JPS63280224A - Waveguide type optical control element - Google Patents

Waveguide type optical control element

Info

Publication number
JPS63280224A
JPS63280224A JP11454687A JP11454687A JPS63280224A JP S63280224 A JPS63280224 A JP S63280224A JP 11454687 A JP11454687 A JP 11454687A JP 11454687 A JP11454687 A JP 11454687A JP S63280224 A JPS63280224 A JP S63280224A
Authority
JP
Japan
Prior art keywords
mqw
light
wavelength
refractive index
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11454687A
Other languages
Japanese (ja)
Inventor
Akira Ajisawa
味澤 昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP11454687A priority Critical patent/JPS63280224A/en
Publication of JPS63280224A publication Critical patent/JPS63280224A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce a difference between a refractive indexes and to suppress crosstalk to a low level by comparatively independently controlling a band gap in accordance with the well of a multiplex quantum well (MQW) and the component and thickness of a barrier and an average refractive index based on the ratio of the well and the component and thickness of the barrier. CONSTITUTION:When control light 10 is not made incident upon an optical waveguide 11, signal light 12 made incident upon an optical waveguide 13a is straight advanced as it is and emitted. When the control light having 0.85mum wavelength lambdaex equal to the exciton peak wavelength of the MQW is made incident upon the waveguide 11, the control light 10 is arrived from the waveguide 11 to an MQW reflecting part 6. The control light 10 is absorbed into the MQW at the part 6, the exciton peak of the MQW disappears and a refractive index is reduced at wavelength lambda1(>lambdaex), so that the signal light 12 is totally reflected by the reflection part 6 and outputted from an optical waveguide 13b. At that time, the refractive index is sharply changed by the control light 10 only in the reflection part 6 and an interface generating the change of the refractive index is extremely sharpened. Consequently, crosstalk at the time of total reflection can be extremely reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光交換、光情報処理の分野において、光信号の
光路の切換え、波長の選択、波長の変換を行う導波型光
制御素子に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a waveguide type optical control element for switching the optical path of an optical signal, selecting a wavelength, and converting a wavelength in the field of optical switching and optical information processing. It is something.

〔従来の技術〕[Conventional technology]

光通信システムの超高速化やコヒーレント伝送に代表さ
れるようなシステムの高度化、更に光交換機、光コンピ
ュータ等の研究の進展に伴い、光信号を光で制御する光
制御素子の実現が強く望まれるようになっている。この
様な要求に対して、多重量子井戸(MQW)構造の光吸
収による屈折率変化を利用した“オプティカル・ノア・
ゲート”(昭和61年度秋季応用物理学会学術講演会2
8a −X−7)が考えられている。
With the ultra-high speed of optical communication systems, the advancement of systems such as coherent transmission, and the progress of research into optical switching equipment, optical computers, etc., there is a strong desire to realize optical control elements that control optical signals with light. It is now possible to To meet these demands, we have developed an "optical NOA" system that utilizes the change in refractive index caused by light absorption in a multiple quantum well (MQW) structure.
"Gate" (1986 Autumn Academic Conference of the Japan Society of Applied Physics 2)
8a-X-7) is considered.

このオプティカル・ノア・ゲートはMQWの層に垂直方
向にファブリペロエタロン(以下エタロン)を構成し、
MQWのエキシトンピーク波長付近の波長をもつ励起光
をMQWに入射することによりMQWの屈折率を変化さ
せ、信号光に対するエタロンのピーク波長を変えること
により信号光の制御を行うものである。
This optical Noah gate forms a Fabry-Perot etalon (hereinafter referred to as etalon) in the vertical direction to the MQW layer.
The refractive index of the MQW is changed by inputting excitation light having a wavelength near the exciton peak wavelength of the MQW into the MQW, and the signal light is controlled by changing the peak wavelength of the etalon for the signal light.

