JPH1126882A - Wavelength plate integrated type polarized wave independent semiconductor amplifier - Google Patents

Wavelength plate integrated type polarized wave independent semiconductor amplifier

Info

Publication number
JPH1126882A
JPH1126882A JP17946897A JP17946897A JPH1126882A JP H1126882 A JPH1126882 A JP H1126882A JP 17946897 A JP17946897 A JP 17946897A JP 17946897 A JP17946897 A JP 17946897A JP H1126882 A JPH1126882 A JP H1126882A
Authority
JP
Japan
Prior art keywords
waveguide
region
polarized wave
polarization
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17946897A
Other languages
Japanese (ja)
Other versions
JP3393533B2 (en
Inventor
Katsuaki Kiyoku
克明 曲
Yuzo Yoshikuni
裕三 吉國
Naoto Yoshimoto
直人 吉本
Toshio Ito
敏夫 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP17946897A priority Critical patent/JP3393533B2/en
Publication of JPH1126882A publication Critical patent/JPH1126882A/en
Application granted granted Critical
Publication of JP3393533B2 publication Critical patent/JP3393533B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To solve polarized wave dependence of a semiconductor optical amplifier by setting the angle, made by a straight line connecting a first waveguide channel to a second waveguide channel and a straight line in parallel with a substrate, at a specified angle, and specifying the length of the second waveguide channel by a specified formula. SOLUTION: Under a condition where a TE polarized wave light including an electric field component in an x-direction is made incident, first, gain of TE polarized wave is provided in an optical amplifier region. When the incident light enters a λ/4 plate region, the light made incident on a region A enters a region B while holding the TE polarized wave. In the region B, in the major axis of a crystal (a line connecting two waveguide channels), the angle (θ) made by the direction orthogonal to the optical axis of the light of a first waveguide channel 21 (x-axis) and the axis connecting the first waveguide channel 21 and a second waveguide channel 22 is 45 deg.. By setting the length with a formula with two equivalent refractive indexes from the lowest order provided to an intrinsic waveguide mode in the region B as n1 and n2 (n1 >n2 ), polarized wave of the reflected light is rotated by 90 deg. at the entrance of the region B, and emitted as a TM polarized wave.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光通信,光交換,
光情報処理等に用いる波長板集積型偏波無依存半導体増
幅器に関する。
TECHNICAL FIELD The present invention relates to optical communication, optical switching,
The present invention relates to a polarization independent semiconductor amplifier integrated with a wave plate used for optical information processing and the like.

【0002】[0002]

【従来の技術】光通信,光交換,光情報処理といった光
を利用したシステムの構築を考えると、光ファイバや光
導波路,光スイッチ,光受光器,光増幅器等の光素子が
必要不可欠になる。これらの素子は、光ファイバと結合
したり、集積化を行うことで実用的部品にする必要があ
る。集積化することは、μm精度で必要とされる光ファ
イバと半導体素子との光軸合せを省くことができるの
で、堅牢となり、信頼性の増加が予想できる。
2. Description of the Related Art Considering the construction of a system using light such as optical communication, optical switching, and optical information processing, optical elements such as an optical fiber, an optical waveguide, an optical switch, an optical receiver, and an optical amplifier are indispensable. . These elements need to be made into practical parts by being combined with an optical fiber or by being integrated. The integration makes it possible to omit the optical axis alignment between the optical fiber and the semiconductor element, which is required with a precision of μm, so that the integration becomes robust and an increase in reliability can be expected.

【0003】ところで、通常の光ファイバにおいては、
光源からの偏波面を維持する機能は有しておらず、半導
体光スイッチや半導体光増幅器といった光機能素子に入
力される信号光は、環境の変化に応じてその偏波状態が
変動する。
By the way, in a normal optical fiber,
It does not have the function of maintaining the plane of polarization from the light source, and the signal light input to an optical functional element such as a semiconductor optical switch or a semiconductor optical amplifier changes its polarization state in accordance with a change in environment.

