JPH04177189A - Underwater measuring device - Google Patents

Underwater measuring device

Info

Publication number
JPH04177189A
JPH04177189A JP2304609A JP30460990A JPH04177189A JP H04177189 A JPH04177189 A JP H04177189A JP 2304609 A JP2304609 A JP 2304609A JP 30460990 A JP30460990 A JP 30460990A JP H04177189 A JPH04177189 A JP H04177189A
Authority
JP
Japan
Prior art keywords
cable
underwater
measuring device
float
underwater measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2304609A
Other languages
Japanese (ja)
Other versions
JP2862990B2 (en
Inventor
Shigeru Sakaida
阪井田 茂
Kiyomi Minohara
箕原 喜代美
Masaharu Koizumi
正治 小泉
Toshio Ikegawa
池川 寿雄
Shinichiro Suzuki
伸一郎 鈴木
Keiji Okumoto
恵次 奥本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UNYUSHO DAISAN KOWAN KENSETSU KYOKUCHO
Furuno Electric Co Ltd
Original Assignee
UNYUSHO DAISAN KOWAN KENSETSU KYOKUCHO
Furuno Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UNYUSHO DAISAN KOWAN KENSETSU KYOKUCHO, Furuno Electric Co Ltd filed Critical UNYUSHO DAISAN KOWAN KENSETSU KYOKUCHO
Priority to JP2304609A priority Critical patent/JP2862990B2/en
Publication of JPH04177189A publication Critical patent/JPH04177189A/en
Application granted granted Critical
Publication of JP2862990B2 publication Critical patent/JP2862990B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To enable repeated data acquisition without the diving work of divers for setting and data acquisition by fitting a float at the tip of a cable wound up and paid out on from a cable drum. CONSTITUTION:In a container 2 an underwater measurement part 3, a cable drum 4, a control signal receiver 5 and a power source 6 are contained. The cable 8 is freely wound up and paid out on from the cable drum 4 and it combines a communication line 8A connected to a memory 3C in the underwater measurement part and a power line 8B connected to the power source 6. A float fitted at the tip of the cable has buoyancy so as to lead the cable 8 to the sea surface. By this, if only a support boat grasp the float 7 at the tip of the cable wound up and paid out by remote control, the underwater measuring device itself travels up and down between the sea bottom and the sea surface and the positioning at the sea bottom is done so that diving work is not necessary.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、波高等の水中情報を海底等の水底に設置され
た状態で計測し記録する水中測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an underwater measurement device that measures and records underwater information on wave height while installed on the bottom of the ocean, such as the ocean floor.

〔従来の技術〕[Conventional technology]

従来、この種水中測定装置として、第6図に示されるも
のが知られていた。この第6図のものは、波高を測定す
るため海底に設置されたものであり、やぐらaが海底す
上に組み立てられ、ヤグラa上に円筒形の収納体Cがポ
ル)dで固定されている。
Conventionally, as this type of underwater measuring device, the one shown in FIG. 6 has been known. The one in Figure 6 is installed on the seabed to measure wave height, and a tower a is assembled on the seabed, and a cylindrical storage body C is fixed on top of the tower a with poles and d. There is.

そして、収納体Cの上の送受波器eから鉛直方向に送受
波される超音波fによって、波高のピークtoピークや
周期を測定し、収納体C内の記憶装置に記録される。こ
のような、水中測定装置の海底設置とデータ回収は以下
の手順で行われる。まず、設置作業に際しては、潜水士
がヤグラaを海底に組み立て、支援船からロープで吊り
下げられた収納体Cを潜水士がヤグラa上にポル)dで
固定するという潜水作業により行っていた。さらに、波
高データを回収する場合にも、潜水士がヤグラa上の収
納体Cを取り外し、作業船からのローブで吊り上げると
いう潜水作業により行っていた。
Then, the peak-to-peak wave height and period are measured by the ultrasonic wave f transmitted and received in the vertical direction from the transducer e on the storage body C, and are recorded in the storage device within the storage body C. Installation of underwater measurement equipment on the seabed and data collection are performed in the following steps. First, the installation work was carried out by a diver who assembled Yagura a on the seabed, and then fixed the container C, which was suspended by a rope from a support vessel, onto Yagura a using the poles. . Furthermore, when collecting wave height data, a diver removed the container C from the top of the tower a and hoisted it up using a robe from a work boat.

