JPH04175760A - Manufacture of organic photoreceptor with surface protective layer - Google Patents

Manufacture of organic photoreceptor with surface protective layer

Info

Publication number
JPH04175760A
JPH04175760A JP30500090A JP30500090A JPH04175760A JP H04175760 A JPH04175760 A JP H04175760A JP 30500090 A JP30500090 A JP 30500090A JP 30500090 A JP30500090 A JP 30500090A JP H04175760 A JPH04175760 A JP H04175760A
Authority
JP
Japan
Prior art keywords
photosensitive layer
cleaning
layer
photoreceptor
protective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30500090A
Other languages
Japanese (ja)
Other versions
JP2932679B2 (en
Inventor
Isao Doi
勲 土井
Seiji Kojima
誠司 小島
Kenji Masaki
賢治 正木
Shuji Iino
修司 飯野
Mochikiyo Osawa
大澤 以清
Fumiko Maekawa
前川 文子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP30500090A priority Critical patent/JP2932679B2/en
Publication of JPH04175760A publication Critical patent/JPH04175760A/en
Application granted granted Critical
Publication of JP2932679B2 publication Critical patent/JP2932679B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an organic photoreceptor prevented with the surface peeling, the rise of residual potential and the occurrence of black stripes by cleaning and roughening the surface of a photosensitive layer before forming a vacuum thin film on the surface of the organic photosensitive layer as a surface protective layer. CONSTITUTION:For the cleaning method of a photosensitive layer, the dipping method, shower method, and steam cleaning method may be applied, the dipping method is preferable, and it is sufficient to dip the photosensitive layer in a hexane solvent at 20 deg.C for about 60 sec in this cleaning method, for example. A mechanical rubbing means pressing and rubbing a fabric or a brush is used for the surface roughening method, and many buffs may be used for the buff rubbing treatment. A vacuum thin film is formed on the surface of the organic photosensitive layer as a surface protective layer after the cleaning process and the roughening treatment are completed. Such problems as the defective toner cleaning, the rise of residual potential due to repeated use, and the occurrence of black stripes caused by it are prevented.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は真空薄膜を表面保護層として有する有機系感光
体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing an organic photoreceptor having a vacuum thin film as a surface protective layer.

従来技術および課題 近年、有機光導電性材料を粘着樹脂に配合した電子写真
感光体が広く用いられるにいたっている。
BACKGROUND OF THE INVENTION In recent years, electrophotographic photoreceptors in which an organic photoconductive material is blended with an adhesive resin have come into wide use.

この種の感光体はセレンや硫化カドミウム等を用いた感
光体に比較して衛生上の問題もなく、加工性に優れてい
る点で工業的生産性に優れるという利点がある。
This type of photoreceptor has the advantage that it has no hygienic problems and is superior in processability and industrial productivity compared to photoreceptors using selenium, cadmium sulfide, or the like.

しかし、これらの有機系感光体は硬度に乏しく、繰り返
し使用における転写紙、クリーニング部材、現像剤等と
の摩擦により感光体が削れ、傷付きやすい。
However, these organic photoreceptors lack hardness and are easily scratched and scratched by friction with transfer paper, cleaning members, developers, etc. during repeated use.

そこで、そのような問題を解消するために有機系感光層
の表面に、表面保護層を設ける技術がある。
In order to solve this problem, there is a technique of providing a surface protective layer on the surface of the organic photosensitive layer.

かかる表面保護層の1種として連出な化合物の真空薄膜
が提案されている。
A vacuum thin film of a continuous compound has been proposed as one type of such surface protective layer.

真空薄膜は、高硬度のものを形成することも可能であり
、そのような真空薄膜を有機系感光層の表面保護層とし
て有する有機系感光体は、表面保護層を有しない有機系
感光体に比べ、耐久性に優れ、常温常湿下で、長期使用
に関しては充分な膜強度を有してはいるが、長期使用後
の耐湿性は充分とは言えず、繰り返し使用していると、
残留電位の上昇、並びに黒筋状の画像ノイズの発生とい
う問題が生じる。
It is also possible to form a vacuum thin film with high hardness, and an organic photoreceptor that has such a vacuum thin film as a surface protective layer of an organic photosensitive layer is similar to an organic photoreceptor that does not have a surface protective layer. In comparison, it has excellent durability and has sufficient film strength for long-term use at room temperature and humidity, but its moisture resistance after long-term use is not sufficient, and when used repeatedly,
Problems arise in that the residual potential increases and black streak-like image noise occurs.

一方、表面保護層は、理想的には、有機系感光層を形成
後、直ちにその表面に形成することが望ましいが、実際
には、製造工程の簡略化、装置上の問題より、有機系感
光層のみを形成したものを一度に多量に製造17、次に
非晶質炭素膜等の表面保護層形成工程に供せられるのが
一般的である。
On the other hand, ideally, it is desirable to form a surface protective layer on the surface of the organic photosensitive layer immediately after forming the organic photosensitive layer, but in reality, due to the simplification of the manufacturing process and equipment problems, It is common to manufacture a large quantity of a material with only a layer formed thereon at one time (17), and then to subject it to a step of forming a surface protective layer such as an amorphous carbon film.

その間、有機系感光層は数日〜lゲ月程度保管される(
該保管期間を「しかかり期間Jという)二とか多い。
During that time, the organic photosensitive layer is stored for several days to several months (
This storage period is often referred to as the ``introductory period J''.

有機系感光層表面は、形成後、時間経過と共に大気中の
酸素により表面が酸化さねていく。このような酸化被膜
か形成された有機系感光層表面に真空薄膜たとえば非晶
質炭素膜素瞑を設けよ一′)きすると、酸化被膜面と真
空薄膜との間の接着性が悪いために表面保護層の剥離が
発生してしまう。
After formation, the surface of the organic photosensitive layer becomes oxidized by oxygen in the atmosphere over time. If a vacuum thin film, such as an amorphous carbon film, is provided on the surface of the organic photosensitive layer on which such an oxide film has been formed, the adhesion between the oxide film surface and the vacuum thin film will be poor. Peeling of the surface protective layer will occur.

才発明者らの経験では、塗布後−日経過した有機系感光
層では、既にこの現象が発生しやすい。
According to the experience of the inventors, this phenomenon is already likely to occur in organic photosensitive layers that have been coated for several days.

発明が解決しようとする課題 本発明は上記事情に鑑みなされたものであり、有機系感
光!表面上に真空薄膜を表面保護層として形成する前に
、該感光層表面の洗浄と粗面化を行うことにより上記問
題企解決しようとするものである。
Problems to be Solved by the Invention The present invention has been made in view of the above circumstances, and uses organic photosensitive materials! The above-mentioned problem is attempted to be solved by cleaning and roughening the surface of the photosensitive layer before forming a vacuum thin film on the surface as a surface protective layer.

すなわち、本発明は、表面剥離、残留電位の上昇および
黒筋発生のない有機系感光体の製造方法を提供すること
を目的とする。
That is, an object of the present invention is to provide a method for manufacturing an organic photoreceptor without surface peeling, increase in residual potential, and generation of black streaks.

課題を解決するための手段 本発明は有機系感光層を洗浄する工程と、該有機系感光
層表面を粗面化する工程とを経た後に、真空薄膜を表面
保護層としで形成することを特徴どする有機系感光体の
製造方法1こ関する。
Means for Solving the Problems The present invention is characterized in that after a step of cleaning an organic photosensitive layer and a step of roughening the surface of the organic photosensitive layer, a vacuum thin film is formed as a surface protective layer. The present invention relates to a method for manufacturing an organic photoreceptor.

本発明の感光体の製造方法は、まず有機系感光層を洗浄
する工程と、粗面化する]−程からなる。
The method for manufacturing a photoreceptor of the present invention first includes a step of cleaning an organic photosensitive layer and a step of roughening the surface.