以下、このオプティカル・ノア・ゲートの具体的な動作
を簡単に説明する。まずMQWエタロンの干渉ピークの
波長のひとつと信号光の波長を一致させておく。この状
態ではMQWエタロンに垂直に入射した信号光は、エタ
ロンを通過しON状態となる。次に信号光と同じ光路で
励起光をMQWエタロンに入射する。MQWエタロンは
励起光により屈折率が変化し、エタロンの干渉ピーク波
長が変わり、それによって信号光との波長の不一致が生
ずる。するとON状態の時よりもエタロンを通過する信
号光が減少しOFF状態となる。この様に励起光がOF
Fの時は信号光がON、励起光がONになると信号光は
OFFというオプティカル・ノア・ゲートが実現される
The specific operation of this optical Noah gate will be briefly explained below. First, one of the interference peak wavelengths of the MQW etalon is made to match the wavelength of the signal light. In this state, the signal light that is perpendicularly incident on the MQW etalon passes through the etalon and enters the ON state. Next, the excitation light is incident on the MQW etalon along the same optical path as the signal light. The refractive index of the MQW etalon changes depending on the excitation light, and the interference peak wavelength of the etalon changes, thereby causing a wavelength mismatch with the signal light. Then, the signal light passing through the etalon is reduced compared to when the etalon is in the ON state, and the Etalon is in the OFF state. In this way, the excitation light is OF
An optical NOR gate is realized in which the signal light is turned on when F, and the signal light is turned off when the excitation light is turned on.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この様な光制御素子はエタロン構成をとり、励起光によ
る屈折率変化を用いたエタロンの干渉ピーク波長の移動
を動作原理としているため、信号光の波長の設定条件が
非常に厳しく、信号光となる半導体レーザ光の温度変化
あるいは戻り光による波長ゆらぎなどがあると、ゲート
として十分な特性が得られない可能性がある。また、信
号光と励起光がMQWの層に対して垂直に入射する固型
の構成をとっているため、次段の素子との縦続接続、更
には光導波路を介した多数の光制御素子との集積化が困
難であるという欠点をもっていた。
This type of light control element has an etalon configuration, and its operating principle is to shift the interference peak wavelength of the etalon using a change in the refractive index caused by the excitation light. Therefore, the conditions for setting the wavelength of the signal light are very strict, and the signal light and If there is a temperature change in the semiconductor laser light or wavelength fluctuation due to returned light, sufficient characteristics as a gate may not be obtained. In addition, since it has a solid structure in which the signal light and excitation light are incident perpendicularly to the MQW layer, it can be connected in cascade with the next stage of devices, and even with multiple light control devices via optical waveguides. The disadvantage was that it was difficult to integrate.

本発明の目的は、以上の問題点を解決した導波型光制御
素子を提供することにある。
An object of the present invention is to provide a waveguide type light control element that solves the above problems.

〔問題点を解決するための手段〕[Means for solving problems]

本発明による導波型光制御素子は、半導体基板上の互い
に交差する第1.第2の光導波路と、前記第1.第2の
光導波路の交差部の中心線上に配された反射面と、前記
反射面に光を入射するための第3の光導波路より構成さ
れ、前記反射面がド・ブロイ波長程度の厚みの第1の半
導体層を前記第1の半導体層よりもバンド・ギャップの
広い第2の半導体層によりはさんだ量子井戸を層厚方向
に多重に有する多重量子井戸構造より成り、前記第1.
第2の光導波路が前記多重量子井戸構造に比べバンド・
ギャップが広くほぼ等しい実効屈折率をもち、前記第1
.第2の光導波路には前記多重量子井戸のエキシトンピ
ーク波長より長波長側の信号光が入射され、前記第3の
光導波路には前記エキシトンビーク波長とほぼ等しい波
長の制御光が入射されることを特徴とするものである。
The waveguide type light control device according to the present invention has first lattice plates on a semiconductor substrate that intersect with each other. a second optical waveguide; and the first optical waveguide. It is composed of a reflective surface arranged on the center line of the intersection of the second optical waveguide, and a third optical waveguide for inputting light to the reflective surface, and the reflective surface has a thickness of approximately the de Broglie wavelength. It has a multi-quantum well structure in which a first semiconductor layer is sandwiched between second semiconductor layers having a wider band gap than the first semiconductor layer, and quantum wells are multiplexed in the layer thickness direction.
The second optical waveguide has a higher band width than the multiple quantum well structure.
The gap is wide and the effective refractive index is approximately equal, and the first
.. A signal light having a wavelength longer than the exciton peak wavelength of the multi-quantum well is incident on the second optical waveguide, and a control light having a wavelength substantially equal to the exciton peak wavelength is incident on the third optical waveguide. It is characterized by:

