、再結晶温度の低下を図るために、前述し
たように、2回冷延焼鈍法が採用される。前述した鋼A
について、−次及び二次冷延率の影舌を第1図に示すよ
うに、−次冷延率が比較的高く、二次冷延率が比較的低
いほど、低降伏強さ、高伸び、高n値及び高r値を有し
て、高延性及び高深絞り性を有し、且つ、Δr値も小さ
く、鋼板内の材質のばらつきも小さいことが理解される
。また、Tiに代えて、Nbを添加することによっても
、同じ効果を達成することができる。
The coil thus wound is cold rolled after pickling. In the present invention, in order to achieve high deep drawability with a 7 value of 1°9 or more, high ductility with an elongation of 48% or more and an n value of 0.23 or more, and further to lower the recrystallization temperature, as described above, A two-time cold rolling annealing method is adopted. Steel A mentioned above
As shown in Figure 1, the effects of the -second and second cold rolling rates are as follows. It is understood that it has a high n value and a high r value, has high ductility and high deep drawability, has a small Δr value, and has small variations in material quality within the steel sheet. Furthermore, the same effect can be achieved by adding Nb instead of Ti.

従って、)i低C−Ti鋼又は極低C−Nb鋼を用いる
本発明の方法においては、−次冷延率は60〜90%、
二次冷延率は40〜85%の範囲とするのが最低である
。−次及び二次冷延率がこの範囲をはずれる場合は、深
絞り性が劣化するのみならず、全伸びも劣化する。
Therefore, in the method of the present invention using i low C-Ti steel or ultra-low C-Nb steel, the -th cold rolling rate is 60 to 90%,
The minimum secondary cold rolling rate is in the range of 40 to 85%. - If the secondary and secondary cold rolling ratios are out of this range, not only the deep drawability will deteriorate, but also the total elongation will deteriorate.

本発明の方法においては、二次冷間圧延後及び二次冷間
圧延後にそれぞれ再結晶焼鈍を行なう。
In the method of the present invention, recrystallization annealing is performed after the secondary cold rolling and after the secondary cold rolling.

−次冷間圧延後の一次焼鈍の温度は、再結晶を十分に行
なうために700〜850℃の範囲が好ましい。焼鈍方
法は、箱焼鈍法、連続焼鈍法のいずれかを用いてもよい
-The temperature of the primary annealing after the next cold rolling is preferably in the range of 700 to 850°C in order to sufficiently recrystallize. As the annealing method, either a box annealing method or a continuous annealing method may be used.

本発明の方法においては、二次冷延後の二次焼鈍条件が
重要である。本発明においては、板厚0゜5+n以下の
極3鋼板を対象としており、かかる極薄鋼板の場合は、
オープンコイル焼鈍を行なうときは、コイル形状に不良
を生じるので、タイトコイル焼鈍が採用される。しかし
、このタイトコイル焼鈍においても、焼鈍温度が余りに
高いときは、鋼板の焼付が発生し、操業を困難にして、
生産性を低下させ、場合によっては、製品を得ることが
できない。従って、本発明の方法においては、二次焼鈍
温度は、従来の深絞り用鋼板において必要とされている
高温焼鈍とは反対に、650℃以下の低温とすることが
必要である。好ましくは620℃以下である。しかし、
この焼鈍温度も余りに低いときは、焼鈍による十分な再
結晶が起こらず、得られる鋼板が成形性に劣ることとな
るので、焼鈍温度は580°C以上とする。
In the method of the present invention, secondary annealing conditions after secondary cold rolling are important. The present invention targets ultra-3 steel plates with a thickness of 0°5+n or less, and in the case of such ultra-thin steel plates,
When open coil annealing causes defects in the coil shape, tight coil annealing is used. However, even in this tight coil annealing, if the annealing temperature is too high, seizure of the steel plate will occur, making operation difficult.
It reduces productivity and in some cases, it is not possible to obtain the product. Therefore, in the method of the present invention, the secondary annealing temperature needs to be a low temperature of 650° C. or lower, contrary to the high temperature annealing required in conventional deep drawing steel sheets. Preferably it is 620°C or lower. but,
If this annealing temperature is too low, sufficient recrystallization due to annealing will not occur and the resulting steel sheet will have poor formability, so the annealing temperature is set to 580°C or higher.