また、潜水作業が不可能な水深に設置される水中測定装
置にあっては、重りを有する超音波式の切り離し装置を
水中測定装置に付設し、重りにより海底に設!し、切り
離し装置の作動により水中測定装置が浮力で上昇し回収
されるものが知られていた。
In addition, for underwater measuring devices installed at depths where diving is impossible, an ultrasonic disconnection device with a weight is attached to the underwater measuring device, and the weight allows the device to be attached to the seabed! However, it has been known that the underwater measuring device is lifted up by buoyancy and recovered when the detachment device is operated.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第6図の水中測定装置にあっては、海底設置とデータ回
収のために、潜水士により潜水作業が必要であり、潜水
士のための安全対策及び大掛かりな海底作業のために多
くの費用を必要とするという問題点を有していた。また
、超音波式の切り離し装置を付設したものは、高価な切
り離し装置が必要であり、データ回収毎に重り等の部品
を補充する必要があるという問題点を有していた。
The underwater measuring device shown in Figure 6 requires diving work by divers to install it on the seabed and collect data, which requires a lot of money for safety measures for the divers and large-scale seabed work. The problem was that it was necessary. Furthermore, those equipped with an ultrasonic separation device require an expensive separation device, and have the problem of requiring parts such as weights to be replenished each time data is collected.

本発明は、従来の技術の有するこのような問題点に鑑み
てなされたものであり、その目的とするところは、海底
設置とデータ回収のために潜水士による潜水作業を必要
とせず、繰り返しデータ回収が行える水中測定装置を提
供することを目的とする。
The present invention has been made in view of the above-mentioned problems of the conventional technology, and its purpose is to eliminate the need for diving work by divers for installation on the seabed and data collection, and to repeatedly collect data. The purpose is to provide an underwater measuring device that can perform recovery.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明の水中測定装置は波
高等の水中情報を計測する水中計測部を収納し水底に設
置される収納体に、水面の支援船から遠隔駆動されるケ
ーブルドラムを収納し、該ケーブルドラムで巻き取り又
は繰り出されるケーブルの先端に、該ケーブルを水面に
導くフロートを取付けたものである。
In order to achieve the above object, the underwater measurement device of the present invention houses an underwater measurement unit that measures underwater information on wave height, and a cable drum that is remotely driven from a support vessel on the water surface is attached to a storage body installed on the bottom of the water. A float that guides the cable to the water surface is attached to the tip of the cable that is stored and wound up or let out by the cable drum.

そして、 前記ケーブルに、前記水中計測部に対する通
信線を入れることが好ましい。
Preferably, a communication line for the underwater measuring section is inserted into the cable.

また、前記ケーブルに、前記ケーブルドラム用の電源に
対する充電用電力線を入れることが好ましい。
Further, it is preferable that a charging power line for a power source for the cable drum is inserted into the cable.

〔作用〕[Effect]

水中測定装置自体がフロート付ケーブルを存し、遠隔操
作でこのケーブルが巻き取り又は繰り出されるので、支
援船はこのケーブル先端のフロートを把持するだけで、
水中測定装置自体が海底から海面間を昇降し、海底設置
等がケーブルを介して行われる。
The underwater measuring device itself has a cable with a float, and this cable can be wound up or unwound by remote control, so the support vessel can simply grasp the float at the end of the cable.
The underwater measuring device itself is moved up and down from the ocean floor to the ocean surface, and installation on the ocean floor is done via cables.