〔作用〕[Effect]

本発明はMQWのエキシトンピーク波長付近の光の吸収
により生ずるMQWの屈折率の変化を利用したものであ
る。まずこの屈折率変化についてG a A s / 
A It G a A s量子井戸(QW)構造を例に
とって説明する。
The present invention utilizes changes in the refractive index of MQW caused by absorption of light near the exciton peak wavelength of MQW. First, regarding this refractive index change, G a A s /
This will be explained by taking an A It Ga As quantum well (QW) structure as an example.

QWの場合その量子サイズ効果により室温エキシトンが
存在するために、光吸収係数スペクトルはエキシトン吸
収ピーク波長付近で急激な変化を示す。またぞれとクラ
マース・クローニッヒの関係にある屈折率スペクトルも
波長に対し大きく変化する。その様子を第2図(a)及
び第2図世)に実線で示した。ここで、λ、8はエキシ
トンのピーク波長を示している。このQWに、QWのエ
キシトンピーク波長付近の波長の光を入射するとQWは
その光を吸収し、それにより生成したキャリアによって
エキシトンの準位は埋められる、いわゆる吸収飽和を起
こす。この様な現像は、雑誌「フィジカル・レビュー・
レターズ(Physical Review Lett
−ers) J第56巻、 1986年、 1191頁
に記載され−でいる。
In the case of a QW, since room temperature excitons exist due to the quantum size effect, the optical absorption coefficient spectrum shows a rapid change near the exciton absorption peak wavelength. The refractive index spectrum, which has a Kramers-Kronig relationship with each other, also changes significantly with wavelength. This situation is shown by solid lines in Figures 2(a) and 2). Here, λ, 8 indicates the peak wavelength of excitons. When light with a wavelength near the exciton peak wavelength of the QW is incident on this QW, the QW absorbs the light, and the exciton level is filled with carriers generated thereby, causing so-called absorption saturation. This kind of development was published in the magazine "Physical Review
Letters (Physical Review Letts)
-ers) J Vol. 56, 1986, p. 1191.

この吸収飽和によりエキシトンの準位は消滅し、その時
の光吸収スペクトルの様子を第2図(a)に破線で、そ
れと関係した屈折率スペクトルを第2図(blに破線で
示した。エキシトンの準位の消滅により第2図世)の実
線で描かれた屈折率スペクトルのギャップは破線で示し
た様に平均化され、バルクの場合の屈折率スペクトルと
類似の形状となる。
Due to this absorption saturation, the exciton level disappears, and the state of the optical absorption spectrum at that time is shown by the broken line in Figure 2 (a), and the related refractive index spectrum is shown by the broken line in Figure 2 (bl). Due to the disappearance of the levels, the gap in the refractive index spectrum drawn by the solid line in Figure 2) is averaged as shown by the broken line, resulting in a shape similar to the refractive index spectrum in the bulk case.

光パワーを入射したことによる屈折率の変化は、エキシ
トンピークよりも短波長側では正となり長波長側では負
となる。その様子を第3図に示した。
The change in the refractive index due to the input of optical power becomes positive at wavelengths shorter than the exciton peak and negative at wavelengths longer than the exciton peak. The situation is shown in Figure 3.

またギヤ、プを平均化したことで得られる屈折率変化の
値Δn / nは、6X10−’である0本発明はこの
様なQWへの光パワー入射による屈折率の変化を利用し
たものである。
In addition, the value of the refractive index change Δn/n obtained by averaging the gear and p is 6X10-'0 The present invention utilizes the change in the refractive index due to the incidence of optical power on the QW. be.