焼鈍後の冷延鋼板は、形状調整、降伏点伸びの消去のた
めに、調質圧延、レベラー掛は等、適宜の手段が施され
る。因みに、本発明の方法による冷延鋼板は、表面処理
を施されても前記したすぐれた特徴を何ら失なわないの
で、ブリキ、亜鉛めっき、ターンめっきfiI板にも適
用することができる。
The cold rolled steel sheet after annealing is subjected to appropriate means such as skin pass rolling and leveling in order to adjust the shape and eliminate elongation at yield point. Incidentally, since the cold-rolled steel sheet produced by the method of the present invention does not lose any of the above-mentioned excellent characteristics even after being subjected to surface treatment, it can also be applied to tinplate, galvanized, and turn-plated fiI sheets.

λyμじ丸果 以上のように、本発明の方法によれば、c量を0.00
5%以下に低減し、且つ、M n s S −、N及び
Olを低減すると共に、かかる化学組成を有する鋼片を
650℃以下の温度での二次焼鈍を含む2回冷延焼鈍法
によって、板厚0.5 w以下の極薄鋼板について、降
伏応力19kgf/mm2以下、伸び48%以上、n値
0.230以上の高延性、高い伸びフランジ性と共に、
面内異方性(Δr値)の小さいr値1.9以上の高深絞
り性を有する冷延鋼板を焼付の発生しない低温焼鈍にて
得ることができる。
According to the method of the present invention, the amount of c can be reduced to 0.00 as described above for λyμji fruit.
5% or less, and reduce M n s S −, N and Ol, and a steel billet having such a chemical composition is subjected to a two-time cold rolling annealing method including secondary annealing at a temperature of 650° C. or less. , for ultra-thin steel plates with a thickness of 0.5 W or less, yield stress of 19 kgf/mm2 or less, elongation of 48% or more, high ductility with an n value of 0.230 or more, and high stretch flangeability.
A cold-rolled steel sheet having high deep drawability with a small in-plane anisotropy (Δr value) and an r value of 1.9 or more can be obtained by low-temperature annealing without seizure.

しかも、本発明の方法によれば、従来の2回冷延焼鈍法
と異なり、二次焼鈍を低温で実施するので、省エネルギ
ー及び生産性にもすぐれ、経済性の面でも有利な方法で
ある。
Moreover, according to the method of the present invention, unlike the conventional two-time cold rolling annealing method, the secondary annealing is performed at a low temperature, so it is an advantageous method in terms of energy saving and productivity, and is also economical.

!立聞 以下に実施例を挙げて本発明の詳細な説明するが、本発
明はこれら実施例によって何ら限定されるものではない
! EXAMPLES The present invention will be described in detail with reference to Examples below, but the present invention is not limited to these Examples in any way.

実施例 第2表に示す化学成分を有する本発明鋼及び比較鋼を実
験用小型溶解炉にて溶製し、これを鍛造、粗圧延して、
301貫厚さのスラブとした。これを加熱温度1200
℃以上で30分間保持した後、熱間圧延仕上温度750
〜930℃で板厚3.2 **又は4.0flに仕上げ
、次いで、600°C又は720℃にて30分間の巻取
シミュレート処理を行なった。
Examples Steels of the present invention and comparative steels having the chemical components shown in Table 2 were melted in a small experimental melting furnace, and then forged and roughly rolled.
The slab had a thickness of 301 mm. Heat this to a temperature of 1200
After holding for 30 minutes at ℃ or higher, the hot rolling finishing temperature is 750℃.
The plate was finished to a thickness of 3.2** or 4.0 fl at ~930°C, and then subjected to a winding simulation process at 600°C or 720°C for 30 minutes.

