JPH04180036A - Optical logical element - Google Patents

Optical logical element

Info

Publication number
JPH04180036A
JPH04180036A JP30958290A JP30958290A JPH04180036A JP H04180036 A JPH04180036 A JP H04180036A JP 30958290 A JP30958290 A JP 30958290A JP 30958290 A JP30958290 A JP 30958290A JP H04180036 A JPH04180036 A JP H04180036A
Authority
JP
Japan
Prior art keywords
quantum
quantum well
light
well layer
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30958290A
Other languages
Japanese (ja)
Inventor
Akihisa Tomita
章久 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP30958290A priority Critical patent/JPH04180036A/en
Publication of JPH04180036A publication Critical patent/JPH04180036A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the optical logic element of an ultra-high speed by using the bond quantum wells of small absorption and small effective carrier life. CONSTITUTION:An incident surface 23 is formed in such a manner that the active layers 22 formed by alternately laminating about 40 layers each of the bond quantum well layers 1 pinching 1st quantum well layers with 1st barrier layers and 2nd quantum well layers and 2nd barrier layers 221 attain about 16.8 deg. angle with the layer surface. The 1st quantum level Ee1 of the electrons and the 1st quantum level Eh1 of the holes of the 1st quantum well layers and the 1st quantum level Ee2 of electrons and the 1st quantum level Eh2 of holes of the 2nd quantum well layers in the bond quantum well layers are so determined as to satisfy Ee1>Ee2 and Ee1-Eh1<E2-Eh2. Signal light 24 is made incident perpendicularly on the incident surface 23 and control light 25 is made incident perpendicularly on the layer surface. The intensity of the signal light 24 transmitted through the boundary face is switched by the intensity of the control light 25.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光情報処理等に用いる光論理素子に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to an optical logic element used for optical information processing and the like.

〔従来の技術〕[Conventional technology]

近年、光の持つ高度な並列情報伝達、処理特性を利用し
たデジタル情報処理が注目を集めている。
In recent years, digital information processing that utilizes the highly parallel information transmission and processing characteristics of light has attracted attention.

このためには光を2次元的に制御するいわゆる面型論理
素子の開発が必要である。そのうちの一つとして光信号
を光によりオンオフする光ケートかある。従来、固型の
光ゲートとして第4図に示す構造がアブライドフィレッ
クスレタース(AppliedPhysics Let
ters) 46巻、918頁、(1985)において
シュウエル(Jewel、J、L、)等によって報告さ
れている。
For this purpose, it is necessary to develop a so-called planar logic element that controls light two-dimensionally. One of these is an optical cable that turns on and off optical signals using light. Conventionally, the structure shown in Fig. 4 as a solid optical gate is called Applied Physics Let's
Jewell, J.L. et al. (1985), Vol. 46, p. 918 (1985).

この光ゲートは一対の反射鏡34を有するファブリ・ペ
ロ共振器41の内部に量子井戸層42をはさんだ構造で
ある。ファブリ・ペロ共振器41の共振特性を利用して
光によるスイッチングを行っている。制御光25か入射
しない時には信号光24に対して高透過状態にある。制
御光25が入射すると量子井戸層42による吸収が制御
光25によって飽和して量子井戸層42の屈折率が変化
して信号光24に対して低透過状態になる。
This optical gate has a structure in which a quantum well layer 42 is sandwiched inside a Fabry-Perot resonator 41 having a pair of reflecting mirrors 34. Optical switching is performed using the resonance characteristics of the Fabry-Perot resonator 41. When the control light 25 is not incident, the signal light 24 is in a highly transparent state. When the control light 25 is incident, absorption by the quantum well layer 42 is saturated by the control light 25, and the refractive index of the quantum well layer 42 changes, resulting in a low transmission state for the signal light 24.