【0004】しかし上記のような半導体デバイスの導波
構造は一般的に等方的でなく、幅が数ミクロンあるのに
対して厚みがサブミクロンオーダであることや、導波層
のスイッチイング特性又は活性層の増幅特性が偏波状態
によって異なる。そのため入力信号光の偏波状態によっ
て出力特性が大きく変動するという課題(利得の偏波依
存性)が生じていた。
However, the waveguide structure of a semiconductor device as described above is not generally isotropic, and has a thickness of the order of sub-micron while having a width of several microns, and a switching characteristic of the waveguide layer. Alternatively, the amplification characteristics of the active layer differ depending on the polarization state. For this reason, there has been a problem that the output characteristic greatly varies depending on the polarization state of the input signal light (polarization dependency of gain).

【0005】[0005]

【発明が解決しようとする課題】偏波依存性を低減する
方法として、半導体光増幅器の出射端にλ/4板機能素
子を集積することが考えられる。ここで、入射端には反
射防止膜を、出射端に高反射膜等を付加して反射率を高
めることにより反射型光増幅器として使用する。このと
き出射端で反射された信号光が再びλ/4板を通過する
ので、結局はλ/2板として動作することになり、偏波
面を90°回転することができる。このような構成であ
れば、入射偏波と出射偏波とでは90°異なっているた
め干渉を起こさない。したがって、反防止膜に対する負
荷が軽減される。この波長板といった光学素子はバルク
部品のものがよく利用されている。2つの直交する直線
偏波成分の位相差がπになる板厚を有した波長板をλ/
2板と称する。該λ/2板のサイズは大きく、半導体材
料との整合性が良くないという、問題がある。
As a method of reducing the polarization dependence, it is conceivable to integrate a λ / 4 plate functional element at the output end of the semiconductor optical amplifier. Here, an anti-reflection film is added to the incident end, and a high-reflection film or the like is added to the output end to increase the reflectivity so as to be used as a reflective optical amplifier. At this time, the signal light reflected at the emission end passes through the λ / 4 plate again, and eventually operates as a λ / 2 plate, and the polarization plane can be rotated by 90 °. With such a configuration, there is no interference since the incident polarization and the exit polarization are different by 90 °. Therefore, the load on the anti-prevention film is reduced. As the optical element such as the wave plate, a bulk component is often used. A wavelength plate having a plate thickness at which the phase difference between two orthogonal linearly polarized components becomes π is λ /
Called two plates. There is a problem that the size of the λ / 2 plate is large and the matching with the semiconductor material is not good.

【0006】[0006]

【課題を解決するための手段】前記課題を解決する波長
板集積型偏波無依存半導体増幅器は、半導体基板上に作
製された埋め込み構造を有した半導体光増幅器の一方側
端面に埋め込み導波路が集積接続されており、該埋め込
み導波路は二つの第1の導波路と第2の導波路とから構
成され、第1の導波路(長さ:L1 )は半導体光増幅器
の活性層と集積され、第2の導波路(長さ:L2 ,L2
≦L1 )は第1の導波路と平行に位置し、二つの導波路
の中心を結ぶ直線と基板に平行な直線とのなす角を45
°に設定してあり、二つの導波路が有する固有な導波モ
ードの最低次から数えて2つの等価屈折率をn1 及びn
2 (n1 >n2 )とすると、第2の導波路の長さL2
式で定義されていることを特徴とする。
A wave plate integrated type polarization independent semiconductor amplifier which solves the above problem has a buried waveguide at one end face of a semiconductor optical amplifier having a buried structure manufactured on a semiconductor substrate. The buried waveguide is composed of two first waveguides and a second waveguide, and the first waveguide (length: L 1 ) is integrated with the active layer of the semiconductor optical amplifier. And a second waveguide (length: L 2 , L 2
≦ L 1 ) is located parallel to the first waveguide, and forms an angle of 45 ° between a straight line connecting the centers of the two waveguides and a straight line parallel to the substrate.
° and two equivalent refractive indices n 1 and n 1 counted from the lowest order of the intrinsic waveguide mode of the two waveguides.
2 (n 1 > n 2 ), the length L 2 of the second waveguide is defined by an equation.

