JPH0417887B2 - - Google Patents

Info

Publication number
JPH0417887B2
JPH0417887B2 JP57003759A JP375982A JPH0417887B2 JP H0417887 B2 JPH0417887 B2 JP H0417887B2 JP 57003759 A JP57003759 A JP 57003759A JP 375982 A JP375982 A JP 375982A JP H0417887 B2 JPH0417887 B2 JP H0417887B2
Authority
JP
Japan
Prior art keywords
raw material
carbon
reactor
gas
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57003759A
Other languages
Japanese (ja)
Other versions
JPS58120510A (en
Inventor
Takane Myazaki
Shigeru Tatsuno
Kazushi Matsura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP57003759A priority Critical patent/JPS58120510A/en
Publication of JPS58120510A publication Critical patent/JPS58120510A/en
Publication of JPH0417887B2 publication Critical patent/JPH0417887B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】 この発明は基材上に熱分解炭素を析出させる方
法の改良に係わるものである。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to an improved method for depositing pyrolytic carbon on a substrate.

近年、熱分解炭素は、従来の焼結型成形炭素材
にない、新しい特性をもつ素材として注目され、
種々の製法や、用途の開発研究が行なわれてい
る。
In recent years, pyrolytic carbon has attracted attention as a material with new properties not found in conventional sintered carbon materials.
Research and development of various manufacturing methods and uses are being conducted.

中でも大谷杉郎氏による、熱分解炭素を析出さ
せる原料としてハロゲン化炭素水素を、使用する
低温熱分解炭素析出法(特願昭52−22974、特開
昭53−108089)は、500〜1000℃の温度において、
実用的な速度で炭素を析出させることができ、注
目されている。
Among them, the low-temperature pyrolytic carbon precipitation method (Japanese Patent Application No. 52-22974, JP-A No. 53-108089) by Mr. Sugiro Otani, which uses halogenated carbon hydrogen as the raw material for precipitating pyrolytic carbon, is proposed at 500 to 1000℃. At a temperature of
It is attracting attention because it can deposit carbon at a practical rate.

一方用途については、炭素を析出させる基材と
してセラミツクス、金属、炭材など、既製の適当
な材料、形状のものを対象とし、これを炭素で表
面被覆し、その材料の機能を改変したり、析出層
を単独でとり出して新しい材料として利用するな
ど、単体又は複合体の形で各種用途に供すること
が考えられ、一部実用化の段階に入つている。例
えば生体用材料、宇宙航空機用材料、機械用材
料、電極などに適用されている。
On the other hand, with regard to applications, we target ready-made materials and shapes such as ceramics, metals, and carbonaceous materials as base materials on which carbon is deposited, and coat the surface of this material with carbon to modify the function of the material. It is thought that the precipitated layer can be taken out individually and used as a new material, and used for various purposes in the form of a single substance or a composite, and some of them have entered the stage of practical application. For example, it is applied to biological materials, spacecraft materials, mechanical materials, electrodes, etc.

これらの用途において、炭素を析出させる基材
の大きさは数mm程度の極めて小さいものから可成
りの大きさのものにまでおよび、またその形状も
単純なもの、複雑なものなど各種ものがある。
In these applications, the size of the base material on which carbon is deposited ranges from extremely small, on the order of a few millimeters, to quite large, and there are various shapes, from simple to complex. .

一方、熱分解炭素の析出に際しては、従来法に
よれば1500℃以上の高温を要し、前記の低温熱分
解法であつても500℃以上の高温が必要である。
この反応の本質として、炭素析出は気相で行なわ
れ、かつこれが高温下処理と相まつて、一度に多
数の基材を同一反応器内で処理したり、或いは複
雑な形状品を処理することは、特に製品の均一性
を確保する上で、工業上極めて困難であつた。
On the other hand, the conventional method requires a high temperature of 1500° C. or higher to precipitate pyrolytic carbon, and even the aforementioned low-temperature pyrolysis method requires a high temperature of 500° C. or higher.
The essence of this reaction is that carbon deposition occurs in the gas phase, and this combined with high-temperature treatment makes it difficult to process many substrates at once in the same reactor or to process products with complex shapes. This has been extremely difficult industrially, especially in ensuring product uniformity.