そして、ケーブル内の通信線により、支援船は水中測定
装置から繰り出されるケーブル先端のフロートを回収し
てデータ回収装!に接続し、水中測定装置からのデータ
回収が行われる。
Then, using the communication line inside the cable, the support ship retrieves the float at the tip of the cable that is fed out from the underwater measurement device and uses it as a data collection device! data collection from underwater measurement equipment.

また、ケーブル内の充電用電力線により、支援船は水中
測定装置から繰り出されるケーブル先端のフロートを回
収して電源装置に接続し、水中測定装置への充電が行わ
れる。
In addition, using the charging power line inside the cable, the support ship collects the float at the tip of the cable that is fed out from the underwater measurement device, connects it to the power supply device, and charges the underwater measurement device.

〔実施例] 以下本発明の実施例を図面を参照しつつ説明する。〔Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図は水中測定装置の機器配置図、第2図は水中測定
装置の海底設置手順を示す図、第3図は水中測定装置か
らのデータ回収又は水中測定装置への充電手順を示す図
である。
Figure 1 is an equipment layout diagram of the underwater measuring device, Figure 2 is a diagram showing the procedure for installing the underwater measuring device on the seabed, and Figure 3 is a diagram showing the procedure for collecting data from the underwater measuring device or charging the underwater measuring device. be.

第1図において、水中測定装置1は、収納体2内に、水
中計測部3と、ケーブルドラム4と、制御信号受信部5
と、電源6とを収納したものである。このケーブルドラ
ム4により、フロート7を先端に取付けたケーブル8が
巻き取り又は繰り出し自在となっている。
In FIG. 1, an underwater measuring device 1 includes an underwater measuring section 3, a cable drum 4, and a control signal receiving section 5 in a housing 2.
and a power source 6. This cable drum 4 allows a cable 8 with a float 7 attached to its tip to be wound up or let out.

水中計測部3は、送受波器3Aと、応答回路3Bと、メ
モリ3Cとを備えたものであり、送受波器3Aの送受波
面は鉛直方向を指向するようになっており、海面で反射
される超音波を応答回′l53Bで処理することによっ
て、ピーク to ピークや周期等の波高データを計測
し、この波高データはメモリ3Cに時間と共に記録され
る。なお、こ゛の水中計測部3は超音波式に限らず圧力
式のものもある。
The underwater measuring section 3 includes a transducer 3A, a response circuit 3B, and a memory 3C.The transmitting and receiving surface of the transducer 3A is oriented in the vertical direction, and the wave is reflected from the sea surface. By processing the generated ultrasonic waves in the response circuit 53B, wave height data such as peak-to-peak and period are measured, and this wave height data is recorded in the memory 3C over time. Note that this underwater measuring section 3 is not limited to the ultrasonic type, but also includes a pressure type.

ケーブルドラム4は後に説明する往復動する回転ドラム
にケーブル8を巻き付けたものであり、その制御部4A
によりケーブル8の巻き取り長又は繰り出し長が制御さ
れる。
The cable drum 4 is a rotary drum that reciprocates and has a cable 8 wrapped around it, which will be described later, and its control unit 4A.
The winding length or unwinding length of the cable 8 is controlled by this.

制御信号受信部5は、受渡器5Aと、応答回路5Bとを
備えたものであり、支援船9の送波器9Aから発信され
た超音波制御信号を受渡器5Aで受信し、応答回路5B
で処理し、制御部4Aを介してケーブルドラム4を制御
する。そして、電源6は、ケーブルドラム4、水中計測
部3及び制御信号受信部5に電力を供給する。
The control signal receiving unit 5 includes a delivery device 5A and a response circuit 5B, and receives an ultrasonic control signal transmitted from the transmitter 9A of the support vessel 9 with the delivery device 5A, and transmits the ultrasound control signal to the response circuit 5B.
and controls the cable drum 4 via the control section 4A. The power source 6 supplies power to the cable drum 4, the underwater measuring section 3, and the control signal receiving section 5.