また、富田により特開昭63−187221において第
5図に示すような光ゲートが提案されている。この光ケ
ートては量子井戸層面に対して垂直方向の電場ベクトル
を持つ光(p偏光)が信号光24として入射する。制御
光25がないとき、信号光は量子井戸層42との界面を
通って裏面から出射する。ところが制御光が入射すると
量子井戸層における励起子吸収が飽和してスペクトル幅
が拡り、信号光に対する屈折率が増加する。この時、信
号光の進行方向は量子井戸層との界面に対しほぼ臨界角
となるため全反射して量子井戸層との界面からは出射し
なくなる事を利用してスイッチングを行なう。
Furthermore, an optical gate as shown in FIG. 5 was proposed by Tomita in Japanese Patent Application Laid-Open No. 187221/1983. Light (p-polarized light) having an electric field vector perpendicular to the plane of the quantum well layer enters this optical cable as signal light 24. When the control light 25 is not present, the signal light passes through the interface with the quantum well layer 42 and is emitted from the back surface. However, when the control light is incident, exciton absorption in the quantum well layer is saturated, the spectral width is expanded, and the refractive index for the signal light is increased. At this time, since the traveling direction of the signal light is approximately at a critical angle with respect to the interface with the quantum well layer, switching is performed by utilizing the fact that it is totally reflected and no longer emerges from the interface with the quantum well layer.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上に述べた光ゲートでの応答速度は量子井戸層における
キャリア寿命で決まるため、数百psから数±nsと遅
く実用的でない。最近、竹内等が第37回応用物理学関
係連合講演会3l−a−F−6(1990年春)1報告
しているように、第6図に示す構造の結合量子井戸のト
ンネル現象を利用して実効的なキャリア寿命を減少させ
ることを提案し、吸収の回復時間として3psを得てい
る。
The response speed of the optical gate described above is determined by the carrier lifetime in the quantum well layer, and is therefore slow, ranging from several hundred ps to several ±ns, which is impractical. Recently, as reported by Takeuchi et al. at the 37th Joint Applied Physics Conference 3l-a-F-6 (Spring 1990)1, a method using the tunneling phenomenon of a coupled quantum well with the structure shown in Figure 6 has been reported. proposed to reduce the effective carrier lifetime, and obtained an absorption recovery time of 3 ps.

しかし、第6図の構造では吸収係数の変化に関係する準
位よりも光遷移エネルキーが小さな準位が存在するため
吸収が大きくこの結合量子井戸をデバイスに用いること
は難しい。
However, in the structure shown in FIG. 6, there is a level whose optical transition energy is smaller than the level related to the change in absorption coefficient, so it is difficult to use this coupled quantum well in a device because of the large absorption.

本発明の目的は吸収が小さく、実効的なキャリア寿命が
小さな結合量子井戸を用いた高速の光論理素子を提供す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a high-speed optical logic element using a coupled quantum well with low absorption and a short effective carrier lifetime.

〔課題を解決するための手段〕[Means to solve the problem]

前述の問題点を解決するため、本発明の第1の光論理素
子は、電子の第一量子準位がE。1、正孔の第一量子準
位がEhlの第一の量子井戸と、電子の第一量子準位が
Ee2、正孔の第一量子準位がEh2で E 、 1> E −2 かつ Eel  Ehl<E−2Eh2 を満たす第二の量子井戸が量子力学的に結合した結合量
子井戸層面に垂直な電場ベクトルを持つ光を信号光とし
て前記結合量子井戸層と空気との界面に対して臨界角よ
り小さくかつ臨界角の近傍の角度で前記結合量子井戸層
に入射し、同時に臨界角より小さな入射角で制御光を前
記信号光の入射点に入射し、前記界面から出射する信号
光の強度を前記制御光の強度で制御することを特徴とす
る構成とした。
In order to solve the above-mentioned problems, the first optical logic element of the present invention has a first quantum level of electrons of E. 1. The first quantum level of the hole is Ehl, the first quantum level of the electron is Ee2, the first quantum level of the hole is Eh2, and E, 1> E −2 and Eel A second quantum well that satisfies Ehl<E-2Eh2 is quantum-mechanically coupled with light having an electric field vector perpendicular to the surface of the coupled quantum well layer as signal light at a critical angle with respect to the interface between the coupled quantum well layer and air. The control light is incident on the coupled quantum well layer at an angle smaller than the critical angle, and at the same time, the control light is made incident on the input point of the signal light at an angle of incidence smaller than the critical angle, and the intensity of the signal light exiting from the interface is adjusted. The configuration is characterized in that control is performed using the intensity of the control light.