次に本発明の素子の基本的な動作について簡単に説明す
る。まず多重量子井戸構造より成る反射部に、このMQ
Wのエキシトンピーク波長にほぼ等しい波長λ□の光(
以下制御光と呼ぶ)が光導波路を通して入射されていな
い場合を考える。、λ、Xよりも長波長側の波長λ、の
光(以下信号光と呼ぶ)が光導波路を通しである角度で
MQW反射部に入射されたとする。この時、この光導波
路とMQW反射部とはほぼ屈折率が等しいので反射部を
そのまま通過する。
Next, the basic operation of the device of the present invention will be briefly explained. First, this MQ
Light with a wavelength λ□ approximately equal to the exciton peak wavelength of W (
Consider the case where control light (hereinafter referred to as control light) is not incident through an optical waveguide. , λ, It is assumed that light having a wavelength λ on the longer wavelength side than X (hereinafter referred to as signal light) is incident on the MQW reflecting section at a certain angle through an optical waveguide. At this time, since the optical waveguide and the MQW reflecting section have substantially the same refractive index, the light passes through the reflecting section as is.

次にこのMQWに制御光が入射された場合を考える。こ
の時は先にも述べ第3図に示した様にλ、Xより長波長
側の波長λ、の光に対するMQW反射部の屈折率は減少
する。これによりある角度をもってMQW反射部に入射
された信号光はここで全反射を起こし、MQW反射部は
通過しない。
Next, consider the case where control light is incident on this MQW. At this time, as mentioned above and shown in FIG. 3, the refractive index of the MQW reflecting portion for light having a wavelength λ on the longer wavelength side than λ, X decreases. As a result, the signal light incident on the MQW reflection section at a certain angle undergoes total reflection, and does not pass through the MQW reflection section.

以上の様な構成、動作原理に基づくことにより、本発明
の導波型光制御素子が実現できる。
Based on the configuration and operating principle as described above, the waveguide type optical control element of the present invention can be realized.

またMQW構造では、バンドギャップはそのMQWのウ
ェル、バリアの組成及び厚み、平均的な屈折率はウェル
、バリアの組成及び厚みの比によりある程度独立に制御
できる。従って反射部とその周囲で組成が変化していて
も実効的に屈折率差を十分小さくする設計が可能であり
、クロストークも小さく抑えることができる。
Furthermore, in the MQW structure, the bandgap can be controlled to some extent independently by the composition and thickness of the well and barrier of the MQW, and the average refractive index by the ratio of the composition and thickness of the well and barrier. Therefore, even if the composition changes between the reflective part and its surroundings, it is possible to effectively design the refractive index difference to be sufficiently small, and crosstalk can also be suppressed to a small level.

〔実施例〕〔Example〕

第1図は本発明による導波型光制御素子の一実施例の構
造を示す図であり、(a)はその斜視図、(b)はA−
A’間の断面図である。
FIG. 1 is a diagram showing the structure of an embodiment of a waveguide type light control element according to the present invention, (a) is a perspective view thereof, and (b) is an A-
It is a sectional view between A'.

ここではGaAs/Ajl!GaAs系材料を用いた場
合について示した。
Here, GaAs/Ajl! The case where GaAs-based material is used is shown.

まず本実施例の導波型光制御素子の製作について説明す
る。n” −GaAs基板l上にi −GaAsバッフ
ァ層2を介して、1−Aj2GaAsクラッド層3.1
−GaAs/AffGaAs多重量子井戸(MQW)層
4 (GaAsウェル4〜100人、AlGaAs  
CARモル比x =0.55)バリア厚〜100人) 
、1−AIlGaAsクラッド層5をMBE法により連
続成長する。次にこのウェハに幅2μm、長さ100μ
IのMQW反射反射色6し、そのまわりを反応性イオン
ビームエツチング法により1−GaAsバッファ層2に
達する迄エツチングする。この後LPE法により、この
MQW反射反射色6−AlGaAs (x=0.28)
クラッド層7.1−AIGaAs (x=0.2)ガイ
ド層8.1−AnGaAs (x=0.28)クラッド
層9により埋め込む。この際MQW反射部6の上部には
SiQ、等の保護膜をつけ、成長が進まない様にし、M
BHにより成長した1−AIGaA!!クラッドN3.
5とLPE法により成長した1−AIGaAsクラッド
層7.9の厚さとをほぼ等しくし、および1−GaAs
/AffiGaAsMQW層4の厚さとi−/’1Ga
Asガイド層8の厚さとをほぼ等しくした。
First, the fabrication of the waveguide type light control element of this example will be explained. A 1-Aj2GaAs cladding layer 3.1 is formed on an n''-GaAs substrate l via an i-GaAs buffer layer 2.
-GaAs/AffGaAs multiple quantum well (MQW) layer 4 (4 to 100 GaAs wells, AlGaAs
CAR molar ratio x = 0.55) Barrier thickness ~ 100 people)
, 1-AIlGaAs cladding layer 5 is successively grown by the MBE method. Next, this wafer has a width of 2 μm and a length of 100 μm.
The 1-GaAs buffer layer 2 is etched by reactive ion beam etching until the 1-GaAs buffer layer 2 is reached. After that, by LPE method, this MQW reflection color 6-AlGaAs (x=0.28)
Cladding layer 7.1-AIGaAs (x=0.2) Guide layer 8.1-AnGaAs (x=0.28) Buried by cladding layer 9. At this time, a protective film such as SiQ is applied to the top of the MQW reflecting section 6 to prevent the growth of MQW.
1-AIGaA grown by BH! ! Clad N3.
5 and the thickness of the 1-AIGaAs cladding layer 7.9 grown by the LPE method, and
/AffiGaAsMQW layer 4 thickness and i-/'1Ga
The thickness of the As guide layer 8 was made almost equal to that of the As guide layer 8.