ケーブル8は水中測定装置1全体の重量を支えることが
できる強度を有しており、水中計測部のメモリ3Cに接
続された通信線8Aとt源6に接続された電力線8Bと
が一体化されたものである。
The cable 8 has a strength capable of supporting the entire weight of the underwater measurement device 1, and the communication line 8A connected to the memory 3C of the underwater measurement unit and the power line 8B connected to the t source 6 are integrated. It is something that

そして、ケーブル先端に取付けられたフロート7は繰り
出されたケーブル8を海面に導くことができる浮力を有
し、通信線8Aや電力線8B用のコネクタ7Aを備えた
ものである。
A float 7 attached to the tip of the cable has a buoyancy that can guide the cable 8 to the sea surface, and is equipped with a connector 7A for a communication line 8A and a power line 8B.

つぎに、上述した構造の水中測定装置1の海底設置手順
を第2図により説明する。第2図(a)において、支援
船9上にフロート7が把持され、水中測定装置1自体は
滑車9Bに支持されたケーブル8により海中に吊り下げ
られる。送波器9Aから制御信号受信部5への繰り出し
信号を送り、水中測定装置1は徐々に海中に降下する。
Next, a procedure for installing the underwater measuring device 1 having the above-described structure on the seabed will be explained with reference to FIG. 2. In FIG. 2(a), a float 7 is held on a support ship 9, and the underwater measuring device 1 itself is suspended in the sea by a cable 8 supported by a pulley 9B. A sending signal is sent from the wave transmitter 9A to the control signal receiving section 5, and the underwater measuring device 1 gradually descends into the sea.

水深は予め既知のものであり、水中測定装置1が海底に
至るとケーブル8の繰り出しが自動的に停止するように
なっている。つぎに、第2図(b)において、支援船9
上のフロート7をフリーにし、送波器9Aから制御信号
受信部5への巻き取り信号を送る。第2図(C)におい
て、ケーブル8の巻き取りと共にフロート7は水中測定
装置1に戻り、海底設置が完了する。なお、ケーブル8
に通信線や電力線が入っていない場合には、同様の手順
で水中測定装置1自体を回収し、データ回収や充電を行
い、再び海底に設置することもできる。
The water depth is known in advance, and when the underwater measurement device 1 reaches the seabed, the cable 8 automatically stops being fed out. Next, in Figure 2(b), support ship 9
The upper float 7 is made free and a winding signal is sent from the wave transmitter 9A to the control signal receiving section 5. In FIG. 2(C), the float 7 returns to the underwater measuring device 1 as the cable 8 is wound up, completing the installation on the seabed. In addition, cable 8
If there is no communication line or power line connected to the underwater measuring device 1, the underwater measuring device 1 itself can be recovered using the same procedure, data can be recovered and charged, and the device can be installed on the seabed again.

つぎに、ケーブル8の通信線によるデータ回収手順を第
3図により説明する。第3図(a)において、送波器9
Aから制御信号受信部5への繰り出し信号を送り、第3
図(b)に示されるように、フロート7に導かれたケー
ブル8を海面に向かって繰り出す。つぎに、第3図(C
)において、フロートのコネクタ7Aとデータ回収装置
9Cを接続し、水中測定装置1内の波高データを回収す
る。
Next, a data collection procedure using the communication line of the cable 8 will be explained with reference to FIG. In FIG. 3(a), the transmitter 9
A sends a feed signal to the control signal receiving section 5, and the third
As shown in Figure (b), the cable 8 guided by the float 7 is let out toward the sea surface. Next, Figure 3 (C
), the float connector 7A is connected to the data collection device 9C, and wave height data in the underwater measurement device 1 is collected.