【数2】 (Equation 2)

【0007】上記波長板集積型偏波無依存半導体増幅器
において、第1の導波路の形状が光学的に等方であるこ
とを特徴とする。
In the above-mentioned polarization-independent semiconductor amplifier integrated with a wave plate, the shape of the first waveguide is optically isotropic.

【0008】上記波長板集積型偏波無依存半導体増幅器
において、第1の導波路及び第2の導波路の少なくとも
何れか一方に電流注入を可能とすることを特徴とする。
In the above-mentioned polarization-independent semiconductor amplifier integrated with a wave plate, a current can be injected into at least one of the first waveguide and the second waveguide.

【0009】[作用]λ/2板は、入射光偏波と波長板
の結晶軸との間のなす角度をθとすれば、出射光偏波を
入射光偏波より2θ回転させる機能を有している。板厚
を位相差πだけずれるように設定すれば、入射偏波を9
0°回転することができる。本発明は、λ/2板におい
て、θ=45°に設定した場合と全く同一の原理に基づ
いて偏波面を回転する機能を半導体で作製し、半導体光
増幅器に集積化している。但し、光増幅器自体を反射型
で使用するため、この波長板の場所を2回通過する。し
たがって、波長板としてはλ/2板の半分に相当するλ
/4板で十分となる。入射光は増幅領域を通過後に波長
板領域を通過し、端面で反射されて波長板部を再び通過
する際には、偏波が90°回転する。したがって、どの
入射偏波に対しても必ずTE(横)偏波利得とTM
(縦)偏波利得とを1回ずつもらうことができるため、
全体として偏波無依存化が可能となる。
[Operation] The λ / 2 plate has a function of rotating the output light polarization by 2θ from the incident light polarization, assuming that the angle between the incident light polarization and the crystal axis of the wavelength plate is θ. doing. If the plate thickness is set to be shifted by the phase difference π, the incident polarization is 9
Can rotate 0 °. According to the present invention, the function of rotating the plane of polarization of a λ / 2 plate based on exactly the same principle as when θ is set to 45 ° is made of a semiconductor, and integrated in a semiconductor optical amplifier. However, since the optical amplifier itself is used in the reflection type, it passes twice through the place of the wave plate. Therefore, as a wave plate, λ corresponding to half of the λ / 2 plate
A quarter plate is sufficient. The incident light passes through the wave plate region after passing through the amplification region, is reflected at the end face, and when passing through the wave plate portion again, the polarization is rotated by 90 °. Therefore, for any incident polarization, TE (lateral) polarization gain and TM
(Vertical) polarization gain can be obtained once,
As a whole, polarization independence can be achieved.

【0010】なお、増幅器領域と波長板領域との境界に
達したとき、直交する二方向の波の間に位相差が生じて
はならない(直線偏波でないといけない。)。そのた
め、光増幅器領域における導波路は光学的に等方でなけ
ればならない。
When the boundary between the amplifier region and the wave plate region is reached, there must be no phase difference between the waves in the two orthogonal directions (they must be linearly polarized). Therefore, the waveguide in the optical amplifier region must be optically isotropic.

【0011】[0011]

【発明の実施の形態】次に、本発明の好適な実施の形態
を図面を参照して説明するが、本発明はこれらに限定さ
れるものではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, preferred embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto.