本発明の第2の光論理素子は2枚の平行な反射鏡からな
るファブリ・ペロ共振器の内部に、電子の第一量子準位
がEel、正孔の第一量子準位がEhlの第一の量子井
戸と、電子の第一量子準位がEa2、正孔の第一量子準
位がEゎ、てE 、 + > E −2 かつ E −+  E h + < E。2−Eh2を満たす
第二の量子井戸が量子力学的に結合した結合量子井戸層
を能動層として持ち、入射する制御光の強度による結合
量子井戸層の屈折率と吸収係数の変化を利用してファブ
リ・ペロ共振器の透過または反射特性を制御することを
特徴とする構成とした。
The second optical logic element of the present invention has a Fabry-Perot cavity consisting of two parallel reflecting mirrors, in which the first quantum level of electrons is Eel and the first quantum level of holes is Ehl. One quantum well, the first quantum level of electrons is Ea2, and the first quantum level of holes is Eゎ, so that E, + > E −2 and E −+ E h + < E. The second quantum well satisfying 2-Eh2 has a quantum-mechanically coupled coupled quantum well layer as an active layer, and utilizes changes in the refractive index and absorption coefficient of the coupled quantum well layer depending on the intensity of the incident control light. The structure is characterized by controlling the transmission or reflection characteristics of the Fabry-Perot resonator.

〔作用〕[Effect]

第1図は本発明における結合量子井戸Jのエネルキーダ
イアクラムである。これによって本発明の詳細な説明す
る。結合量子井戸層1に制御光が入射すると発生する光
キャリアによって第一の量子井戸層11の第1準位の光
遷移が飽和して屈折率と吸収係数が変化する。これによ
って光論理素子はスイッチングされる。キャリア寿命は
第一の障壁層13で隔てられた第二の量子井戸層12に
トンネルする早さで決まるためpsと高速である。
FIG. 1 is an energy diagram of a coupled quantum well J in the present invention. This will provide a detailed explanation of the invention. When control light is incident on the coupled quantum well layer 1, the optical carriers generated saturate the optical transition at the first level of the first quantum well layer 11, changing the refractive index and absorption coefficient. This causes the optical logic element to be switched. The carrier lifetime is determined by the speed of tunneling into the second quantum well layer 12 separated by the first barrier layer 13, so it is as fast as ps.

第二の量子井戸層12の光遷移のエネルギーはE。2−
Eh2であり、第一の量子井戸層11の光遷移のエネル
ギーEe、−Eh、より大きく、第一の量子井戸層11
の光遷移のエネルギーの光は第二の量子井戸層12では
吸収されないため単一の量子井戸層の場合と同様に吸収
係数は小さい。このため高速の光ゲートが実現できる。
The energy of optical transition in the second quantum well layer 12 is E. 2-
Eh2, which is greater than the optical transition energy Ee, -Eh of the first quantum well layer 11;
Since the light having the optical transition energy is not absorbed by the second quantum well layer 12, the absorption coefficient is small as in the case of a single quantum well layer. Therefore, a high-speed optical gate can be realized.

〔実施例」 第2図は本発明の第1の実施例を示す構成図である。I
nPの基板21の上にI n O,52G a O,3
9Auo、o+ASからなる厚さ10層mの第一の量子
井戸層を、I n o、s+ A n o、is A 
Sからなる厚さ5nmの第一の障壁層とI n O,6
9G a O,3、A s o6゜Po、33からなる
厚さ15層mの第二の量子井戸層で挟んだ結合量子井戸
層lとInPからなる厚さ20層mの第二の障壁層22
1を交互に40層すつ積層した能動層22を層面に対し
て168度の角度をなすように反応性イオンビーム(R
IBE)によってエッチンクし入射面23を形成する。
[Embodiment] FIG. 2 is a configuration diagram showing a first embodiment of the present invention. I
I n O,52G a O,3 on the nP substrate 21
The first quantum well layer with a thickness of 10 m consisting of 9 Auo, o+AS is I no, s+ A no, is A
A first barrier layer with a thickness of 5 nm made of S and I n O,6
A coupled quantum well layer 1 sandwiched between 15 m thick second quantum well layers made of 9G a O, 3, A s o 6 ° Po, 33, and a 20 m thick second barrier layer made of InP. 22
A reactive ion beam (R
The incident surface 23 is formed by etching by IBE).