第3図(d)において、波高データ回収後に、送波器9
Aから制御信号受信部5への巻き取り信号を送り、第3
図(e)に示されるように、フロート7に導かれたケー
ブル8を水中測定装置1に戻す。そして、第3図(f)
において、水中計測部3により、新たな波高データの収
録がなされる。
In FIG. 3(d), after collecting the wave height data, the transmitter 9
A winding signal is sent to the control signal receiving section 5, and the third
As shown in Figure (e), the cable 8 led to the float 7 is returned to the underwater measuring device 1. And Fig. 3(f)
At this point, new wave height data is recorded by the underwater measuring section 3.

以上の説明はデータ回収手順であったが、充電手順も同
様であり、データ回収と同時に行うことができる。
Although the above explanation was about the data collection procedure, the charging procedure is also similar, and can be performed at the same time as the data collection.

なお、以上の実施の説明は海底から波高を計測する場合
を説明したが、波高計測に限らず、潮流、水温、塩分濃
度等のあらゆる海底に位置する計測を行うことができ、
海底に限らず湖底に設置されるものでもよい。
In addition, although the above explanation of the implementation explained the case of measuring wave height from the seabed, it is not limited to wave height measurement, but can also perform all kinds of measurements located on the seabed, such as tidal current, water temperature, salinity concentration, etc.
It is not limited to the seabed, and may be installed on the lakebed.

第4図及び第5図により水中測定装置1の具体的構造の
一例を説明する。第4図は水中測定装置の側断面図、第
5図は水中測定装置の上断面図である。収納体2は円筒
形状であり、その上面に送受波器3A及び受波器5Aが
突出状態で固設され、フロート7の座2Aも上面に設け
られている。ケーブル8はガイドローラIIA及びII
Bに挟持され、ケーブルドラム4の繰り出し速度より早
く又は巻き取り速度より遅くなるように駆動回転されて
いる。ドラム4Bは水密楕円ケース4C内のモータで回
転駆動されると共に往復動してケーブル8の整列巻きが
維持されるようになっている。
An example of a specific structure of the underwater measuring device 1 will be explained with reference to FIGS. 4 and 5. FIG. FIG. 4 is a side sectional view of the underwater measuring device, and FIG. 5 is a top sectional view of the underwater measuring device. The storage body 2 has a cylindrical shape, and a wave transmitter/receiver 3A and a wave receiver 5A are fixedly provided in a protruding state on the upper surface thereof, and a seat 2A of the float 7 is also provided on the upper surface. Cable 8 connects guide rollers IIA and II
B, and is driven and rotated so as to be faster than the unwinding speed of the cable drum 4 or slower than the winding speed. The drum 4B is rotatably driven by a motor in a watertight oval case 4C and reciprocates to maintain the aligned winding of the cable 8.

収納体2内には海水が開閉カバー2Bから導入され、海
水で満たされるとフロー)2Cで短冊状の開閉カバー2
Bが閉しるようになっている。なお、6は電源、12は
ケーブルドラム4等の制御装置である。
Seawater is introduced into the storage body 2 from the opening/closing cover 2B, and when it is filled with seawater, it flows through the rectangular opening/closing cover 2C.
B is now closed. Note that 6 is a power source, and 12 is a control device for the cable drum 4 and the like.

(発明の効果〕 本発明の水中測定装置は波高等の水中情報を計測する水
中計測部を収納し水底に設置される収納体に、水面の支
援船から遠隔駆動されるケーブルドラムを収納し、該ケ
ーブルドラムで巻き取り又は繰り出されるケーブルの先
端に、該ケーブルを水面に導くフロートを取付けたもの
であり、支援船は遠隔操作で巻き取り又は繰り出される
ケーブル先端のフロートを把持するだけで、水中測定装
置自体が海底から海面間を昇降し、海底設置等が行われ
るので、海底設置等に潜水作業を必要とせず、繰り返し
の使用ができる。
(Effects of the Invention) The underwater measuring device of the present invention houses a cable drum remotely driven from a support vessel on the surface of the water in a storage body that houses an underwater measurement unit that measures underwater information on wave height and is installed on the bottom of the water. A float that guides the cable to the water surface is attached to the tip of the cable being wound up or let out by the cable drum, and the support vessel can simply hold the float at the end of the cable being wound up or let out by remote control, and the cable can be pulled out underwater. Since the measuring device itself is moved up and down from the seabed to the sea surface and installed on the seabed, there is no need for diving work for installation on the seabed, and it can be used repeatedly.