この熱間圧延鋼板に第2表に示す条件にて一次冷間圧延
、−次焼鈍、二次冷間圧延及び二次焼鈍を行ない、最終
的に板厚0.2 vm又は0.4 鶴の極薄冷延鋼板を
製造し、この極薄鋼板に0.8〜1.0%の調質圧延を
施した後、材質を調査した。尚、鋼A3についてのみ、
−次焼鈍にて連続焼鈍を行ない、その他はすべて箱焼鈍
によった。
This hot-rolled steel plate was subjected to primary cold rolling, secondary annealing, secondary cold rolling, and secondary annealing under the conditions shown in Table 2, and the final thickness was 0.2 vm or 0.4 mm. After manufacturing an ultra-thin cold-rolled steel plate and subjecting the ultra-thin steel plate to temper rolling of 0.8 to 1.0%, the material quality was investigated. For steel A3 only,
- Continuous annealing was performed in the next annealing, and box annealing was performed in all other cases.

引張試験結果、下値(深絞り性)、穴裾げ試験(伸びフ
ランジ性)及び焼付き性を第3表に示す。
Table 3 shows the tensile test results, lower value (deep drawability), hole skirting test (stretch flangeability), and seizure resistance.

MA、Al−A3及びBは本発明鋼であり、EC−には
比較鋼である。即ち、鋼CはC量、鋼りはMn量、mE
は0量、mFはS量、鋼GはAA量、鋼HはN量、鋼I
は0量、鋼JはTi量、鋼にはNbiがそれぞれ本発明
で規定する範囲にない。
MA, Al-A3 and B are the invention steels, and EC- is the comparative steel. That is, steel C has a C content, steel has a Mn content, mE
is 0 amount, mF is S amount, steel G is AA amount, steel H is N amount, steel I
The amount of Ti in steel J is 0, and the amount of Nbi in steel is not within the range specified by the present invention.

flA4〜A9は、その化学成分は本発明にて規定する
範囲にあるが、製造方法が本発明で規定する条件を満た
していない比較鋼である。即ち、鋼A4は仕上温度、@
A5は巻取温度、MA6は冷間圧延及び焼鈍条件、鋼A
7は一次冷延率、@A8は二次冷延率、@A9は二次焼
鈍温度がそれぞれ本発明で規定する範囲にない。
flA4 to A9 are comparative steels whose chemical compositions are within the range specified by the present invention, but whose manufacturing methods do not satisfy the conditions specified by the present invention. That is, steel A4 has a finishing temperature of @
A5 is the coiling temperature, MA6 is the cold rolling and annealing condition, steel A
7 is the primary cold rolling rate, @A8 is the secondary cold rolling rate, and @A9 is the secondary annealing temperature, which are not within the range defined by the present invention.

第3表に示す試験結果から、本発明の方法による極薄冷
延鋼板は、二次焼鈍温度が600℃のような低温であっ
ても、19kgf/mm2以下の低降伏応力、50%以
上の高い全伸び、0.250以上の高n値及び2.0以
上の高7値を有し、更に、穴拡げ率(伸びフランジ性)
も高いので、延性と深絞り性とを兼備していることが理
解される。
From the test results shown in Table 3, the ultra-thin cold-rolled steel sheet manufactured by the method of the present invention has a low yield stress of 19 kgf/mm2 or less, a low yield stress of 50% or more even when the secondary annealing temperature is as low as 600°C. It has a high total elongation, a high n value of 0.250 or more, and a high 7 value of 2.0 or more, and also has a hole expansion rate (stretch flangeability).
It is understood that it has both ductility and deep drawability.