本発明は上記のような制約を解消し、1回に多
数の基材を同一反応器内で処理し、品質の均一な
製品を得る方法を提供することを目的とするもの
であつて、その要旨とするところは熱分解炭素を
析出させる原料ガスの流通下に、基材を誘導加熱
して基材上に熱分解炭素を析出させる方法におい
て、反応器内に複数の基材を多段に支持し、反応
器内壁に沿つて設けらた導入管及びこの導入管か
ら上記の基材を支持する多段の各段に向かつて延
びる枝管を介して原料ガスを各段に同時に供給す
ることを特徴とする基材上に熱分解炭素を析出さ
せる方法に存する。
The present invention aims to eliminate the above-mentioned limitations and provide a method for processing a large number of substrates at once in the same reactor to obtain products of uniform quality. The gist is a method in which pyrolytic carbon is deposited on a substrate by induction heating under the flow of a raw material gas to precipitate pyrolytic carbon, in which multiple substrates are supported in multiple stages within a reactor. The reactor is characterized in that the raw material gas is simultaneously supplied to each stage through an introduction pipe provided along the inner wall of the reactor and branch pipes extending from this introduction pipe toward each stage of the multi-stage supporting the above-mentioned substrate. The invention consists in a method of depositing pyrolytic carbon on a substrate.

次に本発明方法を実施する装置を示す添付図面
の説明と併せて本発明を詳説する。
The present invention will now be explained in detail in conjunction with the accompanying drawings, which show an apparatus for carrying out the method of the present invention.

第1図は本発明方法を実施する装置の一例の縦
断正面略図であり、第2図はこの装置の反応器内
に設置される基材の架台の一例の斜視略図であ
る。
FIG. 1 is a schematic longitudinal sectional front view of an example of an apparatus for implementing the method of the present invention, and FIG. 2 is a schematic perspective view of an example of a frame for a base material installed in a reactor of this apparatus.

図中、1は反応器本体、2は加熱用の誘導コイ
ル、3は基材の架台、4は架台3の支持台、5は
基材、6は炭素を析出させる原料ガスの導入管、
6′は原料ガスの枝管、7はガス排出管、8は熱
電対、9は架台の支柱、10は架台3に設けられ
た貫通孔、11は枝管を通すための切込みであ
る。
In the figure, 1 is the reactor main body, 2 is an induction coil for heating, 3 is a pedestal for the base material, 4 is a support for the pedestal 3, 5 is a base material, 6 is an introduction pipe for raw material gas to precipitate carbon,
6' is a branch pipe for raw material gas, 7 is a gas discharge pipe, 8 is a thermocouple, 9 is a support for the pedestal, 10 is a through hole provided in the pedestal 3, and 11 is a notch for passing the branch pipe.

反応器本体1は図示していないが、冷却用ジヤ
ケツトを設け、反応処理中、水を通して冷却する
のがよい。また原料ガスの導入管6および枝管
6′は単管でもよいが、二重管とし、水のような
冷媒を通すのがよい。
Although the reactor main body 1 is not shown, it is preferable to provide a cooling jacket and cool it by passing water through it during the reaction process. Further, although the raw material gas introduction pipe 6 and the branch pipe 6' may be a single pipe, it is preferable to use double pipes to pass a refrigerant such as water.

架台3は第1図では図が複雑化するのを避ける
ため、その支持手段を省略してあるが、例えば第
2図に示すように各段の架台3を複数本の支柱9
で支持し、これを支持台4の上に着脱自在に設置
し得るようにしておくと修理の際など、反応器本
体からの取出しが便利である。架台3には多数の
貫通孔を設けガスの流通をよくする。
The support means for the pedestal 3 is omitted in FIG. 1 to avoid complicating the drawing, but for example, as shown in FIG.
If the reactor is supported by a support base 4 and can be detachably installed on the support stand 4, it will be convenient to take it out from the reactor main body during repairs. A large number of through holes are provided in the pedestal 3 to improve gas circulation.