そして、前記ケーブルに前記水中計測部に対する通信線
を入れると、水中測定装置自体を回収せずとも、支援船
はこのケーブル先端のフロートを回収してデータ回収装
置に接続することで、データ回収が行われるので、水中
測定装置自体を回収することなくデータ回収を行うこと
ができる。
Then, by inserting a communication line for the underwater measurement unit into the cable, the support vessel can collect data by collecting the float at the tip of the cable and connecting it to the data collection device, without having to collect the underwater measurement device itself. Therefore, data can be collected without having to retrieve the underwater measuring device itself.

また、前記ケーブルに前記ケーブルドラム等の電源に対
する充電用電力線を入れると、支援船はこのケーブル先
端のフロートを回収して電源装置に接続することで、水
中測定装置への充電が行われるので、水中測定装置自体
を回収することなく充電を行うことができる。
Furthermore, when a charging power line for the power source of the cable drum, etc. is inserted into the cable, the support vessel collects the float at the tip of the cable and connects it to the power supply device, thereby charging the underwater measuring device. It is possible to charge the underwater measuring device without having to retrieve it itself.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は水中測定装置の機器配置図、第2図は水中測定
装置の海底設置手順を示す図、第3図は水中測定装置か
らのデータ回収又は水中測定装置への充電手順を示す図
、第4図は水中測定装置の側断面図、第5図は水中測定
装置の上断面図、第6図は従来の水中測定装置の海底設
置状態を示す斜視図である。 1・・・水中測定装置、2・・・収納体、3・・・水中
計測部、4・・・ケーブルドラム、7・・・フロート、
8・・・ケーブル、8A・・・通信線、8B・・・電力
線。
Figure 1 is an equipment layout diagram of the underwater measuring device, Figure 2 is a diagram showing the procedure for installing the underwater measuring device on the seabed, and Figure 3 is a diagram showing the procedure for collecting data from the underwater measuring device or charging the underwater measuring device. FIG. 4 is a side sectional view of the underwater measuring device, FIG. 5 is a top sectional view of the underwater measuring device, and FIG. 6 is a perspective view showing a conventional underwater measuring device installed on the seabed. DESCRIPTION OF SYMBOLS 1... Underwater measurement device, 2... Storage body, 3... Underwater measurement part, 4... Cable drum, 7... Float,
8...Cable, 8A...Communication line, 8B...Power line.

Claims (3)

【特許請求の範囲】[Claims] (1)波高等の水中情報を計測する水中計測部を収納し
水底に設置される収納体に、水面の支援船から遠隔駆動
されるケーブルドラムを収納し、該ケーブルドラムで巻
き取り又は繰り出されるケーブルの先端に、該ケーブル
を水面に導くフロートを取付けたことを特徴とする水中
測定装置。
(1) A cable drum that is remotely driven from a support vessel on the water surface is housed in a storage body that houses an underwater measurement unit that measures underwater information on wave height and is installed on the bottom of the water, and the cable drum is wound or unwound by the cable drum. An underwater measurement device characterized in that a float is attached to the tip of a cable to guide the cable to the water surface.
(2)前記ケーブルに、前記水中計測部に対する通信線
が入っている請求項1記載の水中測定装置。
(2) The underwater measuring device according to claim 1, wherein the cable includes a communication line for the underwater measuring section.
(3)前記ケーブルに、前記ケーブルドラム等の電源に
対する充電用電力線が入っている請求項1又は2記載の
水中測定装置。
(3) The underwater measuring device according to claim 1 or 2, wherein the cable includes a charging power line for a power source of the cable drum or the like.
JP2304609A 1990-11-09 1990-11-09 Underwater measuring device Expired - Lifetime JP2862990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2304609A JP2862990B2 (en) 1990-11-09 1990-11-09 Underwater measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2304609A JP2862990B2 (en) 1990-11-09 1990-11-09 Underwater measuring device