これに対して、製造条件は本発明で規定する範囲にある
が、化学成分組成が本発明で規定する範囲にない比較i
% C” K、及び化学成分組成が本発明で規定する範
囲内にあるが、製造条件が本発明で規定する条件を満た
していない比較mA4〜A9のうち、@A4〜A8は、
各特性値の少なくともいずれかが所望値に達しておらず
、また、mA9は、特性値を満足していても、高温焼鈍
のために焼付が発生し、製品としての価値がない。
In contrast, the manufacturing conditions are within the range specified by the present invention, but the chemical composition is not within the range specified by the present invention.
% C''K and chemical composition are within the range specified by the present invention, but among the comparison mA4 to A9 whose manufacturing conditions do not meet the conditions specified by the present invention, @A4 to A8 are
At least one of the characteristic values did not reach the desired value, and even if mA9 satisfied the characteristic values, seizure occurred due to high-temperature annealing, and it had no value as a product.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、冷延鋼板の引張特性(降伏応力、全伸び及び
n値)及び深絞り性(下値及びΔr値)と−次及び二次
冷間圧延率との関係を示すグラフである。 特許出願人  株式会社神戸製鋼所 第1図 ン令  廷 卑 (54)
FIG. 1 is a graph showing the relationship between the tensile properties (yield stress, total elongation, and n value) and deep drawability (lower value and Δr value) of a cold rolled steel sheet and the negative and secondary cold rolling reductions. Patent applicant: Kobe Steel, Ltd., Figure 1, Tei Bei (54)

Claims (1)

【特許請求の範囲】[Claims] (1)重量%で (a)C 0.001〜0.005%、 Mn 0.03〜0.25%、 S 0.001〜0.006%、 P 0.001〜0.005%、 Al 0.02〜0.06%、 N 0.001〜0.004%、 O 0.0010〜0.0050%を含み、更に、 (b)Ti 0.008〜0.020%(但し、Ti/
C≧4)又は Nb 0.005〜0.020% のいずれか一種を含み、 残部鉄及び不可避的不純物よりなる鋼片を仕上温度Ar
_3点以上で熱間仕上圧延し、650〜720℃の温度
で巻取り、この熱延コイルを酸洗した後、冷延率60〜
90%で一次冷間圧延し、これに引き続く一次焼鈍を再
結晶温度以上で行ない、次いで、冷延率40〜85%に
て二次冷間圧延し、タイトコイル焼鈍にて580〜65
0℃の温度にて二次焼鈍を行なうことを特徴とする低温
焼鈍による延性及び深絞り性にすぐれる板厚0.5mm
以下の極薄冷延軟鋼板の製造方法。
(1) In weight% (a) C 0.001-0.005%, Mn 0.03-0.25%, S 0.001-0.006%, P 0.001-0.005%, Al 0.02 to 0.06%, N 0.001 to 0.004%, O 0.0010 to 0.0050%, and (b) Ti 0.008 to 0.020% (however, Ti/
C≧4) or Nb 0.005 to 0.020%, with the balance consisting of iron and unavoidable impurities, at a finishing temperature of Ar
_After hot finish rolling at 3 points or more, coiling at a temperature of 650 to 720°C, and pickling this hot rolled coil, cold rolling rate 60 to
First cold rolling at 90%, followed by primary annealing at a temperature above the recrystallization temperature, then secondary cold rolling at a cold rolling rate of 40-85%, and tight coil annealing at 580-65%.
A plate thickness of 0.5 mm with excellent ductility and deep drawability due to low temperature annealing, which is characterized by performing secondary annealing at a temperature of 0 ° C.
The following method for producing ultra-thin cold-rolled mild steel sheet.
JP21481786A 1986-09-10 1986-09-10 Production of extremely thin cold rolled mild steel sheet having excellent ductility and deep drawability by low temperature annealing Granted JPS6369922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21481786A JPS6369922A (en) 1986-09-10 1986-09-10 Production of extremely thin cold rolled mild steel sheet having excellent ductility and deep drawability by low temperature annealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21481786A JPS6369922A (en) 1986-09-10 1986-09-10 Production of extremely thin cold rolled mild steel sheet having excellent ductility and deep drawability by low temperature annealing

Publications (2)

Publication Number Publication Date
JPS6369922A true JPS6369922A (en) 1988-03-30
JPH0586456B2 JPH0586456B2 (en) 1993-12-13

Family

ID=16662014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21481786A Granted JPS6369922A (en) 1986-09-10 1986-09-10 Production of extremely thin cold rolled mild steel sheet having excellent ductility and deep drawability by low temperature annealing

Country Status (1)