感光層は、自体公知の有機系感光層を導電性基板」二に
設けたものであり、感光層の内部構造は、導電性基板」
二に光導電性材料と電荷輸送材料を結着剤に配合した単
層型構成の感光層、導電性支持体上にt荷発生層と電荷
輸送層が順次形成さrしている機能分離型構成の感光層
、あるいは導電性支持体上に電荷輸送層と電荷発生層が
順次形成されている機能分離型構成のいずれであっても
よい。
The photosensitive layer is a well-known organic photosensitive layer provided on a conductive substrate, and the internal structure of the photosensitive layer is similar to that of the conductive substrate.
Second, there is a photosensitive layer with a single-layer structure in which a photoconductive material and a charge transporting material are blended as a binder, and a functionally separated type in which a charge generation layer and a charge transporting layer are sequentially formed on a conductive support. The photosensitive layer may have a photosensitive layer structure, or a functionally separated structure in which a charge transport layer and a charge generation layer are sequentially formed on a conductive support.

もっとも、電荷発生層どしては7タロ/アr−ンの蒸M
膜のように、結着樹脂を用いず電荷発生物質自体のみか
らなるものも存在するが、このようなV荷発生層で構成
されていても、その上に樹脂分散型の!荷輸送層が殺け
られていれば本発明は有効である。
However, as for the charge generation layer, 7talo/arne vapor M
There are also films that are made of only the charge-generating substance itself without using a binder resin, but even if it is composed of such a V charge-generating layer, a resin-dispersed type! The present invention is effective as long as the cargo transport layer is destroyed.

また、表面保護層を設ける場合、その保護層の下の感光
層がプラズマ中における電子あるいはイオ〉の衝撃、熱
等で劣化しないように感光層のトに一旦、樹脂層を設け
る構成の感光体が提案されているが(例えば特開平01
−133063号公報等)、そのような構成の感光体の
場合、感光層が無機系、有機系いかなる種類のものであ
れ、本発明を適用することにより耐久性、残留電位の上
昇感度低下(黒筋発生)が改善される。
In addition, when a surface protective layer is provided, a resin layer is first provided on the top of the photosensitive layer so that the photosensitive layer under the protective layer does not deteriorate due to the impact of electrons or ions in plasma, heat, etc. have been proposed (for example, in Japanese Patent Application Laid-Open No. 2001-01)
-133063, etc.), in the case of a photoreceptor with such a structure, regardless of whether the photosensitive layer is inorganic or organic, applying the present invention can improve durability, increase residual potential, decrease sensitivity (black Muscle development) is improved.

有機系感光層の洗浄は、感光層表面の酸化被膜を除去で
きる作用を有すれば特に限定されるものではない。具体
的には有機系感光層の洗浄に使用できる溶剤としては、
を二とえばn −/\片サン、ンクロヘキサン、ベン・
タン、7りロベンタン、ヘプタン、オクタン、リグロイ
ン、石油ニーデル、ベンジン、インヘキサン、洋才ヘキ
サン、1−ヘンセン等の飽和炭化水素類、メタノール、
エタノール、プロパツール、フヂルアルコール、アリル
アルコール、ベンジルアルコール等の炭化水素、1フル
コール類、トルエン、キシレン、ヘミメリテン、プソイ
ドクメン、テトラリン等の男香族炭化水素類、アセトン
、エチルメチルケトン、ンクロヘキザノン、メチルビニ
ルケトン等のケトン類、あるいは、エチルニーデル、メ
チルエーテル等のニーi゛ル類等を上げることができる
。好ましいものはね一ヘキザン、インヘキサンである。
Cleaning of the organic photosensitive layer is not particularly limited as long as it has the effect of removing the oxide film on the surface of the photosensitive layer. Specifically, solvents that can be used for cleaning organic photosensitive layers include:
For example, n-/\ Katasan, Nclohexane, Ben-
Saturated hydrocarbons such as tan, heptane, octane, ligroin, petroleum needle, benzine, inhexane, western hexane, 1-hensen, methanol,
Hydrocarbons such as ethanol, propatool, phytyl alcohol, allyl alcohol, and benzyl alcohol, 1-flucols, androaromatic hydrocarbons such as toluene, xylene, hemimelithene, pseudocumene, and tetralin, acetone, ethyl methyl ketone, nclohexanone, and methyl Examples include ketones such as vinyl ketone, and polymers such as ethyl needle and methyl ether. Preferred are hexane and inhexane.

その佐倉ハロゲン原子溶剤も使用可能で、炭素数1〜6
の炭化水素系のアルコールの炭素原子に結合する水素原
子をフッ素原子に置換したもので、あらゆる異性体を適
用可能である。
The Sakura halogen atom solvent can also be used, and has 1 to 6 carbon atoms.
It is a hydrocarbon alcohol in which the hydrogen atom bonded to the carbon atom is replaced with a fluorine atom, and all isomers are applicable.

係る含フン素アルコールとしてはフッ化メタノール、フ
ッ化エタノーノ呟 フッ化プロパツール、フッ化ブタノ
ール、フッ化ペンタノーノ呟フッ化−\キサノール、フ
ッ化ブタンジオール等を挙げることができる。好ましい
含フ/素アルコールは5−フッ化プロパツール、3−フ
フ化プロバノール等であり、最も好ましいものは5−フ
ッ化プロパツール(あらゆる異性体を含む)である。
Examples of such fluorine-containing alcohols include fluorinated methanol, fluorinated ethanol, fluorinated propane, fluorinated butanol, fluorinated pentanol, fluorinated xanol, and fluorinated butanediol. Preferred fluorine-containing alcohols include 5-fluorinated proptool, 3-fluorinated propanol, and the most preferred is 5-fluorinated proptool (including all isomers).

その他にも、1,1.ll−リクロロー1.2.2−ト
リフルオロエタン等も適用可能である。
In addition, 1,1. ll-lichloro-1,2,2-trifluoroethane, etc. are also applicable.

感光層を洗浄する方法としては、ディッピング法、ンヤ
ワー法、蒸気洗浄法等を適用すればよく、洗浄条件は、
感光体の型(単分散、機能分離型)、構成樹脂の種類、
使用する溶剤の種類等により、適宜選択設定すればよい
As a method for cleaning the photosensitive layer, a dipping method, a wet cleaning method, a steam cleaning method, etc. may be applied, and the cleaning conditions are as follows.
Type of photoreceptor (monodisperse, functionally separated type), type of constituent resin,
It may be selected and set as appropriate depending on the type of solvent used.

ディッピング法が好ましく、この洗浄法では例えば、感
光層を20℃のヘキサン溶媒に60秒程度浸漬すれば十
分である。洗浄効果を上げるために、超音波振動を付与
したり、溶媒を(精製)循環させたりしてもよい。
A dipping method is preferred, and in this cleaning method, for example, it is sufficient to immerse the photosensitive layer in a hexane solvent at 20° C. for about 60 seconds. In order to increase the cleaning effect, ultrasonic vibration may be applied or the solvent may be (purified) circulated.

このように洗浄された感光体の表面には、例えば、プラ
ズ?CVD法、光CVD法、熱CVD法、スパッタリン
グ法、蒸着法、イオンブレーティング法等積々の方法で
表面保護層(真空薄膜)を接着性よく形成することがで
きる。
The surface of the photoconductor cleaned in this way is coated with, for example, plasma? The surface protective layer (vacuum thin film) can be formed with good adhesion by a variety of methods such as CVD, photo-CVD, thermal CVD, sputtering, vapor deposition, and ion-blating.

表面粗面化の方法は、特に限定されるものではないが、
例えば、天然繊維(羊毛、鹿毛、兎毛などの獣毛、綿、
麻等)、化学繊維(レーヨン、アセテート、ナイロン、
ポリプロピレン、アクリル、ポリエステル、テフロン等
)、ガラス繊維またはステンレススチールIil維等を
湿気、熱、圧力の作用で3次元的に絡めて、シート状に
したフェルト、またはそれらの繊維からなる布、プラン
を圧接して摺擦させる機械的研摩手段(パフ研摩、プラ
ン研摩等)を挙げることができる。
The method of surface roughening is not particularly limited, but
For example, natural fibers (animal hair such as wool, deer hair, rabbit hair, cotton,
linen, etc.), chemical fibers (rayon, acetate, nylon,
Polypropylene, acrylic, polyester, Teflon, etc.), glass fibers, stainless steel Iil fibers, etc. are intertwined three-dimensionally under the effects of moisture, heat, and pressure to form a sheet of felt, or cloth or plan made of these fibers. Mechanical polishing means (puff polishing, plan polishing, etc.) that involves pressure contact and sliding can be used.