このようにして成長したウェハにMQW反射反射色6し
い幅でMQW反射反射色6後に制御光10用のストライ
ブ状のリブ光導波路11のパターン及びリブ光導波路1
1が中心線となるような信号光12用の交差型リブ光導
波路13a、13bのパターンをエツチングにより形成
する。
On the wafer grown in this way, a pattern of a striped rib optical waveguide 11 for the control light 10 and a pattern of the rib optical waveguide 1 after the MQW reflection color 6 with a new width of the MQW reflection color 6 are formed.
A pattern of intersecting rib optical waveguides 13a and 13b for the signal light 12 is formed by etching such that 1 is the center line.

ここで信号光12の波長λ、 =0.86μm近傍で考
えると、i−MQW層4.1−AjiGaAsガイド層
8.1−Ai!GaAsクラッド層7.9の屈折率は3
.45.3.47.3.42であり、1−AIGaAS
ガイド層8を伝搬する光に対する実効屈折率はi−MQ
W層4の屈折率にほぼ等しくなる様に設定した。この時
、1−AfGaAsガイド層8.1−Aj!GaAsク
ラッド層7.9のバンドギャップ波長は0.74μm、
0.7 μlであり、λ、=0.86μmの波長におい
ては十分吸収損失の小さな値となっている。
Considering here that the wavelength λ of the signal light 12 is near = 0.86 μm, the i-MQW layer 4.1-AjiGaAs guide layer 8.1-Ai! The refractive index of the GaAs cladding layer 7.9 is 3
.. 45.3.47.3.42 and 1-AIGaAS
The effective refractive index for light propagating through the guide layer 8 is i-MQ
The refractive index was set to be approximately equal to the refractive index of the W layer 4. At this time, 1-AfGaAs guide layer 8.1-Aj! The bandgap wavelength of the GaAs cladding layer 7.9 is 0.74 μm,
The amount of absorption loss is 0.7 μl, which is a sufficiently small value for absorption loss at a wavelength of λ=0.86 μm.