架台3は図示のものでは3段としたが、その段
数は所望により増減する。そして各架台3上に基
材5をのせ、誘導コイル2によつて所望の温度に
基材5を加熱し、同時に原料ガスをその導入管6
から送給する。原料ガスは枝管6′によつてそれ
ぞれの架台上の基材に接触し、基材上に炭素を析
出する。基材はそれぞれの段について分枝してい
る枝管6′からの原料ガスに接するので、常に未
使用状態の原料ガスにより処理され、従つて何れ
の段の架台上にある基材も常に一定の均一な炭素
析出を受ける。
Although the pedestal 3 shown in the figure has three stages, the number of stages can be increased or decreased as desired. Then, the base material 5 is placed on each frame 3, and the base material 5 is heated to a desired temperature by the induction coil 2, and at the same time, the raw material gas is introduced into the inlet pipe 6.
will be sent from. The raw material gas comes into contact with the base material on each pedestal through the branch pipe 6', and deposits carbon on the base material. Since the base material is in contact with the raw material gas from the branch pipe 6' branching out for each stage, it is always treated with unused raw material gas, and therefore the base material on the frame of any stage is always constant. undergoes uniform carbon deposition.

架台3の段数を増大させるときは、加熱用の誘
導コイル設備がそれに対応して大きくなるので、
本発明者等の一部がさきに提案した方法(特願昭
54−144993号、特開昭56−69210号)に従つて、
加熱帯域を漸次移動させる方法、例えば誘導コイ
ルを小さなものとし、これを適宜の機械的手段に
よつて原料ガスの流れ下手から上手に反応器本体
に沿つて漸次移動させて加熱を行なうようにする
と設備の巨大化が回避できる。
When increasing the number of stages of the pedestal 3, the heating induction coil equipment becomes correspondingly large.
The method previously proposed by some of the inventors (Patent Application
54-144993, Japanese Patent Application Publication No. 56-69210),
A method of gradually moving the heating zone, for example, by using a small induction coil and moving it gradually along the reactor main body from the bottom of the raw material gas flow using appropriate mechanical means to heat the reactor. Enlargement of equipment can be avoided.

本発明方法が適用される基材は、材質としては
炭素材、ガス、セラミツクス、各種単結晶体な
ど、炭素析出温度において、融解、分解すること
なく、原形を保持し、所定の条件下に所望の熱分
解炭素を析出し得る固体材料であれば如何なるも
のであつてもよい。また基材の形状は、ブロツク
状、パイプ状、棒状、平板状、粉状、粒状、繊維
状、フエルト状、その他複雑な形状のものなど、
いずれも可能である。
The base material to which the method of the present invention is applied may be carbon material, gas, ceramics, various single crystals, etc., and can maintain its original shape without melting or decomposing at the carbon deposition temperature, and can be used under the desired conditions under the specified conditions. Any solid material from which pyrolytic carbon can be deposited may be used. In addition, the shapes of the base materials include blocks, pipes, rods, flat plates, powders, granules, fibers, felts, and other complex shapes.
Both are possible.

本発明方法で採用される炭素析出条件、即ち原
料ガスの種類、濃度、流量、析出温度、時間等は
従来知られている、いかなる条件でもよく、その
なかから目的に応じ適宜選択される。
The carbon deposition conditions employed in the method of the present invention, ie, the type of raw material gas, concentration, flow rate, deposition temperature, time, etc., may be any conventionally known conditions and are appropriately selected from among them depending on the purpose.

一般的には原料ガスとしては、炭化水素、ハロ
ゲン化炭化水素、ハロゲン含有炭化水素が使用さ
れ、加熱温度としては500〜3000℃の温度が採ら
れる。しかし反応器材質の選択の容易さ、操作
性、析出の容易さなどから、前述のハロゲン化炭
化水素を原料ガスとする低温熱分解法が好適であ
る。
Generally, hydrocarbons, halogenated hydrocarbons, and halogen-containing hydrocarbons are used as the raw material gas, and the heating temperature is 500 to 3000°C. However, the low-temperature pyrolysis method using the above-mentioned halogenated hydrocarbon as the raw material gas is preferred from the viewpoint of ease of selection of reactor material, operability, and ease of precipitation.