この結合量子井戸層において、第一の量子井戸層の電子
の第一量子準位はEe+= 50mev、正孔の第一量
子準位はEb+−826,7meVであり第二の量子井
戸層の電子の第一量子準位がEe+=42meV、正孔
の第一量子準位がEh2=  906.2meVである
から、E 、 l > E −2 かつ Eat  Eb+ <E−2Eh2 を満たしている。2番目の条件より能動層22における
最低エネルギーの励起子は第一の量子井戸層のものであ
り、このエネルギーの光に対する第二の量子井戸層の吸
収は小さい。
In this coupled quantum well layer, the first quantum level of electrons in the first quantum well layer is Ee+ = 50 meV, the first quantum level of holes is Eb + -826.7 meV, and the first quantum level of electrons in the second quantum well layer is Ee+ = 50 meV. Since the first quantum level of is Ee+ = 42 meV and the first quantum level of hole is Eh2 = 906.2 meV, E, l > E -2 and Eat Eb + < E-2Eh2 are satisfied. According to the second condition, the lowest energy exciton in the active layer 22 is in the first quantum well layer, and the absorption of light of this energy in the second quantum well layer is small.

信号光24を入射面23に垂直に入射する。信号光24
は能動層22と空気との界面に関してp偏光であり、ま
たそのエネルギーは865meVで能動層22の励起子
のエネルギーよりlomeV低エネルキー側にあたる。
The signal light 24 is made perpendicularly incident on the incident surface 23. Signal light 24
is p-polarized light with respect to the interface between the active layer 22 and air, and its energy is 865 meV, which is lomeV lower energy than the energy of excitons in the active layer 22.

エネルギ−880meVの制御光25を層面に垂直に入
射する。制御光25の強度が小さい場合、光のエネルギ
ー865meVにおける屈折率は3.4で、この屈折率
に対する臨界角は72.9度、偏光角は73.6度であ
るため界面において大きな透過光強度が得られる。とこ
ろが、制御光25の強度が大きくなると励起子による吸
収が飽和し吸収スペクトルの幅が拡る。このため励起市
吸収のエネルギーよりも低エネルギー側にある信号光2
4のエネルギー865meVの光に対する屈折率が38
48に増大する。この屈折率に対する臨界角は732度
であるため信号光24は界面において全反射され透過光
は現われず、制御光25の強度によって界面を透過する
信号光240強度がスイッチングされる。制御光がなく
なった場合、第一の量子井戸層にあったキャリアは、E
el>Eelであるため第二の量子井戸層に速やかにト
ンネルして第一の量子井戸層の吸収が回復する。このた
め光ゲートの応答時間はlps程度となり超高速の光論
理素子が実現される。
Control light 25 having an energy of -880 meV is incident perpendicularly to the layer surface. When the intensity of the control light 25 is small, the refractive index at a light energy of 865 meV is 3.4, the critical angle for this refractive index is 72.9 degrees, and the polarization angle is 73.6 degrees, so the transmitted light intensity is large at the interface. is obtained. However, when the intensity of the control light 25 increases, the absorption by excitons becomes saturated and the width of the absorption spectrum widens. Therefore, the signal light 2 is on the lower energy side than the energy of excited city absorption.
4 has a refractive index of 38 for light with an energy of 865 meV.
It increases to 48. Since the critical angle for this refractive index is 732 degrees, the signal light 24 is totally reflected at the interface and no transmitted light appears, and the intensity of the signal light 240 passing through the interface is switched by the intensity of the control light 25. When the control light disappears, the carriers in the first quantum well layer become E
Since el>Eel, the light quickly tunnels into the second quantum well layer and the absorption in the first quantum well layer is restored. Therefore, the response time of the optical gate is on the order of lps, and an ultra-high-speed optical logic element can be realized.