Publications (2)

Publication Number Publication Date
JPH04177189A true JPH04177189A (en) 1992-06-24
JP2862990B2 JP2862990B2 (en) 1999-03-03

Family

ID=17935068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2304609A Expired - Lifetime JP2862990B2 (en) 1990-11-09 1990-11-09 Underwater measuring device

Country Status (1)

Country Link
JP (1) JP2862990B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010092203A1 (en) * 2009-02-11 2010-08-19 Jose Francisco Arredondo Diez Seabed platform which can be configured to take different measurements, with the option for remote control and for captive or free modes
CN109094742A (en) * 2018-10-24 2018-12-28 中国海洋大学 A kind of bottom sediment mechanical characteristic in-situ measurement device deep suitable for full sea
CN109278962A (en) * 2018-10-24 2019-01-29 中国海洋大学 A kind of cable-free type sea bed observation platform deep suitable for full sea

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010092203A1 (en) * 2009-02-11 2010-08-19 Jose Francisco Arredondo Diez Seabed platform which can be configured to take different measurements, with the option for remote control and for captive or free modes
CN109094742A (en) * 2018-10-24 2018-12-28 中国海洋大学 A kind of bottom sediment mechanical characteristic in-situ measurement device deep suitable for full sea
CN109278962A (en) * 2018-10-24 2019-01-29 中国海洋大学 A kind of cable-free type sea bed observation platform deep suitable for full sea
CN109278962B (en) * 2018-10-24 2023-11-03 中国海洋大学 Cable-free submarine observation platform suitable for full sea depth
CN109094742B (en) * 2018-10-24 2023-11-14 中国海洋大学 In-situ measurement device for mechanical properties of submarine sediments suitable for full sea depth

Also Published As

Publication number Publication date
JP2862990B2 (en) 1999-03-03

Similar Documents

Publication Publication Date Title
CN108189969B (en) Deep sea anchor system subsurface buoy system based on satellite communication data real-time transmission
CN108216492B (en) High-precision submerged buoy array system for realizing marine data area monitoring
CN102183789B (en) For adjusting the system of geophysical sensor streamer front end towing depth
CN108917727B (en) Ocean vertical profile measuring device and working method thereof
CN103713325B (en) Underwater cable deployment system and method
CN110789671A (en) Real-time transmission ocean geomagnetic daily variation observation device
JPH0799910B2 (en) Remote underwater power supply device
GB2449351A (en) Coupling a buoyant data acquisition module to an ocean bottom seismometer by means of a retractable tether line
JPH04177189A (en) Underwater measuring device
JPH10287293A (en) Submarine prospecting observatory equipment
CN211014673U (en) Seabed geomagnetism daily variation observation device
US5230588A (en) Method and device for paying out or hauling in the supply line cable of an underwater device
JP2014151654A (en) Recovery facility of underwater observation equipment, and recovery method of underwater observation equipment
CN218559100U (en) Communication buoy device for retracting and releasing underwater robot
CN219406860U (en) Seabed base
JPH06133371A (en) Method and device for transmission of deep-sea bottom observation data
JP2001151474A (en) Elevating device for underwater observation device
CN217706183U (en) Release device for underwater acoustic communication buoy
RU90040U1 (en) Pop-up buoy
CN210761197U (en) Real-time transmission subsurface buoy system based on seabed observation network
CN215043522U (en) Intelligence grabbing device under water
CN213903795U (en) Intelligent sitting bottom observation device
US5774421A (en) Underwater measurement device
US4177530A (en) Buoy system for vertical ocean profiling
CN113525596A (en) Release device for underwater acoustic communication buoy

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term