以上のようにして本発明方法によれば、工業的
に極めて有利に熱分解炭素を析出させることがで
きる。即ち従来法では、基材は外界から遮断され
た反応器内に設置され、これに原料ガスを供給し
つつ基材の全体を加熱することにより基材上に熱
分解炭素を析出させるのである。この従来法によ
れば複数の基材に炭素を析出させる場合、基材の
数が多くなるにつれて反応器、ひいては加熱装置
が巨大化することを避けることができない。また
処理される基材の数が増大し、ひいては反応器が
巨大化すると、反応器内の局所々々における原料
ガスの濃度、組成および流速等が変化し、そのた
め析出する熱分解炭素の質的相違および析出速度
が異つてくることは避けられず、同一条件で同時
に多数の基材への析出を高温で実施することは技
術上、極めて困難である。
As described above, according to the method of the present invention, pyrolytic carbon can be precipitated industrially very advantageously. That is, in the conventional method, the base material is placed in a reactor isolated from the outside world, and pyrolytic carbon is deposited on the base material by heating the entire base material while supplying raw material gas to the reactor. According to this conventional method, when carbon is deposited on a plurality of base materials, as the number of base materials increases, it is unavoidable that the reactor and eventually the heating device become large. In addition, as the number of substrates to be treated increases and the reactor becomes larger, the concentration, composition, flow rate, etc. of the raw material gas change locally within the reactor, resulting in changes in the quality of the pyrolyzed carbon that precipitates. It is inevitable that the differences and deposition rates will differ, and it is technically extremely difficult to perform deposition on a large number of substrates at high temperatures at the same time under the same conditions.

これに対し、本発明方法では、基材は反応ガス
流に沿つて多段に設置されるので、反応器の空間
を有効に利用することにより加熱装置を格別大き
くする必要がない。
On the other hand, in the method of the present invention, the substrates are installed in multiple stages along the flow of the reactant gas, so the space in the reactor is effectively utilized, so there is no need to make the heating device particularly large.

また、単に基材を多段に設置し、その一端から
原料ガスを導入すると、ガスの下流域では熱分解
すべき有効ガス成分が減少し、上流、下流で均一
な熱分解炭素を析出させることができなくなる。
本発明方法によれば、基材を多段に設置しても、
原料ガスは枝管を介して基材近くに供給されるの
で、下流域においても未分解の原料ガスに接し、
均一な熱分解炭素を析出させることができる。
Furthermore, if the base material is simply installed in multiple stages and the raw material gas is introduced from one end, the effective gas component to be thermally decomposed decreases in the downstream region of the gas, making it possible to deposit uniform pyrolytic carbon in the upstream and downstream regions. become unable.
According to the method of the present invention, even if the base material is installed in multiple stages,
Since the raw material gas is supplied near the base material through branch pipes, it comes into contact with undecomposed raw material gas even in the downstream region.
Uniform pyrolytic carbon can be deposited.

次に本発明の実施例を説明する。 Next, examples of the present invention will be described.

実施例 1 添付図面に示す装置(架台の数3段)を用い、
内経30mm、深さ15mmの黒鉛質るつぼを各段に3個
づつ載せシス−1,2−ジクロルエチレンを原料
ガスとして使用し、ガス流量4.1分、ガス濃度
13容量%(アルゴンガス中)、加熱温度700℃で熱
分解による炭素析出を行なわせ、上記るつぼの架
台に接する外底面を除く全表面に厚さ100μの熱
分解炭素を析出させた。得られたるつぼの炭素析
出状態は各段とも均一であつた。
Example 1 Using the device shown in the attached drawing (3 stages of mounts),
Three graphite crucibles with an internal diameter of 30 mm and a depth of 15 mm were placed on each stage, and cis-1,2-dichloroethylene was used as the raw material gas, the gas flow rate was 4.1 minutes, and the gas concentration was
Carbon was precipitated by pyrolysis at 13% by volume (in argon gas) at a heating temperature of 700°C, and pyrolyzed carbon with a thickness of 100 μm was deposited on the entire surface of the crucible except for the outer bottom surface in contact with the pedestal. The state of carbon precipitation in the obtained crucible was uniform at each stage.