第3図は本発明の第2の実施例を示す構成図である。I
nPの基板21の上に厚さ2μmのInPのクラッド層
32、I n o、s+ G a O,39A 4 o
、o+ A Sからなる厚さ10層mの第一の量子井戸
層をIno、s+Aρ。、、Asからなる厚さ5nmの
第一の障壁層とI n 0.69 G a 0.31 
A S O,6? P O,33からなる厚さ15層m
の第二の量子井戸層で挟んだ結合量子井戸層1とInP
からなる厚さ20層mの第二の障壁層221を交互に4
0層ずつ積層した能動層22、厚さ2μmのInPのク
ラッド層33を順次積層する。基板21を厚さ100μ
mに鏡面研磨した後5102、アモルファスS1からな
る誘電体多層膜の反射鏡34を形成する。反射鏡34の
反射率は98%である。この結合量子井戸層において、
第一の量子井戸層の電子の第一量子準位はEe1−1−
5O■、正孔の第一量子準位はEh、= −826,7
1neVであり第二の量子井戸層の電子の第一量子準位
がEI2=42meV、正孔の第一量子準位がEe2=
 −906,2meVであるから、 Ee、>’Ee2 かつ E el −E h; < E s2− E h=を満
たしている。2番目の条件より能動層22における最低
エネルギーの励起子は第一の量子井戸層のものであり、
このエネルギーの光に対する第二の量子井戸層の吸収は
小さい。
FIG. 3 is a block diagram showing a second embodiment of the present invention. I
An InP cladding layer 32 with a thickness of 2 μm is formed on the nP substrate 21.
, o+A The first quantum well layer with a thickness of 10 m is Ino, s+Aρ. ,, a first barrier layer with a thickness of 5 nm made of As and I n 0.69 Ga 0.31
ASO, 6? 15 layers m thick consisting of P O,33
Coupled quantum well layer 1 and InP sandwiched between second quantum well layers of
A second barrier layer 221 with a thickness of 20 m consisting of 4
An active layer 22 and a cladding layer 33 of InP having a thickness of 2 μm are sequentially laminated. The thickness of the substrate 21 is 100μ
After mirror polishing 5102, a reflecting mirror 34 of a dielectric multilayer film made of amorphous S1 is formed. The reflectance of the reflecting mirror 34 is 98%. In this coupled quantum well layer,
The first quantum level of electrons in the first quantum well layer is Ee1-1-
5O■, the first quantum level of the hole is Eh, = -826,7
1neV, the first quantum level of electrons in the second quantum well layer is EI2=42meV, and the first quantum level of holes is Ee2=
Since it is -906.2 meV, it satisfies Ee, >'Ee2 and Eel -Eh; <Es2-Eh=. From the second condition, the lowest energy exciton in the active layer 22 is in the first quantum well layer,
The absorption of light of this energy by the second quantum well layer is small.

信号光24を反射鏡34に垂直に入射する。信号光24
のエネルギーは865mevで能動層22の励起子のエ
ネルギーより10meV低エネルギー側にあたる。また
、信号光24はファブリ・ペロ共振器に発振するように
選ぶ。エネルギー880meVの制御光25を同様に入
射する。制御光25の強度が大きくなると励起子による
吸収が飽和し吸収スペクトルの幅が拡る。このため励起
子吸収のエネルギーよりも低エネルギー側にある信号光
24の光のエネルギー865meVに対する屈折率か増
大し信号光24はファブリ・ペロ共振器の共振からすれ
て透過光の強度が減少してスイッチングされる。制御光
がなくなった場合、第一の量子井戸層にあったキャリア
は、Ee〉Eelであるため第二の量子井戸層に速やか
にトンネルして第一の量子井戸層の吸収が回復する。こ
のため光ケートの応答時間はlps程度となり超高速の
光論理素子が実現される。
The signal light 24 is perpendicularly incident on the reflecting mirror 34. Signal light 24
The energy is 865 meV, which is 10 meV lower than the energy of excitons in the active layer 22. Further, the signal light 24 is selected so as to oscillate in a Fabry-Perot resonator. Control light 25 having an energy of 880 meV is similarly incident. When the intensity of the control light 25 increases, absorption by excitons becomes saturated and the width of the absorption spectrum widens. For this reason, the refractive index for the light energy of 865 meV of the signal light 24, which is on the lower energy side than the energy of exciton absorption, increases, and the signal light 24 shifts from the resonance of the Fabry-Perot resonator, and the intensity of the transmitted light decreases. Switched. When the control light disappears, the carriers in the first quantum well layer quickly tunnel into the second quantum well layer because Ee>Eel, and absorption in the first quantum well layer is restored. Therefore, the response time of the optical gate is on the order of lps, and an ultra-high-speed optical logic element can be realized.