このような機械的研摩手段を使用する場合、研磨剤(樹
脂あるいは無機物からなる粒子)を水、表面活性剤、切
削油等と共に存在させてもよいし、させなくてもよい。
When such a mechanical polishing means is used, an abrasive (particles made of resin or inorganic material) may or may not be present together with water, a surfactant, cutting oil, etc.

研磨剤を用いる場合は、研磨粒子を埋め込んだり結合さ
せたフェルト、布、ブラシを用いていもよい。
When using an abrasive, felt, cloth, or brush in which abrasive particles are embedded or bonded may be used.

表面粗さは、繊維の種類、大きさ、太さあるいは密度、
または、研磨粒子を用いる場合は、研磨粒子の種類、大
きさ、太さあるいは、密度、さらに研磨機の圧接力、摺
擦力により制御することができる。
Surface roughness is determined by the type, size, thickness or density of fibers,
Alternatively, when abrasive particles are used, it can be controlled by the type, size, thickness, or density of the abrasive particles, as well as the pressing force and sliding force of the abrasive machine.

例えば、ツールHフェルトの円盤状パフ(直径20cm
)で直径80mmX長さ330mmの樹脂分散型の感光
体ドラムをパフ研磨により粗面化する場合、 純粋吐液    :112/分 ドラム回転数  + 100〜240rpL11パフ回
転数   :50〜850 rpm/〈7送り    
: 0 、3〜1 crn/秒パフセンターずれ〜4.
5〜6cm パフ荷重    〜2.5〜15kg の研磨条件下で、本発明に適した表面粗度とすることが
できる。もちろん上記条件は例示的なものであって、本
発明の表面粗度を達成する条件を何ら限定するものでは
ない。
For example, use a tool H felt disc-shaped puff (diameter 20 cm).
), when roughening the surface of a resin-dispersed photoreceptor drum with a diameter of 80 mm and a length of 330 mm by puff polishing, pure liquid discharge: 112/min drum rotation speed + 100 to 240 rpmL11 puff rotation speed: 50 to 850 rpm/〈7 sending
: 0, 3~1 crn/sec puff center deviation~4.
A surface roughness suitable for the present invention can be obtained under polishing conditions of 5 to 6 cm and a puff load of 2.5 to 15 kg. Of course, the above conditions are illustrative, and do not limit the conditions for achieving the surface roughness of the present invention.

バフ研磨を行なう場合、第1図または第2図に示したよ
うに複数のパフを用いて処理してもよい。
When buffing is performed, a plurality of puffs may be used as shown in FIG. 1 or 2.

第3図に示したようにドラムを非水行の状態にセットし
バフ研磨を行なってもよい。また第4図に示したように
パフを片当てした状態で研磨処理を行なってもよい。
Buffing may be performed with the drum set in the non-aqueous state as shown in FIG. Further, as shown in FIG. 4, the polishing process may be performed with the puff applied to one side.

さらに別の方法として、研磨粒子を感光層表面にぶつけ
るサンドブラスト法等も使用することができる。さらに
、有機感光層を、予めシリカ等の粉体粒子を添加した塗
布液を塗布して形成することにより、感光層表面を微細
に粗すことも可能である。
Still another method that can be used is a sandblasting method in which abrasive particles are bombarded onto the surface of the photosensitive layer. Furthermore, the surface of the photosensitive layer can be finely roughened by forming the organic photosensitive layer by applying a coating liquid to which powder particles such as silica have been added in advance.

粗面化の程度としては、最大高さ(Rt)で表わして0
.05//I11〜0.4pm、好ましくは0.08〜
0.24μmであり、がっ粗れの山と山の平均用間隔(
S11)で表わして、100μm以下、好ましくは80
μm以下となるように粗面化処理する。
The degree of surface roughening is 0 expressed in maximum height (Rt).
.. 05//I11~0.4pm, preferably 0.08~
It is 0.24 μm, and the average distance between the rough peaks (
S11), 100 μm or less, preferably 80 μm or less
The surface is roughened to a surface roughness of μm or less.

最大高さが0.05μmより小さく、平均用間隔が10
0μmより大きいと感度低下、黒筋等の画像ノイズ、表
面保護層の接着性不良が生じる。最大高さが0.4μm
より大きく平均用間隔が100μmより大きいと、さら
に膜欠損、トナーのフィルミング等の問題が発生ずる。
The maximum height is less than 0.05 μm and the average spacing is 10
If it is larger than 0 μm, a decrease in sensitivity, image noise such as black streaks, and poor adhesion of the surface protective layer will occur. Maximum height is 0.4μm
If the average interval is larger than 100 μm, further problems such as film defects and toner filming will occur.

本発明による粗面化処理を施した感光層表面に真空薄膜
の表面保護層を形成すると、真空薄膜は膜ストレスを内
包することになり、該薄膜中に無数のり之ツクが膜厚方
向に入る。その結果、感光I!1表面は、無数の斑点が
島状にアイソL−−1され、電荷の横流れ、残留電位の
」−昇等が防止され、黒筋発生の問題が解消されるもの
と考えられている。
When a surface protective layer of a vacuum thin film is formed on the surface of a photosensitive layer that has been subjected to the roughening treatment according to the present invention, the vacuum thin film contains film stress, and countless glue sticks enter the thin film in the film thickness direction. . As a result, photosensitive I! It is believed that the 1 surface is made up of countless spots in the form of islands, which prevents the lateral flow of charges and the increase in residual potential, thereby eliminating the problem of black streaks.

なお、本発明fこおいて最大高さ(Rt)および平均山
間隔(Sm)とは、JIS  BO6011982に記
載のものをいい、そのJIS内にいう基準長さとして、
2.5mmを使用して17Vる。
In addition, in the present invention, the maximum height (Rt) and average peak spacing (Sm) refer to those described in JIS BO6011982, and as the reference length in that JIS,
17V using 2.5mm.

洗浄工程と粗面化工程を旅ず順序は、洗浄−■−程→粗
面化工程の順序、または粗面化工程−洗浄工程の順序い
ず7”Lでもよい。好ましい順序は洗浄工程−粗面化工
程である。
The order of the cleaning process and the surface roughening process may be the order of cleaning - ■ - step → roughening process, or the order of roughening process - cleaning process. The preferred order is washing process - This is a surface roughening process.

洗浄工程を施した後、粗面化工程を施す場合、洗浄処理
により、感光層表面の酸化被膜が取り除かれる。後の粗
面化処理1″、より酸化被膜が形成されることはない。
When the surface roughening process is performed after the cleaning process, the oxide film on the surface of the photosensitive layer is removed by the cleaning process. During the subsequent surface roughening treatment 1'', no more oxide film is formed.

イのため、表面保護層上しての真空薄膜の感光層への接
着性が確保される。まl−1感光層表面の形状は、洗浄
処理の影響を受けず、後の粗面化処理により決まり、感
光層表面形状の制御を行いやすい。
Therefore, the adhesion of the vacuum thin film on the surface protective layer to the photosensitive layer is ensured. The shape of the surface of the photosensitive layer 1-1 is not affected by the cleaning treatment and is determined by the subsequent roughening treatment, making it easy to control the surface shape of the photosensitive layer.

粗面化処理は、洗浄処理終了後できるだけ早く行う。さ
もないと、再び表面に酸化被膜が形成され、洗浄処理を
施しl:効果かなくなる。
The surface roughening treatment is performed as soon as possible after the cleaning treatment is completed. Otherwise, an oxide film will form on the surface again and the cleaning treatment will be ineffective.