【0012】<第1の実施の形態>図1は、本発明の第
1の実施の形態にかかる半導体偏波回転素子の斜視図で
ある。図2(a)は図1の波長板の機能を有する領域の
拡大図であり、図2(b)はその側面断面図であり、図
3は領域Bにおける断面図である。ここで、符号11は
InP基板、12はInP埋め込み層、21はバンドギ
ャップ波長1.3 μm帯のInGaAsP導波層(第1の
導波路)、22はバンドギャップ波長1.1 μm帯のIn
GaAsP導波層(第2の導波路)を各々図示する。
<First Embodiment> FIG. 1 is a perspective view of a semiconductor polarization rotator according to a first embodiment of the present invention. 2A is an enlarged view of a region having the function of the wavelength plate in FIG. 1, FIG. 2B is a side sectional view thereof, and FIG. Here, reference numeral 11 denotes an InP substrate, 12 denotes an InP buried layer, 21 denotes an InGaAsP waveguide layer (first waveguide) having a band gap wavelength of 1.3 μm, and 22 denotes InP having a band gap wavelength of 1.1 μm.
Each of the GaAsP waveguide layers (second waveguides) is illustrated.

【0013】本素子の動作原理を簡単に示す。ここで、
半導体光増幅器の一経路当たりの増幅利得として、TE
(横)偏波をGTE、TM(縦)偏波をGTMとする。x方
向に電界成分を有するTE偏波光が入射された状態で
は、先ずGTEの利得を光増幅器領域でもらう。入射光が
λ/4板領域に入ると、領域Aを入射してきた光はTE
偏波を保持したまま領域Bに侵入する。この領域Bでは
結晶の主軸(二つの導波路を結ぶ線)が図3に示される
ように、第1の導波路21の光の主軸(x軸)と直交す
る方向と第1の導波路21と第2の導波路22とを結ぶ
軸とのなす角度(θ)が45°ずれていることになる。
領域Bにおける固有な導波モードの有する最低次から数
えて二つの等価屈折率をn1 及びn2 ((n1 >n2
としてその長さLを、下記数式に設定することで、先に
述べたλ/2板の原理に基づいて反射された光が領域B
の入口で偏波が90°回転してTM偏波となって出射さ
れることになる。
The principle of operation of the device will be briefly described. here,
As an amplification gain per one path of the semiconductor optical amplifier, TE
The (horizontal) polarization is G TE , and the TM (vertical) polarization is G TM . In a state where the TE polarized light having electric field component in x direction is incident, first get a gain of G TE in the optical amplifier region. When the incident light enters the λ / 4 plate area, the light incident on the area A is TE
It enters the region B while maintaining the polarization. In this region B, as shown in FIG. 3, the main axis of the crystal (the line connecting the two waveguides) is orthogonal to the main axis (x-axis) of the light of the first waveguide 21 and the first waveguide 21 This means that the angle (θ) between the axis connecting the second waveguide 22 and the second waveguide 22 is shifted by 45 °.
The two equivalent refractive indices counted from the lowest order of the intrinsic waveguide mode in the region B are n 1 and n 2 ((n 1 > n 2 )).
By setting the length L to the following equation, light reflected on the basis of the above-described principle of the λ / 2 plate
The polarization is rotated by 90 ° at the entrance of the laser beam and is output as TM polarization.

【数3】 (Equation 3)

【0014】したがって、TE偏波光として行きにGTE
の利得を受け、TM偏波光として戻る際にGTMの利得を
受ける。すなわち、全体として(GTE+GTM)の利得を
もらって出射される。
Therefore, G TE
Receiving a gain, receiving the gain G TM in returning as TM polarized light. That is, the light is emitted with a gain of (G TE + G TM ) as a whole.

【0015】一方、TM偏波が入射された場合に関して
も同様である。すなわち、TM偏波光として行きにGTM
の利得を受け、波長板領域で偏波が90°回転してTE
偏波光として戻る際にGTEの利得を受ける。すなわち、
全体として(GTE+GTM)の利得をもらって出射され
る。
On the other hand, the same applies to the case where the TM polarization is incident. In other words, G TM
, The polarization is rotated 90 ° in the wavelength plate region and TE
Receiving a gain of G TE in returning the polarized light. That is,
The light is emitted with a gain of (G TE + G TM ) as a whole.