実施例 2 添付図面に示すと同様の構造の装置を用い、た
だし、架台は7段で、各段への原料供給ノズルを
それぞれ流量調節可能なものとし、また、加熱用
の誘導コイルは前記特願昭54−144993号(特開昭
56−69210号)明細書に記載されているように、
下方から上方へ漸次移動させる方式のものを使用
した。各架台にはそれぞれ3個の黒鉛質るつぼ
(内径30mm、深さ15mm、)をのせ、実施例1と同様
の条件で炭素を析出させた。ただし、誘導コイル
は1cm/時の速度でガス上流測に移動させ、ま
た、各段への原料供給は、その誘導コイルの移動
に従い、各段の原料供給ノズルを調節し、誘導コ
イルにより加熱されている段へ順次流量4.1/
分で行なつた。
Example 2 An apparatus having the same structure as shown in the attached drawings was used, except that the pedestal had seven stages, the flow rate of the raw material supply nozzle to each stage could be adjusted, and the induction coil for heating was different from the above-mentioned special one. Application No. 54-144993 (Unexamined Japanese Patent Publication
No. 56-69210) As stated in the specification,
We used a method that gradually moves from the bottom to the top. Three graphite crucibles (inner diameter 30 mm, depth 15 mm) were placed on each stand, and carbon was precipitated under the same conditions as in Example 1. However, the induction coil is moved at a speed of 1 cm/hour to measure the gas upstream, and the raw material supply nozzle of each stage is adjusted according to the movement of the induction coil, and the raw material is heated by the induction coil. Sequential flow rate to stages 4.1/
I did it in minutes.

得られた製品の炭素析出状態を調べたが各段何
れのものも均一であつた。
The state of carbon precipitation in the obtained product was examined, and it was found to be uniform in each stage.

以上説明し、図面に示し、実施例に挙げたとこ
ろは本発明の理解を助けるための代表的例示に係
わるものであり、本発明はこれら例示に制限され
るものでなく、発明の要旨内でその他の変更、変
形例をとることができるものである。
What has been explained above, shown in the drawings, and cited in the examples are typical examples to help the understanding of the present invention, and the present invention is not limited to these examples, but within the gist of the invention. Other changes and modifications may be made.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施する装置の一例の縦
断正面略図、第2図は第1図の装置に設置される
基材の架台の一例の斜視略図である。 図中、1は反応器本体、2は誘導コイル、3は
基材の架台、5は基材、6は原料ガスの導入管、
6′は原料ガスの枝管、7はガス排出管である。
FIG. 1 is a schematic longitudinal sectional front view of an example of an apparatus for carrying out the method of the present invention, and FIG. 2 is a schematic perspective view of an example of a frame for a base material installed in the apparatus of FIG. In the figure, 1 is the reactor main body, 2 is the induction coil, 3 is the base material frame, 5 is the base material, 6 is the introduction pipe for the raw material gas,
6' is a branch pipe for raw material gas, and 7 is a gas discharge pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 熱分解炭素を析出させる原料ガスの流通下
に、基材を直接誘導加熱して基材上に熱分解炭素
を析出させる方法において、反応器内に複数の基
材を多段に支持し、反応器内壁に沿つて設けられ
た導入管及びこの導入管から上記の基材を支持す
る多段の各段に向かつて延びる枝管を介して原料
ガスを各段に同時に供給することを特徴とする基
材上に熱分解炭素を析出させる方法。
1. In a method in which pyrolytic carbon is deposited on a substrate by direct induction heating of the substrate under the flow of a raw material gas to precipitate pyrolytic carbon, a plurality of substrates are supported in multiple stages in a reactor and the reaction is carried out. A base characterized in that raw material gas is simultaneously supplied to each stage through an introduction pipe provided along the inner wall of the vessel and branch pipes extending from this introduction pipe toward each stage of the multi-stage supporting the base material. A method of depositing pyrolytic carbon on materials.
JP57003759A 1982-01-13 1982-01-13 Depositing method for carbon by thermal decomposition Granted JPS58120510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57003759A JPS58120510A (en) 1982-01-13 1982-01-13 Depositing method for carbon by thermal decomposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57003759A JPS58120510A (en) 1982-01-13 1982-01-13 Depositing method for carbon by thermal decomposition