一方、上記と逆の順序、すなわち粗面化工程を施した後
、洗浄工程を施す場合、後の洗浄処理jこより感光層表
面の酸化被膜が除去されるため真空薄膜の感光層への接
、Ii′1fU、不良の問題は1tじな(1゜ところが
、粗面化され)“二表面が後の洗浄処理で平滑化される
こと(iない反面、かえ−)で、表面が荒らされる傾向
が強い。これは粗面化処理imより、感光層の表面積が
多くなり、洗浄処理により溶比する感光層成分の量か、
粗面化していない場合に比べ、格段に増加し、たためと
考iる。従って、この処理順序では、表面粗さの制御か
難しく、トナークリー二〉グ時の拭と残しが牛じやすく
なる。
On the other hand, if the cleaning process is performed in the reverse order to the above, that is, after the surface roughening process, the oxide film on the surface of the photosensitive layer is removed by the subsequent cleaning process, so that the vacuum thin film does not come in contact with the photosensitive layer. Ii'1fU, the problem with defects is that the surface tends to become rough because the two surfaces are smoothed in the subsequent cleaning process (although the surface is roughened). This is because the surface area of the photosensitive layer increases compared to the surface roughening treatment, and the amount of photosensitive layer components dissolved by the cleaning treatment.
Compared to the case where the surface was not roughened, it increased significantly, and we believe that this is due to the surface roughening. Therefore, with this processing order, it is difficult to control the surface roughness, and it becomes difficult to wipe and leave residue during toner cleaning.

洗浄工程および粗面化処理が終了後、有機系感光層の表
面には真空薄膜を形成し、表面保護層とする。このよう
な表面保護層としてはプラズマ重合法で形成した非晶質
炭化水素類、または、A1201、Bi2O3、Ce2
O3、Cr、03、In)OH1Mg0、Sin、  
5iC12、5n02、Ta2O3、T10、TiO2
、ZrO2、Y2O1等の金属酸化物、S I 384
、Ta2Nなどの金属窒化物、NlgF、、LiF、N
dF、、LaF、、C,F2、Ce F 、等の金属フ
ッ化物、5iC1’r i C:などの金属炭化物、Z
nS、CdS、PbSなどの金属硫化物等の金属化合物
を蒸着法、スパンタリング法、イオンブレーティング法
などの(l・わゆる真空薄膜形成技術を用いて形成した
金属化合物膜が挙げられる。
After the cleaning process and surface roughening treatment are completed, a vacuum thin film is formed on the surface of the organic photosensitive layer to serve as a surface protective layer. Such a surface protective layer may be made of amorphous hydrocarbons formed by plasma polymerization, or A1201, Bi2O3, Ce2.
O3, Cr, 03, In) OH1Mg0, Sin,
5iC12, 5n02, Ta2O3, T10, TiO2
, ZrO2, Y2O1 and other metal oxides, S I 384
, metal nitrides such as Ta2N, NlgF, , LiF, N
Metal fluorides such as dF, LaF, C, F2, CeF, metal carbides such as 5iC1'r i C:, Z
Examples include a metal compound film formed using a so-called vacuum thin film forming technique such as a vapor deposition method, a sputtering method, or an ion-blating method using a metal compound such as a metal sulfide such as nS, CdS, or PbS.

表面保護層の厚さは、微細な凹凸のない鏡面状の表面に
形成したとした場6に換算し、て、0.O1〜・5μm
、好ましくは0.04〜1μ0である。
The thickness of the surface protective layer is 0.6 when it is formed on a mirror-like surface without minute irregularities. O1~・5μm
, preferably 0.04 to 1μ0.

この程度の膜1¥であると、感光層表面の凹凸の形態は
、表面保護層上に、はとんどそのままの形態で現れる。
When the film thickness is at this level, the unevenness on the surface of the photosensitive layer appears almost unchanged on the surface protective layer.

5μmより厚いど、形成した真空薄膜に内部応力に基づ
くと考えられるクラックが形成されず、前記した問題が
依然解消されない。膜厚が0.01μmより薄いと耐刷
1.たときに摩耗あるいは剥離し易くなる。
When the thickness is greater than 5 μm, cracks that are considered to be caused by internal stress are not formed in the formed vacuum thin film, and the above-mentioned problem remains unsolved. If the film thickness is less than 0.01 μm, the printing durability will be 1. It becomes easy to wear or peel off when

以下の本発明を実施例を用いて説明する。The present invention will be explained below using examples.

有機系感光層(a)の作製(負N111機能分離型)ビ
スアゾ顔料クロロジアンブルー(CDB)13量部、ポ
リニスデル樹脂(東洋紡績社製:v−200月重量部、
及びシフ「jヘキサノン10011部の混合液をす)ド
グラインダーにて13時間分散121−0この分散液を
直径80+nmX長さ330mmの円筒状アルミニウム
基板上にディッピングにて塗布し、乾燥して膜厚0,3
μmの!荷発生層を形成した。
Preparation of organic photosensitive layer (a) (Negative N111 functional separation type) 13 parts by weight of bisazo pigment chlorodiane blue (CDB), polynisder resin (manufactured by Toyobo Co., Ltd.: v-200 parts by weight,
Disperse 121-0 using a dog grinder for 13 hours. This dispersion was applied by dipping onto a cylindrical aluminum substrate with a diameter of 80 + nm and a length of 330 mm, and dried to reduce the film thickness. 0,3
μm! A load generation layer was formed.

別に1,4−ジj−ヂルアミノベ〕ズアルデヒド−・7
゛フエニルヒドラゾン(DEH)lfU量部ロムびポリ
カーボネート(余人化成社製;に、−1300)1重量
部をテ]・ラヒドロフラン(T HF ) 6111 
t 部1m溶解し、この溶液を前記電荷発芽−層]=に
塗布、乾燥し、乾燥後の膜厚が15μmの電荷輸送層を
形成し、有機系感光層(a)を得た。
Separately, 1,4-dij-dilylaminobenzaldehyde 7
1 part by weight of phenylhydrazone (DEH) 1 part by weight of polycarbonate (manufactured by Yojin Kasei Co., Ltd., -1300)]・Rahydrofuran (THF) 6111
The solution was applied to the charge germination layer and dried to form a charge transport layer having a thickness of 15 μm after drying, thereby obtaining an organic photosensitive layer (a).

九繋玉娶光−」p軽1(疋員ニー里十7叉1−〉特殊σ
型銅フタロシアニン(東洋インギ′Ii製)25ti部
、アクリルメラミン熱硬化型樹脂(犬日本インキ社製A
405どスーパーベソカミンJ820の混合物)50重
量部、4−ジエチルアミノベンズアルデヒド−ジフェニ
ルヒドラゾン25重量部および有機溶剤(キン12フ重
量部とブタノール3重量部の混合物)500重量部の混
合液をボールミルで10時間粉砕分散した。この分散液
を直径80mmx長さ330mmの円筒状アルミニウム
基板上にディッピングにて塗布し、乾燥焼き付け(15
0°Cで1時間)を行い、膜厚15μmの有機系感光層
(b)を得た。
9-connected jade light-" p light 1 (Kikin Niri 17-shank 1-> special σ
25ti parts of type copper phthalocyanine (manufactured by Toyo Ingi'Ii), acrylic melamine thermosetting resin (A manufactured by Inu Nippon Ink Co., Ltd.)
A mixture of 50 parts by weight of a mixture of 405 and supervesocamine J820, 25 parts by weight of 4-diethylaminobenzaldehyde-diphenylhydrazone, and 500 parts by weight of an organic solvent (a mixture of 12 parts by weight of Kin 12 and 3 parts by weight of butanol) was mixed with a ball mill for 10 minutes. Grinding and dispersing for hours. This dispersion was applied by dipping onto a cylindrical aluminum substrate with a diameter of 80 mm and a length of 330 mm, and dried and baked (15
0° C. for 1 hour) to obtain an organic photosensitive layer (b) with a thickness of 15 μm.

実施例1 (感光層の洗浄XWlと略記) 有機系感光層(a)を20℃、65%の環境下に30日
間保存した。第5図に示す洗浄装置を用い洗浄した。
Example 1 (Cleaning of photosensitive layer (abbreviated as XWl)) The organic photosensitive layer (a) was stored at 20° C. in an environment of 65% for 30 days. Cleaning was carried out using the cleaning apparatus shown in FIG.