【0016】このようにどちらの入射状態でも同じ利得
(TE利得とTM利得を一回ずつ)を得ることになり、
偏波依存性を解消することができる。実際には、加工精
度の問題により、波長1.55μmの入射光に対して83度
の偏波回転を実現した。
As described above, the same gain (TE gain and TM gain once each) is obtained in both incident states.
The polarization dependence can be eliminated. Actually, due to the problem of processing accuracy, a polarization rotation of 83 degrees was realized for incident light having a wavelength of 1.55 μm.

【0017】なお、第1の導波路を伝搬してきた波の進
行速度がx方向とy方向とで異なると、進行した波が光
増幅器領域とλ/4板領域との境界に達したとき、二方
向の波の間に位相差が生じるため、直線偏波にならな
い。そのため、λ/4板領域で所望の効果が得られな
い。よって、第1の導波路21は光学的に等方でなけれ
ばならない。
If the traveling speed of the wave propagating through the first waveguide is different between the x direction and the y direction, when the traveling wave reaches the boundary between the optical amplifier region and the λ / 4 plate region, Since there is a phase difference between the waves in the two directions, the waves do not become linearly polarized. Therefore, a desired effect cannot be obtained in the λ / 4 plate region. Therefore, the first waveguide 21 must be optically isotropic.

【0018】ここで、光学的等方について概説する。真
空中で光の波長及び物質の長さをそれぞれλ及びLで表
すとする。屈折率nの媒質中では光学的波長や光学的長
さはλ/n及びnLになる。そのため、図4(a)に示
すように、真空中では正方形状でないと、等方ではない
が、媒質中では図4(b)に示すように、上下左右を異
なった材質(nC1, nC2, nC2, nC1)で囲むことによ
り、ほぼ等方な状況を実現することができる。具体的に
は、半導体光増幅器の偏波依存性はx方向とy方向とで
閉じ込め係数の相違が原因で起こる。そこで、作製精度
の問題から長方形状(横長)でも、活性層部を縦方向に
三層(LOC)構成とすることで、偏波無依存化が可能
となる。
Here, the optical isotropy will be outlined. Let the wavelength of light and the length of the material in vacuum be denoted by λ and L, respectively. In a medium having a refractive index n, the optical wavelength and the optical length are λ / n and nL. Therefore, as shown in FIG. 4A, the material is not isotropic unless it has a square shape in a vacuum, but in the medium, as shown in FIG. 4B, different materials (n C1 , n C2 , n C2 , n C1 ) can realize a substantially isotropic situation. Specifically, the polarization dependence of the semiconductor optical amplifier occurs due to the difference in the confinement coefficient between the x direction and the y direction. Therefore, even if the active layer portion has a three-layer (LOC) configuration in the vertical direction even in a rectangular shape (horizontally long) due to the problem of fabrication accuracy, it is possible to make the polarization independent.

【0019】<第2の実施の形態>図5は本発明の第2
の実施の形態にかかる、半導体偏波回転素子の側面断面
図である。図2の構造に対して、上下に電極31,32
を設けていることが第1の実施の形態と異なる。これら
二つの電極31,32を用いて電流を注入することにい
より導波層21,22の屈折率を変化することができる
ため、トリミングが可能となる。
<Second Embodiment> FIG. 5 shows a second embodiment of the present invention.
FIG. 3 is a side cross-sectional view of the semiconductor polarization rotation element according to the embodiment. In contrast to the structure of FIG.
Is different from the first embodiment. By injecting a current using these two electrodes 31 and 32, the refractive index of the waveguide layers 21 and 22 can be changed, so that trimming becomes possible.