次に本実施例の導波型光制御素子動作について説明する
。説明を簡単にするために、信号光12は第1図(a)
の手前から光導波路13aに入射することにする。光導
波路11に制御光10が入射されていない時は、光導波
路13aに入射した信号光12はそのまま直進し出射す
る。光導波路11にこのMQWのエキシトンピーク波長
に等しい波長λ、、=0.85μmの制御光10が入射
されると、制御光10は光導波路11を通ってMQW反
射部6へ達する。先程説明した様に、ここで制御光10
がMQWに吸収されることによりMQWのエキシトンピ
ークが消滅し、波長λjI(>λIIX)では屈折率の
減少が生じる。従って信号光12はMQW反射部6で全
反射され、光導波路13bより出力される。この時の屈
折率変化の大きさは0.6%程度に達するので、交差角
10″程度にすればよい。しかも制御光10により屈折
率が大きく変化するのはMQW反射部6のみであり、屈
折率変化の生じる界面は非常に急峻であるため、全反射
時のクロストークも非常に小さい。
Next, the operation of the waveguide type light control element of this embodiment will be explained. To simplify the explanation, the signal light 12 is shown in FIG. 1(a).
It is assumed that the light enters the optical waveguide 13a from before. When the control light 10 is not incident on the optical waveguide 11, the signal light 12 that is incident on the optical waveguide 13a continues straight and exits. When the control light 10 having a wavelength λ, .=0.85 μm, which is equal to the exciton peak wavelength of this MQW is incident on the optical waveguide 11, the control light 10 passes through the optical waveguide 11 and reaches the MQW reflection section 6. As explained earlier, here the control light 10
is absorbed by the MQW, the exciton peak of the MQW disappears, and the refractive index decreases at the wavelength λjI (>λIIX). Therefore, the signal light 12 is totally reflected by the MQW reflection section 6 and output from the optical waveguide 13b. The magnitude of the refractive index change at this time reaches about 0.6%, so the crossing angle should be about 10''.Moreover, only the MQW reflection section 6 has a large change in refractive index due to the control light 10. Since the interface where the refractive index changes is very steep, crosstalk during total reflection is also very small.

以上はIX2の切換スイッチについて述べたが、光導波
路13a、13bのそれぞれに信号光が入射した場合も
同様な効果により2×2の切換が可能である。
Although the above description has been made regarding the IX2 changeover switch, 2×2 switching is also possible with the same effect when signal light is incident on each of the optical waveguides 13a and 13b.

また、本実施例では材料としてGaAs/Aj!GaA
s系材料について説明したが、InGaAsP/1nP
、1nGaAs/InAjtAs系等の材料系にも適用
可能である。また光導波路としてリブ型を用いたが埋め
込み等の他の3次元光導波路も使用できる。
Furthermore, in this example, the material is GaAs/Aj! GaA
Although we have explained about s-based materials, InGaAsP/1nP
, 1nGaAs/InAjtAs, and other material systems. Although a rib type optical waveguide is used as the optical waveguide, other three-dimensional optical waveguides such as a buried type can also be used.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明した様に、本発明によれば導波型で光を
用いて制御を行う1×2あるいは2×2の光スィッチが
実現でき、将来の光集積回路を用いた光交換、光コンピ
ュータ等の分野での利用価値が非常に大きい。
As explained in detail above, according to the present invention, it is possible to realize a 1×2 or 2×2 optical switch that is waveguide type and is controlled using light. It has great utility value in fields such as computers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による導波型光制御素子の一実施例の構
造を示す図で、(a)はその斜視図、(b)はA−A’
間の断面図、 第2図および第3図は本発明に用いる励起光による多重
量子井戸構造の屈折率変化を説明するための図である。 1・・・n” −GaAs基板 2・・・1−GaAsバッファ層 3.5,7.9 ・・・i −A I2 G a A 
sクラッド層4−−−i−GaAslAItGaAsM
QW層6・・・MQW反射部 8 ・” i −A I G a A sガイド層10
・・・制御光 11、13a、 13b・・・光導波路12・・・信号
光 代理人弁理士   岩  佐  義  幸(a) 第 1図 (a) (b) 第2図 錦3図
FIG. 1 is a diagram showing the structure of an embodiment of a waveguide type light control element according to the present invention, (a) is a perspective view thereof, and (b) is an A-A'
2 and 3 are diagrams for explaining changes in the refractive index of the multiple quantum well structure due to excitation light used in the present invention. 1...n" -GaAs substrate 2...1-GaAs buffer layer 3.5, 7.9...i -A I2 G a A
s cladding layer 4---i-GaAslAItGaAsM
QW layer 6...MQW reflecting section 8 ・"i-AIGaAs guide layer 10
...Control light 11, 13a, 13b...Optical waveguide 12...Signal light agent Yoshiyuki Iwasa (a) Figure 1 (a) (b) Figure 2 Brocade 3

Claims (1)