第5図中、(1)は、基体上に感光層(a)を設けた感
光ドラム(1)で、油圧式上下機構を有する手段(3)
で上下可動のシャフト(2)に取り付けられている。(
4)は洗浄槽で、30(縦)X30(横)X50(液面
までの高さ)cがの内容積をもち、内部には洗浄用の溶
剤(5)が満たされている。溶剤(5)は蒸留循環器(
6)で循環使用される。
In FIG. 5, (1) is a photosensitive drum (1) with a photosensitive layer (a) provided on a base, and a means (3) having a hydraulic vertical mechanism.
It is attached to a vertically movable shaft (2). (
4) is a cleaning tank, which has an internal volume of 30 (vertical) x 30 (horizontal) x 50 (height to the liquid level) c, and the interior is filled with a cleaning solvent (5). The solvent (5) is passed through the distillation circulator (
6) is used cyclically.

洗浄はまず、感光ドラム(1)を、油圧式上下手段(3
)で徐々に下げ、洗浄槽(4)内の溶剤に感光ドラム(
1)を全部浸漬させることにより行なった。
For cleaning, first, the photosensitive drum (1) is
) to gradually lower the photosensitive drum (
1) was carried out by completely immersing it.

この時、洗浄をより効果釣行なうため、超音波発振子(
7)により、適宜超音波洗浄を行なった。
At this time, an ultrasonic oscillator (
7), ultrasonic cleaning was performed as appropriate.

実際の洗浄に用いた溶剤量は、蒸留循環器(6)や配管
分も含めて約50Qとした。液温は、図示しない温調器
にて20℃とした。適宜使用した超音波発振子の出力は
500Wとした。
The amount of solvent used for actual cleaning was approximately 50Q, including the distillation circulator (6) and piping. The liquid temperature was set at 20° C. using a temperature controller (not shown). The output of the ultrasonic oscillator used appropriately was 500W.

以上の洗浄工程においては、溶剤として、n−ヘキサン
を用い、浸漬動作30秒、浸漬時間10秒、引上動作3
0秒、ドラム面洗浄時間差60秒(最短10秒、最長7
0秒)で洗浄を行なった。
In the above cleaning process, n-hexane was used as the solvent, the immersion operation was 30 seconds, the immersion time was 10 seconds, and the pulling operation was 3.
0 seconds, drum surface cleaning time difference 60 seconds (minimum 10 seconds, maximum 7 seconds)
0 seconds).

なお、浸漬動作、浸漬時間、引上動作、ドラム面洗浄時
間差は以下に記載した。
The dipping operation, dipping time, lifting operation, and drum surface cleaning time difference are described below.

・浸漬動作:シャフトを定速で下げながら、感光ドラム
の下端が液面に触れてから、 上端が液面に浸るまでの時間。
- Immersion operation: The time from when the bottom end of the photosensitive drum touches the liquid surface until the top end is immersed in the liquid surface while lowering the shaft at a constant speed.

つまり、長さ330開のドラムの 場合、浸漬動作30〔秒〕というの は、330/ 30−11mm/secでシャフトを下
げた事を意味する。
In other words, in the case of a drum with a length of 330 mm, a dipping operation of 30 seconds means that the shaft is lowered at 330/30-11 mm/sec.

・浸漬時間:感光ドラム全体が液面下に浸っている時間
・Immersion time: The time the entire photosensitive drum is immersed under the liquid surface.

・引上動作、浸漬動作の反対で、引上げ時、感光ドラム
上端が液面上に出た時から、 下端が出きるまでの時間。
・This is the opposite of lifting and dipping operations, and is the time from when the top end of the photosensitive drum comes out above the liquid surface until the bottom end comes out during pulling up.

また、ドラム下端とドラム上端の液中の浸漬時間差を、
以下のように最短時間と最長時間を測定しドラム面洗浄
時間差として求めた。
In addition, the difference in immersion time in the liquid between the bottom end of the drum and the top end of the drum,
The shortest and longest times were measured as shown below, and the drum surface cleaning time difference was determined.

・最短時間ニドラム上端が液面下に浸っている時間。即
ち、浸漬時間と等しい。
- Minimum time the top of the Ni drum is immersed below the liquid level. That is, it is equal to the immersion time.

・最長時間ニドラム下端が液面下に浸っている時間。即
ち、浸漬動作十浸漬時間十引 上動作に等しい。
・The maximum time the bottom end of the NiDrum is submerged below the liquid level. That is, ten dipping operations are equivalent to ten dipping times and ten lifting operations.

(表面粗面化処理XRIと略記) 上記で洗浄した有機系感光層(a)の表面を第6図に示
したバフ研摩機により微細研摩した。
(Abbreviated as surface roughening treatment XRI) The surface of the organic photosensitive layer (a) washed above was finely polished using a buffing machine shown in FIG.

有機系感光層をチャッキング(301)により固定し、
羊毛を厚さ3cmの円板状に縮絨したバフ(密度0 、
03 g/cli”Xバフ直径:20cmX303)を
バフズレ4.5cmの位置にセットした。バフズレは、
第7図に示したように感光体(304)の長手方向の中
心線と円盤状バフ(303)の中心点との間の距離であ
る。
Fixing the organic photosensitive layer by chucking (301),
Buff (density 0,
03 g/cli"X buff diameter: 20 cm
As shown in FIG. 7, this is the distance between the longitudinal center line of the photoreceptor (304) and the center point of the disc-shaped buff (303).

次に感光層(3’04)を矢印(d)方向に300 r
pmで回転させ(この回転をワーク回転という)、円盤
状パフ(303)を矢印(C)方向に50 Orpmで
回転させながら、円盤状パフ(303)に矢印(a)の
方向から荷重6 、6 kgをかけ(この荷重をバフ荷
重という)、円盤状パフ(303)を感光層(304)
に押圧した。この時、感光層(304)に対するバフ線
荷重は0 、3 kg/ c+nであった。この状態で
、バフ(303)は矢印(b)方向に、送り速度ICl
l1/SeCで往復運動を3回繰り返した。このとき同
時に、感光層(304)と円盤状パフ(303)の接触
面に向けて液吐出ノズル(302)より純粋を1M分の
割合で吐出させた。
Next, the photosensitive layer (3'04) was rotated for 300 r in the direction of arrow (d).
pm (this rotation is called work rotation), and while rotating the disc-shaped puff (303) in the direction of arrow (C) at 50 orpm, a load of 6 pm is applied to the disc-shaped puff (303) from the direction of arrow (a). Applying 6 kg (this load is called a buffing load), the disc-shaped puff (303) is placed on the photosensitive layer (304).
was pressed. At this time, the buff line load on the photosensitive layer (304) was 0.3 kg/c+n. In this state, the buff (303) moves in the direction of arrow (b) at a feed rate of ICl
The reciprocating motion was repeated three times at l1/SeC. At the same time, pure liquid was discharged at a rate of 1M from the liquid discharge nozzle (302) toward the contact surface between the photosensitive layer (304) and the disc-shaped puff (303).

有機系感光層(a)の表面は、最大高さ(Rt)で表わ
して0.086μのの粗さであった。
The surface of the organic photosensitive layer (a) had a roughness of 0.086 μm expressed in maximum height (Rt).

なお、Rzは、J l5−BO601−1982に従っ
て測定した。測定機は東京精密社製表面粗さ計サーフコ
ム550A(商品名)を用いた。
In addition, Rz was measured according to J15-BO601-1982. As a measuring device, a surface roughness meter Surfcom 550A (trade name) manufactured by Tokyo Seimitsu Co., Ltd. was used.

次に、上記有機系感光層の表面上に以下のように、プラ
ズマ非晶質炭化水素膜(以下PACと略す)を形成した
Next, a plasma amorphous hydrocarbon film (hereinafter abbreviated as PAC) was formed on the surface of the organic photosensitive layer as described below.