Country Link
JP (1) JPS6369922A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0397813A (en) * 1989-09-11 1991-04-23 Kawasaki Steel Corp Production of cold rolled steel sheet for deep drawing reduced in in-plane anisotropy
JPH0397812A (en) * 1989-09-11 1991-04-23 Kawasaki Steel Corp Production of cold rolled steel sheet for deep drawing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5022967A (en) * 1973-06-25 1975-03-12
JPS5250723A (en) * 1975-10-18 1977-04-23 Rollei Werke Franke Heidecke Device for measuring*controlling and indicating photographic camera exposure
JPS5540092A (en) * 1972-05-17 1980-03-21 Carborundum Co Condition adjusting instrument for granular material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5540092A (en) * 1972-05-17 1980-03-21 Carborundum Co Condition adjusting instrument for granular material
JPS5022967A (en) * 1973-06-25 1975-03-12
JPS5250723A (en) * 1975-10-18 1977-04-23 Rollei Werke Franke Heidecke Device for measuring*controlling and indicating photographic camera exposure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0397813A (en) * 1989-09-11 1991-04-23 Kawasaki Steel Corp Production of cold rolled steel sheet for deep drawing reduced in in-plane anisotropy
JPH0397812A (en) * 1989-09-11 1991-04-23 Kawasaki Steel Corp Production of cold rolled steel sheet for deep drawing

Also Published As

Publication number Publication date
JPH0586456B2 (en) 1993-12-13

Similar Documents

Publication Publication Date Title
CN107119228B (en) A kind of 700~800MPa of tensile strength grades of hot rolling high-strength light dual phase steels and its manufacturing method
US5582658A (en) High strength steel sheet adapted for press forming and method of producing the same
CN107326276B (en) A kind of 500~600MPa of tensile strength grades of hot rolling high-strength light dual phase steels and its manufacturing method
JP3140289B2 (en) Method for manufacturing high-strength cold-rolled steel sheet for automobiles that has excellent formability, has paint bake hardenability, and has little variation in paint bake hardenability in the width direction.
US11414721B2 (en) Method for the manufacture of TWIP steel sheet having an austenitic matrix
CN113832386A (en) High-strength hot-rolled substrate, hot-dip galvanized steel and manufacturing method thereof
JP4177477B2 (en) Manufacturing method of cold-rolled steel sheet and hot-dip galvanized steel sheet with excellent room temperature aging resistance and panel characteristics
JPH06102816B2 (en) Cold rolled steel sheet with a composite structure having excellent workability, non-aging at room temperature, and bake hardenability, and a method for producing the same
JP4193228B2 (en) Steel plate for can and manufacturing method thereof
JP4214664B2 (en) Sheet steel for press forming and manufacturing method thereof
JP3280692B2 (en) Manufacturing method of high strength cold rolled steel sheet for deep drawing
JPS63145745A (en) Hot rolled high tensile steel plate and its production
JPH04272143A (en) Manufacture of cold rolled steel sheet for deep drawing excellent in dent resistance
JPS6369922A (en) Production of extremely thin cold rolled mild steel sheet having excellent ductility and deep drawability by low temperature annealing
JPH09209039A (en) Production of high strength cold rolled steel sheet excellent in deep drawability
JPH02267242A (en) Low carbon aluminum killed cold rolled steel sheet having excellent workability, roughening resistance on the surface and earing properties and its manufacture
CN112400033B (en) Hot-rolled plated steel sheet having high strength, high formability, and excellent bake hardenability, and method for producing same
JP2631437B2 (en) Cold rolled steel sheet excellent in workability, bake hardenability and aging, and method for producing the same
JPS62294136A (en) Manufacture of extra thin cold-rolled soft steel sheet excellent in ductility and deep drawability by box annealing at low temperature
JPH0681045A (en) Production of cold rolled steel sheet excellent in workability and baking hardenability
JPS62205232A (en) Manufacture of ultrathin cold rolled soft steel sheet superior in ductility and deep drawability by low temperature box annealing
JP2010530030A (en) Cold rolled steel sheet and method for producing the same
KR100555581B1 (en) Cold Rolled Steel Sheet Having Homogeneous Plastic Deformation Property And Manufacturing Method Thereof
JP3273383B2 (en) Cold rolled steel sheet excellent in deep drawability and method for producing the same
JPH021212B2 (en)