〔発明の効果〕〔Effect of the invention〕

以上、詳述したように本発明の効果を要約すると吸収が
小さく、実効的なキャリア寿命か小さな結合量子井戸を
用いる二七により高速の光論理素子が得られることであ
る。
As detailed above, to summarize the effects of the present invention, a high-speed optical logic element can be obtained by using a coupled quantum well with low absorption and a small effective carrier life.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における結合量子井戸のエネ
ルギーダイアクラム、第2図は本発明の一実施例を示す
構造図、第3図は第2の実施例を示す構造図、第4図は
第1の従来例を示す構造図、第5図は第2の従来例を示
す構造図、第6図は従来の結合量子井戸のエイルギータ
イアクラムであ■・・・・・結合量子井戸層、11・・
・・・第一の量子井戸層、12・・・・・第二の量子井
戸層、13・・・・・・第一の障壁層、21・・・・・
基板、22・・・・・能動層、221・・・・第二の障
壁層、23・・・・・入射面、24・・・・・・信号光
、25・・・・・・制御光、32・・・・・クラッド層
、33・・・クラッド層、34・・・・・反射鏡、41
・・・・・ファブリ・ペロ共振器、42・・・・・・量
子井戸層。 代理人 弁理士  内 原   晋 イ肋電子ヲy 第 j図 袷3図
FIG. 1 is an energy diagram of a coupled quantum well according to an embodiment of the present invention, FIG. 2 is a structural diagram showing an embodiment of the present invention, FIG. 3 is a structural diagram showing a second embodiment, and FIG. Figure 5 is a structural diagram showing the first conventional example, Figure 5 is a structural diagram showing the second conventional example, and Figure 6 is a structural diagram showing the conventional coupled quantum well. Well layer, 11...
...First quantum well layer, 12...Second quantum well layer, 13...First barrier layer, 21...
Substrate, 22...Active layer, 221...Second barrier layer, 23...Incidence surface, 24...Signal light, 25...Control light , 32... cladding layer, 33... cladding layer, 34... reflecting mirror, 41
...Fabry-Perot resonator, 42...Quantum well layer. Agent: Patent Attorney Susumu Uchihara, Electronics Engineer, Figure J, Figure 3

Claims (1)

【特許請求の範囲】 1、電子の第一量子準位がE_e_1、正孔の第一量子
準位がE_h_1の第一の量子井戸と、電子の第一量子
準位がE_e_2、正孔の第一量子準位がE_h_2で
E_e_1>E_e_2 かつ E_e_1−E_h_1<E_e_2−E_h_2を満
たす第二の量子井戸が量子力学的に結合した結合量子井
戸層面に垂直な電場ベクトルを持つ光を信号光として前
記結合量子井戸層と空気との界面に対して臨界角より小
さくかつ臨界角の近傍の角度で前記結合量子井戸層に入
射し、同時に臨界角より小さな入射角で制御光を前記信
号光の入射点に入射することを特徴とする光論理素子。 2、2枚の平行な反射鏡からなるファブリ・ペロ共振器
の内部に、電子の第一量子準位がE_e_1、正孔の第
一量子準位がE_h_1の第一の量子井戸と、電子の第
一量子準位がE_e_2、正孔の第一量子準位がE_h
_2で E_e_1>E_e_2 かつ E_e_1−E_h_1<E_e_2−E_h_2を満
たす第二の量子井戸が量子力学的に結合した結合量子井
戸層を能動層としたことを特徴とする光論理素子。
[Claims] 1. A first quantum well in which the first quantum level of electrons is E_e_1 and the first quantum level of holes is E_h_1; A second quantum well with one quantum level of E_h_2 and satisfying E_e_1>E_e_2 and E_e_1-E_h_1<E_e_2-E_h_2 is quantum-mechanically coupled. Light having an electric field vector perpendicular to the coupled quantum well layer plane is used as signal light for the coupling. The control light is incident on the coupled quantum well layer at an angle smaller than and close to the critical angle with respect to the interface between the quantum well layer and the air, and at the same time, the control light is directed to the incident point of the signal light at an angle of incidence smaller than the critical angle. An optical logic element characterized by an incident light. 2. Inside a Fabry-Perot cavity consisting of two parallel reflecting mirrors, there is a first quantum well where the first quantum level of electrons is E_e_1 and the first quantum level of holes is E_h_1; The first quantum level is E_e_2, and the first quantum level of holes is E_h.
An optical logic element characterized in that an active layer is a coupled quantum well layer in which second quantum wells satisfying E_e_1>E_e_2 and E_e_1-E_h_1<E_e_2-E_h_2 are quantum mechanically coupled at _2.
JP30958290A 1990-11-15 1990-11-15 Optical logical element Pending JPH04180036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30958290A JPH04180036A (en) 1990-11-15 1990-11-15 Optical logical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30958290A JPH04180036A (en) 1990-11-15 1990-11-15 Optical logical element

Publications (1)

Publication Number Publication Date
JPH04180036A true JPH04180036A (en) 1992-06-26

Family

ID=17994768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30958290A Pending JPH04180036A (en) 1990-11-15 1990-11-15 Optical logical element

Country Status (1)

Country Link
JP (1) JPH04180036A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5963358A (en) * 1995-04-26 1999-10-05 Kabushiki Kaisha Toshiba Semiconductor device and method for its operation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5963358A (en) * 1995-04-26 1999-10-05 Kabushiki Kaisha Toshiba Semiconductor device and method for its operation

Similar Documents

Publication Publication Date Title
US6937781B2 (en) Optical switch having photonic crystal structure
KR100973319B1 (en) All-optical logic gates using nonlinear elements
JP5017765B2 (en) OPTICAL MODULATOR, MANUFACTURING METHOD THEREOF, MODULATION OPTICAL SYSTEM, OPTICAL INTERCONNECT DEVICE USING SAME, AND OPTICAL COMMUNICATION DEVICE
KR101467241B1 (en) Surface plasmon polariton circuit element with discontinuous waveguide with gap and apparatus and method for generating surface plasmon polariton mode
US6684008B2 (en) Planar photonic bandgap structures for controlling radiation loss
KR101129223B1 (en) All optical logic device and optical modulator using surface plasmon resonance
JPH04180036A (en) Optical logical element
JPS6045084A (en) Distributed feedback type semiconductor laser
JP2005128531A (en) Integrated optical isolator
JPS63187221A (en) Optical logic element
JP4975162B2 (en) Self-cloning photonic crystal for ultraviolet light
JP2856525B2 (en) Optical waveguide polarizer
JPH01112226A (en) Optical logic element
JPS59188605A (en) Waveguide type light mode filter
JPH11237650A (en) Optical switch
JP2940238B2 (en) Light switch
JPH1126882A (en) Wavelength plate integrated type polarized wave independent semiconductor amplifier
JPH03242618A (en) Electric field modulation type magneto-optical device
JP3811774B2 (en) Optical switching device
JP2640877B2 (en) Optical semiconductor device
JPH01182833A (en) Optical switch
JPS63280224A (en) Waveguide type optical control element
JPS62270927A (en) Optical bistable element
JPH0545544A (en) Optical waveguide
JPS62260126A (en) Semiconductor optical switch