(PACの調製) 第8図に示すグロー放電分解装置において、まず、反応
装置(733)の内部をlO−◆T orr程度の高真
空にした後、第1および第2調節弁(707および70
8)を解放し、第1タンク(701,)より水素ガス、
第2タンク(702)よりブタジェンガスを各々出力圧
1.0kg/cm”の下で、第1および第2流量制御器
(713および714)内へ流入させた。そして、各流
量制御器の目盛を調整して、水素ガスの流量を300 
secm、ブタジェンガスの流量を39secmとなる
ように設定して、途中混合器(731)を介して、主管
(732)より反応室(733)内へ流入した。各々の
流量が安定した後に、反応室(733)内の圧力が0.
5Torrとなるように圧力調整弁(745)を調整し
た。一方、基板(752)としては、前述の有機系感光
層(a)を用いて、予め50’Cに加熱しておき、ガス
流量および圧力が安定した状態で、予め接続選択スイフ
チ(744)により接続しておいた低周波を源(741
)を投入し、電力印加電極(736)に180W a 
t Lの電力を周波数100KHzの下で印加して約1
80秒間のプラズマ重合反応を行ない、基板(752)
上に厚さ1200人の非晶質炭素P(PAC膜)を表面
保護層として形成した。成膜完了後は、電力印加を停止
し、調節弁を閉じ、反応室(733)内を充分に排気し
た後、真空を破り本発明に係る感光体を取り出した。
(Preparation of PAC) In the glow discharge decomposition apparatus shown in FIG.
8), hydrogen gas is released from the first tank (701,),
Butadiene gas was flowed into the first and second flow rate controllers (713 and 714) from the second tank (702) under an output pressure of 1.0 kg/cm.Then, the scale of each flow rate controller was adjusted. Adjust the hydrogen gas flow rate to 300
The flow rate of butadiene gas was set to 39 seconds and flowed into the reaction chamber (733) from the main pipe (732) via an intermediate mixer (731). After each flow rate stabilizes, the pressure inside the reaction chamber (733) decreases to 0.
The pressure regulating valve (745) was adjusted to 5 Torr. On the other hand, as the substrate (752), use the above-mentioned organic photosensitive layer (a), heat it in advance to 50'C, and with the gas flow rate and pressure stable, use the connection selection switch (744) in advance. Connect the low frequency source (741
) and applied 180W a to the power application electrode (736).
Approximately 1 by applying a power of t L at a frequency of 100 KHz.
A plasma polymerization reaction was performed for 80 seconds, and the substrate (752)
Amorphous carbon P (PAC film) having a thickness of 1200 mm was formed thereon as a surface protective layer. After the film formation was completed, power application was stopped, the control valve was closed, and the inside of the reaction chamber (733) was sufficiently evacuated, and then the vacuum was broken and the photoreceptor according to the present invention was taken out.

(評価) 以上のようにして得られた感光体を、接着性、感度低下
および拭き残しについて評価した。
(Evaluation) The photoreceptor obtained as described above was evaluated for adhesiveness, decrease in sensitivity, and unwiped residue.

聚暮炸−q JIS−に5400規格の基盤目試験を行ない表面保護
層の有機系感光体への接着性を評価し、以下のごとくラ
ンク付を行なった。
The adhesion of the surface protective layer to the organic photoreceptor was evaluated by conducting a JIS 5400 standard substrate test, and ranking was performed as follows.

感度低下の評価 試作された感光体を実機に搭載し、露光量を調整し、画
像濃度0.50のハーフトーン画像を得た。
Evaluation of Sensitivity Decrease The prototype photoreceptor was mounted on an actual machine, the exposure amount was adjusted, and a halftone image with an image density of 0.50 was obtained.

その後A4紙1万枚のコピーをとった後、同一の露光量
にてハーフトーン画像を得、その画像濃度を求め、初期
の画像濃度0.50との差を求めた。
Thereafter, 10,000 copies of A4 paper were made, a halftone image was obtained with the same exposure amount, the image density was determined, and the difference from the initial image density of 0.50 was determined.

例えば一方杖コピー後の画像濃度が0.55であれば、
その差0.05を感度低下分とした。
For example, if the image density after copying is 0.55,
The difference of 0.05 was defined as the decrease in sensitivity.

実機の表面電位設定は400[V)、現像バイアス設定
は1.50(V)とした。
The surface potential setting of the actual machine was 400 [V], and the development bias setting was 1.50 (V).

実施例の一覧表には下記の評価基準にて感度低下の良否
を示した。
In the list of Examples, the quality of sensitivity reduction was shown based on the following evaluation criteria.

尚、画像濃度の測定は、コニカ社製、温度計、サクラデ
ンントメータDA65(商品名)を用いた。
The image density was measured using a thermometer Sakura Dentometer DA65 (trade name) manufactured by Konica.

拭き残し評価 拭き残しとは、B/W比6%の原稿をコピーした後、複
写紙に転写されず感光体上に残ったトナーが、トナーク
リナーでも除去されないため、次の複写工程において、
その感光体上に残るトナーの影響をうけて、複写画像に
ムラ、黒点等の不良画像が形成される現像をいう。感光
体表面、複写画像を目視観察により以下のごとくランク
付を行なった。
Unwiped Evaluation Unwiped residue refers to toner that is not transferred to the copy paper and remains on the photoreceptor after copying an original with a B/W ratio of 6%, and is not removed even with toner cleaner, so in the next copying process,
This refers to development in which defective images such as unevenness and black spots are formed on copied images due to the influence of toner remaining on the photoreceptor. The surface of the photoreceptor and the copied image were visually observed and ranked as follows.

X:B/W比6%の原稿をコピーし、コピー画像上に拭
き残しによる不良画像が得られた場合△:感光体表面が
クリーナーを通過した直後、深稿に対応する感光体表面
部分にトナーが拭き残されているが、コピー画像上には
それが現われない場合。
X: When copying an original with a B/W ratio of 6% and obtaining a defective image due to unwiping on the copied image. △: Immediately after the photoconductor surface passes the cleaner, the portion of the photoconductor surface corresponding to the deep copy When toner is left behind, but it does not appear on the copied image.

○:コビー画像、感光体表面とも拭き残しが認められな
い場合。
○: When no wiped residue is observed on either the cobby image or the photoreceptor surface.

以上の結果を表1にまとめた。The above results are summarized in Table 1.

実施例2 表面粗化処理を、下記に記載のごとくおこなう以外、実
施例1と同様に感光体を作製し、評価しt;。結果を表
1に示した。
Example 2 A photoreceptor was produced and evaluated in the same manner as in Example 1, except that the surface roughening treatment was performed as described below. The results are shown in Table 1.

(粗面化処理)(R2と略記) 直径5cmの円筒状ブラシ(IOXブラシの材質は6.
6−ナイロン、毛の太さは5μm〜13μm、長さは約
10mm)を、第9図に示したごとく、感光層(11)
と圧接し、円筒状ブラシ200 rpva、感光層50
rpmで5分間回転した。
(Surface roughening treatment) (abbreviated as R2) Cylindrical brush with a diameter of 5 cm (IOX brush material is 6.
As shown in FIG.
cylindrical brush 200 rpva, photosensitive layer 50
Rotate for 5 minutes at rpm.

有機系感光層(a)の表面は、10点平均粗さ(Rz)
で表わして0.9μmの粗さであった。
The surface of the organic photosensitive layer (a) has a 10-point average roughness (Rz)
The roughness was expressed as 0.9 μm.

実施例3 表面粗面化処理を、下記に記載のごとくおこなった以外
実施例1と同様に感光体を作製し、評価した。結果を表
1に示した。
Example 3 A photoreceptor was produced and evaluated in the same manner as in Example 1, except that the surface roughening treatment was performed as described below. The results are shown in Table 1.

(粗面化処理)(R3と略記) サンドブラスト法を使用し、研摩剤としての約0.7μ
m径のSiC粒子を有機系感光層(a)へぶつけ、表面
を粗面化した。
(Surface roughening treatment) (abbreviated as R3) Using the sandblasting method, approximately 0.7μ as an abrasive
SiC particles with a diameter of m were bombarded onto the organic photosensitive layer (a) to roughen the surface.