【0020】この結果、第1の実施の形態と較べて回転
精度を向上でき、波長1.55μmの入射光に対して85度
の偏波回転を実現した。この場合、電極は領域Bだけに
することも可能である。また各領域に電極を設け、領域
間で電気分離を行うことも可能である。さらに、導波層
21,22の少なくとも一方にだけ電流注入できるよう
に電極を部分的に設けることも可能である。
As a result, the rotation accuracy can be improved as compared with the first embodiment, and a polarization rotation of 85 degrees with respect to the incident light having a wavelength of 1.55 μm is realized. In this case, the electrode may be limited to the region B only. It is also possible to provide an electrode in each region and perform electric separation between the regions. Further, it is also possible to partially provide an electrode so that current can be injected only into at least one of the waveguide layers 21 and 22.

【0021】さらに、導波層構造に超格子構造を用いる
ことも可能であるし、導波層部を導波層よりもバンドギ
ャップ波長の短い組成で挟んだSCH構造を採用するこ
とも可能である。
Further, a superlattice structure can be used for the waveguide layer structure, or an SCH structure in which the waveguide layer portion is sandwiched by a composition having a band gap wavelength shorter than that of the waveguide layer can be adopted. is there.

【0022】本実施の形態においては、InP基板上の
InGaAsP材料系について説明したが、本発明はこ
れに限定されるものではなく、他の材料を用いることに
よっても、同様な効果を得ることができる。また、ドー
ピング層等も任意である。
In this embodiment, the InGaAsP material system on the InP substrate has been described. However, the present invention is not limited to this, and similar effects can be obtained by using other materials. it can. Further, a doping layer or the like is also optional.

【0023】また、二つの導波路の位置関係としては、
どちらが左右,上下であっても構わず、図3に示すよう
に、なす角θが45°であることのみ重要である。
The positional relationship between the two waveguides is as follows.
It does not matter which side is left, right, up or down. It is only important that the angle θ is 45 ° as shown in FIG.

【0024】この二つの導波路として組成が異なるもの
を実施の形態では例にして説明したが、組成の同じもの
を用いて、寸法を調節することも可能である。
Although the two waveguides having different compositions have been described as examples in the embodiment, it is also possible to adjust the dimensions by using the same waveguide.

【0025】さらに、導波層構造に超格子構造を用いる
ことも可能であるし、導波層部を導波層よりもバンドギ
ャップ波長の短い、組成で挟んだSCH構造を採用する
ことも可能である。
Furthermore, a superlattice structure can be used for the waveguide layer structure, and an SCH structure in which the waveguide layer portion is sandwiched between compositions having a shorter band gap wavelength than the waveguide layer can be employed. It is.

【0026】また第2の実施の形態で導波層22若しく
は導波層21と導波層22の両方をバンドギャップ波長
1.55μm帯のInGaAsP導波層とすれば、電流注入
により光増幅器として動作させることができる。
In the second embodiment, the waveguide layer 22 or both the waveguide layer 21 and the waveguide layer 22 are set to have a bandgap wavelength.
If an InGaAsP waveguide layer of 1.55 μm band is used, it can be operated as an optical amplifier by current injection.

【0027】[0027]

【発明の効果】以上、実施の形態と共に説明したよう
に、本発明の半導体光増幅器では、半導体基板上に作製
された埋め込み構造を有した半導体光増幅器の一方側端
面に埋め込み導波路が集積接続されており、その埋め込
み導波路は二つの導波路(第1の導波路,第2の導波
路)から構成され、第1の導波路(長さ:L1 )は半導
体光増幅器の活性層と集積され、第2の導波路(長さ:
2 ,L2 ≦L1 )は第1の導波路と平行に位置し、二
つの導波路の中心を結ぶ直線と基板に平行な直線とのな
す角を45°に設定してあり、二つの導波路が有する固
有な導波モードの最低次から数えて2つの等価屈折率を
1 及びn2 (n1 >n2 )とすると、第2の導波路の
長さL2 が式(1)で定義されていることを特徴とし、
さらには、第1の導波路及び第2の導波路の少なくとも
どちらか一方に電流注入を可能とする電極構造が設置さ
れているようにしたので、半導体光増幅器の偏波依存性
の解消に有効な偏波制御デバイスを実現することができ
る。
As described above, in the semiconductor optical amplifier of the present invention, an embedded waveguide is integratedly connected to one end face of a semiconductor optical amplifier having an embedded structure formed on a semiconductor substrate. The embedded waveguide is composed of two waveguides (a first waveguide and a second waveguide), and the first waveguide (length: L 1 ) is connected to the active layer of the semiconductor optical amplifier. Integrated second waveguide (length:
L 2 , L 2 ≦ L 1 ) are positioned parallel to the first waveguide, and the angle between a straight line connecting the centers of the two waveguides and a straight line parallel to the substrate is set to 45 °. Assuming that two equivalent refractive indices are n 1 and n 2 (n 1 > n 2 ) counted from the lowest order of the intrinsic waveguide mode of the two waveguides, the length L 2 of the second waveguide is expressed by the following equation ( Characterized in that it is defined in 1),
Further, since an electrode structure capable of injecting current is provided in at least one of the first waveguide and the second waveguide, it is effective to eliminate the polarization dependence of the semiconductor optical amplifier. A simple polarization control device can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態の半導体偏波回転素
子の斜視図である。
FIG. 1 is a perspective view of a semiconductor polarization rotator according to a first embodiment of the present invention.

【図2】(a)は図1の波長板の気相を有する領域の拡
大図であり、(b)はその側面図である。
2A is an enlarged view of a region having a gas phase of the wave plate of FIG. 1, and FIG. 2B is a side view thereof.

【図3】領域Bにおける断面図である。FIG. 3 is a sectional view in a region B.

【図4】光学的等方に関する説明図である。FIG. 4 is an explanatory diagram related to optical isotropic.

【図5】本発明の第2の実施の形態の半導体偏波回転素
子の側面断面図である。
FIG. 5 is a side sectional view of a semiconductor polarization rotating element according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 活性層 11 InP基板 12 InP埋め込み層 21 バンドギャップ波長1.3 μm帯のInGaAsP
層(第1の導波路) 22 バンドギャップ波長1.3 μm帯のInGaAsP
層(第2の導波路) 31,32 電極
Reference Signs List 1 active layer 11 InP substrate 12 InP buried layer 21 InGaAsP with band gap wavelength of 1.3 μm band
Layer (first waveguide) 22 InGaAsP with band gap wavelength of 1.3 μm band
Layer (second waveguide) 31, 32 Electrode

フロントページの続き (72)発明者 伊藤 敏夫 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内Continuation of front page (72) Inventor Toshio Ito 3-19-2 Nishishinjuku, Shinjuku-ku, Tokyo Nippon Telegraph and Telephone Corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に作製された埋め込み構造
を有した半導体光増幅器の一方側端面に埋め込み導波路
が集積接続されており、 該埋め込み導波路は二つの第1の導波路と第2の導波路
とから構成され、第1の導波路(長さ:L1 )は半導体
光増幅器の活性層と集積され、第2の導波路(長さ:L
2 ,L2 ≦L1 )は第1の導波路の導波方向と平行に位
置し、 二つの導波路の中心を結ぶ直線と基板に平行な直線との
なす角を45°に設定してあり、 二つの導波路が有する固有な導波モードの最低次から数
えて2つの等価屈折率をn1 及びn2 (n1 >n2 )と
すると、 第2の導波路の長さL2 が式で定義されていることを特
徴とする波長板集積型偏波無依存半導体増幅器。 【数1】
A buried waveguide is integratedly connected to one end face of a semiconductor optical amplifier having a buried structure fabricated on a semiconductor substrate, wherein the buried waveguide is composed of two first waveguides and a second waveguide. The first waveguide (length: L 1 ) is integrated with the active layer of the semiconductor optical amplifier, and the second waveguide (length: L 1 )
2 , L 2 ≦ L 1 ) is located parallel to the waveguide direction of the first waveguide, and the angle between the straight line connecting the centers of the two waveguides and the straight line parallel to the substrate is set to 45 °. If two equivalent refractive indices are n 1 and n 2 (n 1 > n 2 ) counted from the lowest order of the intrinsic waveguide mode of the two waveguides, the length L 2 of the second waveguide Is defined by the following expression: A wave plate integrated type polarization independent semiconductor amplifier. (Equation 1)
【請求項2】 請求項1において、 第1の導波路の形状が光学的に等方であることを特徴と
する波長板集積型偏波無依存半導体増幅器。
2. The polarization independent semiconductor amplifier according to claim 1, wherein the shape of the first waveguide is optically isotropic.
【請求項3】 請求項1において、 第1の導波路及び第2の導波路の少なくとも何れか一方
に電流注入を可能とすることを特徴とする波長板集積型
偏波無依存半導体増幅器。
3. The polarization independent semiconductor amplifier according to claim 1, wherein a current can be injected into at least one of the first waveguide and the second waveguide.
JP17946897A 1997-07-04 1997-07-04 Polarization independent semiconductor amplifier with integrated wave plate Expired - Lifetime JP3393533B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17946897A JP3393533B2 (en) 1997-07-04 1997-07-04 Polarization independent semiconductor amplifier with integrated wave plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17946897A JP3393533B2 (en) 1997-07-04 1997-07-04 Polarization independent semiconductor amplifier with integrated wave plate

Publications (2)

Publication Number Publication Date
JPH1126882A true JPH1126882A (en) 1999-01-29
JP3393533B2 JP3393533B2 (en) 2003-04-07

Family

ID=16066384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17946897A Expired - Lifetime JP3393533B2 (en) 1997-07-04 1997-07-04 Polarization independent semiconductor amplifier with integrated wave plate

Country Status (1)

Country Link
JP (1) JP3393533B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003510664A (en) * 1999-09-28 2003-03-18 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Integrated wavelength tunable one-stage and two-stage pure optical wavelength converter
JP2015219295A (en) * 2014-05-15 2015-12-07 日本電信電話株式会社 Polarization rotation element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003510664A (en) * 1999-09-28 2003-03-18 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Integrated wavelength tunable one-stage and two-stage pure optical wavelength converter
JP2015219295A (en) * 2014-05-15 2015-12-07 日本電信電話株式会社 Polarization rotation element

Also Published As

Publication number Publication date
JP3393533B2 (en) 2003-04-07

Similar Documents

Publication Publication Date Title
JP3054707B1 (en) Optical isolator
EP1560048B9 (en) Optical isolator utilizing a micro-resonator
US5598492A (en) Metal-ferromagnetic optical waveguide isolator
JPS60134219A (en) Optical switch
US20060023993A1 (en) Directional optical coupler
EP0578802A1 (en) Device and method for polarization-independent processing of a signal comprising a combined wave-guide and polarisation converter
JPH02226232A (en) Directional coupler type optical switch
JPH1126882A (en) Wavelength plate integrated type polarized wave independent semiconductor amplifier
JP3393531B2 (en) Wave plate type semiconductor polarization control device
JPH1090543A (en) Semiconductor polarized wave rotating element
JP3485292B2 (en) Trench type semiconductor polarization rotator
US6711323B1 (en) Wide deflection-angle optical switches and method of fabrication
JP2856525B2 (en) Optical waveguide polarizer
JPH1078521A (en) Semiconductor polarization rotating element
JPH04293004A (en) Optical waveguide with isolator function
JP3488628B2 (en) High-speed polarization switching device
JP2907890B2 (en) Light modulator
JP2897371B2 (en) Semiconductor waveguide polarization controller
JP3535017B2 (en) Polarization rotating device
JP2792306B2 (en) Polarization separation element
JPH1078520A (en) Semiconductor polarization rotating element
JP2626208B2 (en) Semiconductor waveguide polarization controller
JP2994081B2 (en) Directional coupler type optical functional device
CN115933062A (en) Full-polarized light isolator
JPH06265833A (en) Wavelength filter

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080131

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090131

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090131

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100131

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110131

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110131

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120131

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130131

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term