【特許請求の範囲】[Claims] (1)半導体基板上の互いに交差する第1、第2の光導
波路と、前記第1、第2の光導波路の交差部の中心線上
に配された反射面と、前記反射面に光を入射するための
第3の光導波路より構成され、前記反射面がド・ブロイ
波長程度の厚みの第1の半導体層を前記第1の半導体層
よりもバンド・ギャップの広い第2の半導体層によりは
さんだ量子井戸を層厚方向に多重に有する多重量子井戸
構造より成り、前記第1、第2の光導波路が前記多重量
子井戸構造に比べバンド・ギャップが広くほぼ等しい実
効屈折率をもち、前記第1、第2の光導波路には前記多
重量子井戸のエキシトンピーク波長より長波長側の信号
光が入射され、前記第3の光導波路には前記エキシトン
ピーク波長とほぼ等しい波長の制御光が入射されること
を特徴とする導波型光制御素子。
(1) First and second optical waveguides that intersect with each other on a semiconductor substrate, a reflective surface arranged on the center line of the intersection of the first and second optical waveguides, and light incident on the reflective surface a third optical waveguide for the purpose of converting a first semiconductor layer having a thickness of approximately the de Broglie wavelength into a second semiconductor layer having a wider band gap than the first semiconductor layer; The first and second optical waveguides have a wider band gap and substantially equal effective refractive indexes than the multi-quantum well structure, and 1. A signal light having a wavelength longer than the exciton peak wavelength of the multiple quantum well is incident on the second optical waveguide, and a control light having a wavelength substantially equal to the exciton peak wavelength is incident on the third optical waveguide. A waveguide type optical control element characterized by:
JP11454687A 1987-05-13 1987-05-13 Waveguide type optical control element Pending JPS63280224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11454687A JPS63280224A (en) 1987-05-13 1987-05-13 Waveguide type optical control element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11454687A JPS63280224A (en) 1987-05-13 1987-05-13 Waveguide type optical control element

Publications (1)

Publication Number Publication Date
JPS63280224A true JPS63280224A (en) 1988-11-17

Family

ID=14640489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11454687A Pending JPS63280224A (en) 1987-05-13 1987-05-13 Waveguide type optical control element

Country Status (1)

Country Link
JP (1) JPS63280224A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005326676A (en) * 2004-05-14 2005-11-24 Sumitomo Electric Ind Ltd Device
JP2006084797A (en) * 2004-09-16 2006-03-30 Sharp Corp Optical functional element and method for manufacturing same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
APPL.PHYS.LETT=1985 *
THE TRANSACTIONS OF THE IECE OF JAPAN=1985 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005326676A (en) * 2004-05-14 2005-11-24 Sumitomo Electric Ind Ltd Device
JP4506275B2 (en) * 2004-05-14 2010-07-21 住友電気工業株式会社 Optical device
JP2006084797A (en) * 2004-09-16 2006-03-30 Sharp Corp Optical functional element and method for manufacturing same
JP4493452B2 (en) * 2004-09-16 2010-06-30 シャープ株式会社 Optical functional element and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP3228509B2 (en) Electric field induced quantum well waveguide
US5825525A (en) Electro-optic modulator with voltage tunable quantum well waveguide cladding layer
JPH05249331A (en) Waveguide type beam spot conversion element and production thereof
EP0378098B1 (en) Semiconductor optical device
JP2004524589A (en) Optoelectronic devices
US5444802A (en) Optical switch
JP2817602B2 (en) Semiconductor Mach-Zehnder modulator and method of manufacturing the same
US5608566A (en) Multi-directional electro-optic switch
JPH0786624B2 (en) Directional coupler type optical switch
JP2503558B2 (en) Optical switch
JPS63280224A (en) Waveguide type optical control element
JPH06177473A (en) Semiconductor optical control device
Suzuki et al. Polarization-dependent refractive-index change induced by superlattice disordering
JPS60260017A (en) Optical modulation element
JPH0232322A (en) Optical switch
JPH02297505A (en) Waveguide type wavelength filter
JP2907890B2 (en) Light modulator
JPS62284331A (en) Optical modulator
JPS63147139A (en) Optical directional coupler and its manufacture
JPH04291780A (en) Semiconductor light emitting apparatus
JPH065348B2 (en) Optical switch
JPH065349B2 (en) Optical switch
JP2538567B2 (en) Light switch
JPH0695182A (en) Optical switch
JPH024231A (en) Optical switch and its manufacture