その後、純水中にてウェスを感光層に軽く圧接し、感光
層を回転させながら超音波洗浄を行ない、感光層表面に
残留・付着したSiC粒子を除去し、感光層を乾燥した
Thereafter, a cloth was lightly pressed against the photosensitive layer in pure water, and ultrasonic cleaning was performed while rotating the photosensitive layer to remove SiC particles remaining or attached to the surface of the photosensitive layer, and the photosensitive layer was dried.

実施例4 実施例1においておこなった感光層洗浄処理において使
用した溶剤n−ヘキサンの代わりに、下記構造式; で示されるフッ素化プロパツールを使用する以外、実施
例1の洗浄工程と同様に感光層を洗浄し、(この洗浄工
程を表1中にはW2と略記)感光体を作製した。評価も
実施例1と同様に行なった。
Example 4 The photosensitive layer was washed in the same manner as in the cleaning process of Example 1, except that instead of the solvent n-hexane used in the cleaning process of the photosensitive layer in Example 1, a fluorinated propatool represented by the following structural formula was used. The layer was washed (this washing step is abbreviated as W2 in Table 1) to produce a photoreceptor. Evaluation was also performed in the same manner as in Example 1.

実施例5 感光層洗浄処理を下記の記載のごとく行なう以外、実施
例1と同様に感光体を作製し、評価した。
Example 5 A photoreceptor was prepared and evaluated in the same manner as in Example 1, except that the photoreceptor layer cleaning treatment was performed as described below.

結果を表1に示した。The results are shown in Table 1.

(感光層洗浄効果)(W3と略記) 本実施例で使用した洗浄処理を第10図〜第12図を用
いて説明する。第1O図〜第12図において、(101
)は洗浄槽、(102)は沸騰溶剤、(103)は熱源
、(104)は溶剤蒸気層、(105)は冷却水、(1
06)は凝縮液受樋、(107)は凝縮器、(108)
は冷却水、(109)は空気/蒸気境界面、(110)
は感光体である。なお図示していないが洗浄槽(101
)の上部には蓋を設けても良い。
(Photosensitive layer cleaning effect) (abbreviated as W3) The cleaning process used in this example will be explained using FIGS. 10 to 12. In Figures 1O to 12, (101
) is the cleaning tank, (102) is the boiling solvent, (103) is the heat source, (104) is the solvent vapor layer, (105) is the cooling water, (1
06) is the condensate receiving gutter, (107) is the condenser, (108)
is cooling water, (109) is air/steam interface, (110)
is a photoreceptor. Although not shown, there is a cleaning tank (101
) may be provided with a lid.

前記構成からなる洗浄装置を用いて、溶剤として7o7
 113(CCLFCC(lFz;1.1.2−トリク
ロロ−1,2,2−トリフルオロエタン)ヲ使用し、溶
剤蒸気相(1(14)に冷たい感光層(110)を入れ
、感光層と蒸気の温度差によって蒸気を感光層表面で凝
縮・液化さ也液滴で感光体を約33秒洗い流した(第1
1図)。感光層の温度は上昇し、感光層表面でもはや蒸
気は液化せず、蒸気の吸・脱着の平衡状態を保つように
なると、感光体を引きあげた(第12図)。
7o7 as a solvent using the cleaning device having the above configuration.
113 (CCLFCC (lFz; 1.1.2-trichloro-1,2,2-trifluoroethane) was used, a cold photosensitive layer (110) was placed in the solvent vapor phase (1 (14), and the photosensitive layer and vapor The vapor was condensed and liquefied on the surface of the photosensitive layer due to the temperature difference between
Figure 1). The temperature of the photosensitive layer rose, and when the vapor no longer liquefied on the surface of the photosensitive layer and an equilibrium state of adsorption and desorption of vapor was maintained, the photosensitive member was pulled up (Figure 12).

実施例6 表面保護層として、下記の記載のごとく真空蒸着法によ
る酸化ケイ素@(SiC膜と略す)を形成する以外、実
施例1と同様に感光体を作製し、評価した。結果を表1
中に示した。
Example 6 A photoreceptor was produced and evaluated in the same manner as in Example 1, except that silicon oxide@ (abbreviated as SiC film) was formed as a surface protective layer by vacuum evaporation as described below. Table 1 shows the results.
Shown inside.

(SiC膜の形成) 常用の真空加熱法による蒸着装置を用いて、下記条件: 蒸着源  :SiO 基板m度 二50℃ ボー11度+1200℃ 真空度  : 8 X l O−’Torr蒸着時間 
=5分間 膜厚   :1300人 にてSi○の薄膜を設けた。
(Formation of SiC film) Using a vapor deposition apparatus using a common vacuum heating method, the following conditions: Vapor deposition source: SiO substrate m degrees 250°C Baud 11° + 1200°C Degree of vacuum: 8 X l O-'Torr Vapor deposition time
= 5 minutes film thickness: A thin film of Si○ was formed by 1300 people.

実施例7 表面保護層として、下記記載のごとく、スパッタリング
法イこよる酸化アルミニウム膜(A(bOJAと略す)
を形成する以外、実施例1と同様に感光体を作製し、評
価した。
Example 7 As a surface protective layer, an aluminum oxide film (A (abbreviated as bOJA)) was formed by sputtering as described below.
A photoreceptor was produced and evaluated in the same manner as in Example 1, except that a photoreceptor was formed.

(A、 +2203膜の形成) 常用のスパッタリング装置を用いて、下記条件。(A, +2203 film formation) Using a commonly used sputtering device, under the following conditions.

ターゲット :AQtOs 基板温度  :50°C 放電間隔  ・50mmCターゲントと基板との粗側 真空度   :2XIO−7orr 放電ガス  Ar 放電電力   22−0K 放マ笥波数 :13.56MHz 放電時間  、12分間 膜ノ工    :1800人 裏惠!]遥 有機系感光体(b)を使用する以外、実施例1と同様に
感光体を作製し、評価した。結果を表11こ示した。
Target: AQtOs Substrate temperature: 50°C Discharge interval ・50mmC Rough side vacuum between target and substrate: 2XIO-7orr Discharge gas Ar Discharge power 22-0K Radiation wave number: 13.56MHz Discharge time, 12 minutes membrane processing : 1800 people! ] A photoreceptor was prepared and evaluated in the same manner as in Example 1, except that the organic photoreceptor (b) was used. The results are shown in Table 11.

スリー宍 実施例If、:む◇1で、感光層表面を洗浄してから表
面粗面化を施した順序1こ代え、その逆の順序すなわち
、感光層表面と粗面化処理し7た後、表面洗浄した順序
とした以外、実施例1ど同様に感光体を作製(7、評価
した。結果を表1に示した。
Three Shishi Example If: Mu ◇ In 1, the order in which the surface of the photosensitive layer was cleaned and the surface was roughened was changed to 1, and the reverse order was carried out, that is, after the surface of the photosensitive layer was roughened and the surface was roughened. A photoreceptor was prepared (7) and evaluated in the same manner as in Example 1, except that the order of surface cleaning was changed. The results are shown in Table 1.

比較例1 表面粗面化処理を施さない以外、実施例1と同様に感光
体を作製し、評価した。結果を表I+=示した。
Comparative Example 1 A photoreceptor was produced and evaluated in the same manner as in Example 1, except that the surface roughening treatment was not performed. The results are shown in Table I+=.

比較例2 感光層洗浄および表面粗面化処理を施さない以外、実施
例1と同様に感光体を作製し、評価した。
Comparative Example 2 A photoreceptor was produced and evaluated in the same manner as in Example 1, except that the photoreceptor layer was not cleaned and the surface roughening treatment was not performed.

結果を表1に示した。The results are shown in Table 1.

実TiggI□ 実施例1において、純水を、純水中にfffM剤(不二
見研磨材工業社製;WA#6000)を2.5g/12
となるように分数させた研磨剤溶液に代えたこと以外は
実施例1と同様にして感光体を作製し評価した。
Actual TiggI□ In Example 1, pure water was mixed with 2.5 g/12 fffM agent (manufactured by Fujimi Abrasives Industry Co., Ltd.; WA#6000).
A photoreceptor was prepared and evaluated in the same manner as in Example 1, except that the abrasive solution was replaced with a fractionated abrasive solution.