Publications (2)

Publication Number Publication Date
JPS58120510A JPS58120510A (en) 1983-07-18
JPH0417887B2 true JPH0417887B2 (en) 1992-03-26

Family

ID=11566098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57003759A Granted JPS58120510A (en) 1982-01-13 1982-01-13 Depositing method for carbon by thermal decomposition

Country Status (1)

Country Link
JP (1) JPS58120510A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0327169D0 (en) 2003-11-21 2003-12-24 Statoil Asa Method
KR101431197B1 (en) * 2008-01-24 2014-09-17 삼성전자주식회사 Equipment for depositing atomic layer
US8318269B2 (en) 2009-02-17 2012-11-27 Mcalister Technologies, Llc Induction for thermochemical processes, and associated systems and methods
US8623107B2 (en) * 2009-02-17 2014-01-07 Mcalister Technologies, Llc Gas hydrate conversion system for harvesting hydrocarbon hydrate deposits
WO2013025655A2 (en) 2011-08-12 2013-02-21 Mcalister Technologies, Llc Systems and methods for providing supplemental aqueous thermal energy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113754A (en) * 1974-07-09 1976-02-03 Toyama Chemical Co Ltd Shinkinaganma *44*3** okisoshikurohekishiru * fueniru ** ganma ketopuchirusan oyobi sonoenruinoseiho
JPS5143038A (en) * 1974-10-09 1976-04-13 Canon Kk Karaaterebijonkamera

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113754A (en) * 1974-07-09 1976-02-03 Toyama Chemical Co Ltd Shinkinaganma *44*3** okisoshikurohekishiru * fueniru ** ganma ketopuchirusan oyobi sonoenruinoseiho
JPS5143038A (en) * 1974-10-09 1976-04-13 Canon Kk Karaaterebijonkamera

Also Published As

Publication number Publication date
JPS58120510A (en) 1983-07-18

Similar Documents

Publication Publication Date Title
US5904771A (en) Method of subliming material in CVD film preparation method
US3771976A (en) Metal carbonitride-coated article and method of producing same
US4741925A (en) Method of forming silicon nitride coating
US20130217564A1 (en) Method for synthesising diamond
JPS61201607A (en) Product consisting of pyrolytically prepared boron nitride and its preparation
JPH0417887B2 (en)
US4920012A (en) Articles having coatings of fine-grained and/or equiaxed grain structure
US3206331A (en) Method for coating articles with pyrolitic graphite
US2895852A (en) Titanium metallurgy
JP4309509B2 (en) Method for producing crucible for single crystal growth comprising pyrolytic graphite
US3450558A (en) Vapor plating beryllium
JPH05345695A (en) Preheater for cvd diamond reactor
JP2999042B2 (en) Method for producing vapor grown carbon fiber and apparatus for producing vapor grown carbon fiber used in the method
JP2543754Y2 (en) Artificial diamond deposition equipment
JPS6358226B2 (en)
JPS6250466A (en) Production of article having silicon nitride film
JPH012219A (en) Manufacturing method of ceramic superconducting wire
JPH01131013A (en) Production of pyrolytic graphite molded body
JP4319316B2 (en) Method for producing ceramic tubular molded body
JP2534080Y2 (en) Artificial diamond deposition equipment
JPH03103396A (en) Vapor-phase synthesis of diamond
JPS62244123A (en) Vapor growth device
Shi et al. The crystal morphology effect of Iridium tris-acetylacetonate on MOCVD iridium coatings
JPH0497998A (en) Production of aluminum nitride whisker
Regel et al. Influence of Centrifugation on Diamond Film Deposition By Chemical Vapor Transport