発明の効果 表面に真空薄膜を表面保護層として有する有機系感光体
を、本発明に従い製造すると、トナークリーニング不良
、繰り返し使用による残留電位の上昇、それに伴なう黒
筋発生の問題がない。
Effects of the Invention When an organic photoreceptor having a vacuum thin film as a surface protective layer on its surface is manufactured according to the present invention, there are no problems of poor toner cleaning, increase in residual potential due to repeated use, and the occurrence of black streaks.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図は、バフ研磨の種々の態様を模式的に表
わした図である。 第5図は、感光層洗浄装置の概略構成例を示す図である
。 第6図は、笑施例で使用したバフ研唐装置の概略構成例
を示す図である。 第7図はバフズレを説明するだめの図である。 第8図は、グロー放電分解装置の概略構成例を示す図で
ある。 第9図はブラシ研磨の一態様を模式的に示す図である。 第10図〜第12図は、蒸気洗浄方法を説明するための
図である。 第1図 第2図 第3図 第4図 第5図 ロ「− 第9図 第10図 第11図 第1負の続き @発明者飯野 修司 @発明者大澤 以清 @発明者前川 文子 大阪府大阪市中央区安土町2]泪3番13号 大阪田際
ビルミノルタカメラ株式会社内 大阪府大阪市中央区安土町2−]泪3番13号 大阪国
際ビルミノルタカメラ株式会社内 大阪府大阪市中央区安土町2丁目3番13号 大阪国際
ビルミノルタカメラ株式会社内
FIGS. 1 to 4 are diagrams schematically showing various aspects of buffing. FIG. 5 is a diagram showing an example of a schematic configuration of a photosensitive layer cleaning device. FIG. 6 is a diagram showing an example of a schematic configuration of a buffing device used in Examples. FIG. 7 is a diagram for explaining buff misalignment. FIG. 8 is a diagram showing a schematic configuration example of a glow discharge decomposition device. FIG. 9 is a diagram schematically showing one aspect of brush polishing. FIGS. 10 to 12 are diagrams for explaining the steam cleaning method. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 - Figure 9 Figure 10 Figure 11 Figure 1 Negative continuation @ Inventor Shuji Iino @ Inventor Isukiyo Osawa @ Inventor Fumiko Maekawa Osaka Prefecture 2 Azuchi-cho, Chuo-ku, Osaka City] 3-13 Nagiwa Osaka Tagawa Building Minolta Camera Co., Ltd. 2-Azuchi-cho, Chuo-ku, Osaka, Osaka Prefecture 3-13 Nagi Osaka International Building Minolta Camera Co., Ltd. Osaka City, Osaka Prefecture 2-3-13 Azuchi-cho, Chuo-ku, Osaka International Building, Minolta Camera Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1、有機系感光層を洗浄する工程と、該有機系感光層表
面を粗面化する工程とを経た後に、真空薄膜を表面保護
層として形成することを特徴とする有機系感光体の製造
方法。
1. A method for manufacturing an organic photoreceptor, which comprises forming a vacuum thin film as a surface protective layer after a step of cleaning the organic photoreceptor layer and a step of roughening the surface of the organic photoreceptor layer. .
JP30500090A 1990-11-08 1990-11-08 Method for producing organic photoreceptor having surface protective layer Expired - Fee Related JP2932679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30500090A JP2932679B2 (en) 1990-11-08 1990-11-08 Method for producing organic photoreceptor having surface protective layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30500090A JP2932679B2 (en) 1990-11-08 1990-11-08 Method for producing organic photoreceptor having surface protective layer

Publications (2)

Publication Number Publication Date
JPH04175760A true JPH04175760A (en) 1992-06-23
JP2932679B2 JP2932679B2 (en) 1999-08-09

Family

ID=17939875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30500090A Expired - Fee Related JP2932679B2 (en) 1990-11-08 1990-11-08 Method for producing organic photoreceptor having surface protective layer

Country Status (1)

Country Link
JP (1) JP2932679B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09269602A (en) * 1996-03-29 1997-10-14 Mitsubishi Chem Corp Manufacture of electrophotographic photoreceptor
JP2008268410A (en) * 2007-04-18 2008-11-06 Fuji Xerox Co Ltd Electrophotographic photoreceptor, process cartridge and image forming apparatus
US7914959B2 (en) 2005-11-28 2011-03-29 Ricoh Company, Limited Image bearing member, image forming method, and image forming apparatus
JP2012226149A (en) * 2011-04-20 2012-11-15 Canon Inc Method for surface processing of electrophotographic photoreceptor and method for manufacturing electrophotographic photoreceptor
JP2017062400A (en) * 2015-09-25 2017-03-30 富士ゼロックス株式会社 Electrophotographic photoreceptor, process cartridge, and image forming apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09269602A (en) * 1996-03-29 1997-10-14 Mitsubishi Chem Corp Manufacture of electrophotographic photoreceptor
US7914959B2 (en) 2005-11-28 2011-03-29 Ricoh Company, Limited Image bearing member, image forming method, and image forming apparatus
JP2008268410A (en) * 2007-04-18 2008-11-06 Fuji Xerox Co Ltd Electrophotographic photoreceptor, process cartridge and image forming apparatus
JP2012226149A (en) * 2011-04-20 2012-11-15 Canon Inc Method for surface processing of electrophotographic photoreceptor and method for manufacturing electrophotographic photoreceptor
JP2017062400A (en) * 2015-09-25 2017-03-30 富士ゼロックス株式会社 Electrophotographic photoreceptor, process cartridge, and image forming apparatus
CN106556977A (en) * 2015-09-25 2017-04-05 富士施乐株式会社 Electrophotography photodetector, handle box and image processing system
CN106556977B (en) * 2015-09-25 2020-02-11 富士施乐株式会社 Electrophotographic photosensitive member, process cartridge, and image forming apparatus

Also Published As

Publication number Publication date
JP2932679B2 (en) 1999-08-09

Similar Documents

Publication Publication Date Title
US4134763A (en) Selenium-base photosensitive materials for electrophotography having super-finished substrate
JP2990788B2 (en) Organic photoreceptor with a finely roughened surface
JP2565562B2 (en) Electrophotographic photoreceptor, manufacturing method thereof, electrophotographic method using the same, and electrophotographic apparatus
JP2987922B2 (en) Photoreceptor whose surface is roughened to cross lines
JPH04175760A (en) Manufacture of organic photoreceptor with surface protective layer
JPH02141761A (en) Electrophotographic device
JPH02139566A (en) Process for roughening surface of organic electrophotographic sensitive body
JP5267164B2 (en) Surface polishing method for electrophotographic photosensitive member
JPH11160895A (en) Electrophotographic photoreceptor, its production and image forming device
JPH02181152A (en) Manufacture of electrophotographic sensitive body
JP3277706B2 (en) Electrophotographic photoreceptor and electrophotographic method using the same
JPS6381366A (en) Electrophotographic sensitive body
JP2702252B2 (en) Surface roughening method for organic electrophotographic photoreceptor
JP2005140946A (en) Method for treating substrate of electrophotographic photoreceptor, the electrophotographic photoreceptor, process cartridge using the same and electrophotographic apparatus
JPH04175756A (en) Fine rubbing method for organic photosensitive layer
JP2000330310A (en) Electrophotographic photoreceptor and electrophotographic image forming device
JPH0876397A (en) Electrophotographic photoreceptor, its production and image forming method
JPS6381430A (en) Electrophotographic sensitive body
JPH01126669A (en) Electrophotographic device
JPH03171141A (en) Manufacture of organic photosensitive body
JPH09258467A (en) Production of electrophotographic photoreceptor
JPH11160899A (en) Electrophotographic photoreceptor, its production and image forming device
JPS63311259A (en) Electrophotographic sensitive body
JP2002123024A (en) Method for manufacturing cylindrical substrate, opc drum and developer carrying body
JPH0695417A (en) Electropohotographic sensitive body and electrophotographic device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees