JPH04174942A - Manufacture of voltage-dividing resistor element to be incorporated in electron tube - Google Patents

Manufacture of voltage-dividing resistor element to be incorporated in electron tube

Info

Publication number
JPH04174942A
JPH04174942A JP30321790A JP30321790A JPH04174942A JP H04174942 A JPH04174942 A JP H04174942A JP 30321790 A JP30321790 A JP 30321790A JP 30321790 A JP30321790 A JP 30321790A JP H04174942 A JPH04174942 A JP H04174942A
Authority
JP
Japan
Prior art keywords
trimming
voltage
dividing resistor
resistance
resistor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30321790A
Other languages
Japanese (ja)
Inventor
Yoshinori Hayakawa
義則 早川
Toru Yakabe
矢壁 徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Development and Engineering Corp
Original Assignee
Toshiba Corp
Toshiba Electronic Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Electronic Engineering Co Ltd filed Critical Toshiba Corp
Priority to JP30321790A priority Critical patent/JPH04174942A/en
Publication of JPH04174942A publication Critical patent/JPH04174942A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Abstract

PURPOSE:To realize trimming of withstand voltage and high accuracy by thermally treating a resistance layer at a specified temperature. CONSTITUTION:On an insulation substrate 11 made of ceramic, a resistance paste is formed with the resistance material of ruthenate lead system and then thermally treated in the air at a temperature of 800 to 1200 deg.C to form a resistance layer 13 by changing a structural state. And then the resistance layer 13 is traced by a laser beam with high accuracy. After the trimming proces, the manufacture is proceeded by an ordinary method. Thus, it is not required to form the trimming position on the resistance layer, so that the miniaturization of the voltage-dividing resistor element may be performed.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、カラーブラウン管等の電子管内に組み込ま
れる電子管内蔵用分圧抵抗素子の製造方法に係り、特に
抵抗層の抵抗値を局部的に修正するトリミング工程に関
する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention relates to a method of manufacturing a voltage dividing resistor element for use in an electron tube such as a color cathode ray tube, and particularly relates to a method for manufacturing a voltage dividing resistor element for use in an electron tube such as a color cathode ray tube. This invention relates to a trimming process that locally modifies values.

(従来の技術) 従来、電子管例えばカラーテレビジョン受像機に用いら
れるカラーブラウン管において、陽極電圧以外にコンバ
ージェンス電極やフォーカスt+を極等に供給される高
電圧が必要とされるものがある。
(Prior Art) Conventionally, some electron tubes, such as color cathode ray tubes used in color television receivers, require a high voltage to be supplied to the convergence electrode, focus t+ pole, etc. in addition to the anode voltage.

このような場合、カラーブラウン管のステム部より高電
圧を供給すると、耐電圧の面から問題が生じるので、カ
ラーブラウン管内に電子銃と共に分圧用の抵抗器を電子
管内蔵用分圧抵抗素子として組み込み、これによって陽
極電圧を分圧して、それぞれの電極に高電圧を供給しよ
うとする方式が提案されている。
In such a case, if a high voltage is supplied from the stem of the color cathode ray tube, a problem will arise in terms of withstand voltage, so a voltage dividing resistor is built into the color cathode ray tube together with the electron gun as a voltage dividing resistor element for the built-in electron tube. A method has been proposed in which the anode voltage is divided into parts to supply a high voltage to each electrode.

ところで、上記のような電子管内蔵用分圧抵抗素子の製
造方法においては、トリミング工程があ  ゛るが、こ
のトリミング工程とは分圧抵抗素子に重要な分割比を所
定の値に調整するための工程である。
By the way, in the method of manufacturing a voltage dividing resistor element for use in an electron tube as described above, there is a trimming process. It is a process.

即ち、従来の製造方法により得られた分圧抵抗素子は第
2図(a)、(b)に示すように構成され、セラミック
製の絶縁基板11上の周縁部に複数の引出し電極12が
設けられている。又、絶縁基板11上には抵抗層13が
引出し電極12に電気的に接してジグザグパターンに形
成され、更にこの抵抗層13に一体に複数のトリミング
しろ14が形成されている。
That is, the voltage dividing resistance element obtained by the conventional manufacturing method is constructed as shown in FIGS. It is being Further, a resistance layer 13 is formed in a zigzag pattern on the insulating substrate 11 in electrical contact with the extraction electrode 12, and a plurality of trimming margins 14 are formed integrally with this resistance layer 13.

この分圧抵抗素子の製造方法のトリミング工程において
は、サンドブラスト法が採用されており、トリミングし
ろ14へ直径1(μm)程度のセラミックスの微粒子を
高圧空気等により噴射させ、この部分を一部削り取る。
In the trimming step of the manufacturing method of this voltage dividing resistor element, a sandblasting method is adopted, in which fine ceramic particles with a diameter of about 1 (μm) are injected into the trimming margin 14 using high-pressure air, etc., and this portion is partially scraped off. .

こうして、トリミングしろ14の抵抗値を変化させて分
割比の調整をしている。
In this way, the division ratio is adjusted by changing the resistance value of the trimming margin 14.

しかしながら、このサンドブラスト法によるトリミング
では、トリミングしろ14と呼ばれるトリミング用の抵
抗層を形成する必要があり、分圧抵抗素子の小形化に対
して障害になっている。
However, trimming by sandblasting requires the formation of a trimming resistance layer called a trimming margin 14, which is an obstacle to miniaturization of the voltage dividing resistance element.

又、セラミックス製の微粒子を使用しているため、この
微粒子による分圧抵抗素子の汚染、装置周辺の環境汚染
等の問題が生じている。
Furthermore, since fine particles made of ceramic are used, problems such as contamination of the voltage dividing resistor element and environmental pollution around the device arise due to the fine particles.

更に、セラミックス製の微粒子を噴射するノズルの移動
制御、切削速度の点で、高速度・高精度のトリミングが
行なえないという難点があった。
Furthermore, there is a problem in that high-speed, high-precision trimming cannot be performed in terms of movement control of the nozzle that sprays ceramic fine particles and cutting speed.

このサンドブラスト法の他に、セラミックス製の微粒子
を使用しないレーザ光線によるトリミング法がある。こ
のトリミング法は、トリミングしろ14の抵抗層をレー
ザ光線により昇華させ、トリミングしろ14の抵抗値を
変化させる方法であり、ハイブリッドICの製造等で広
く使われており、高速度で高精度のトリミングを行なう
ことが出来る。
In addition to this sandblasting method, there is a trimming method using a laser beam that does not use ceramic particles. This trimming method is a method in which the resistance layer of the trimming margin 14 is sublimated by a laser beam to change the resistance value of the trimming margin 14. This trimming method is widely used in the production of hybrid ICs, etc., and allows for high-speed and high-precision trimming. can be done.

しかし、レーザ光線により除去した抵抗層間の間隔は狭
く、分圧抵抗素子のような高電圧(32KV程度)下で
使用する場合、トリミングを行なった抵抗層間での絶縁
性が保てず、耐電圧に問題が生じ、実動作中の分割比変
動の原因にもつながる。
However, the spacing between the resistor layers removed by the laser beam is narrow, and when used under high voltage (approximately 32 KV) like a voltage dividing resistor element, the insulation between the trimmed resistor layers cannot be maintained, resulting in withstanding voltage. This may cause problems and cause division ratio fluctuations during actual operation.

この点で、サンドブラスト法によるトリミングでは、ト
リミングした部分の抵抗層間の間隔を広く取ることが出
来、耐電圧的な信頼性もあるので、現在、電子管内蔵用
分圧抵抗素子の製造方法に採用している。
In this regard, trimming by sandblasting allows for wide spacing between the resistor layers in the trimmed portions, and is reliable in terms of withstand voltage, so it is currently being used as a manufacturing method for voltage divider resistors for built-in electron tubes. ing.

(発明が解決しようとする課題) 既述のように、セラミックス製の微粒子を使用する従来
のトリミング法では、抵抗層パターン中にトリミング用
の抵抗層つまりトリミングしろ14を形成する必要があ
り、分圧抵抗素子を小形、化するうえで問題であった。
(Problems to be Solved by the Invention) As mentioned above, in the conventional trimming method using ceramic fine particles, it is necessary to form a resistive layer for trimming, that is, a trimming margin 14 in the resistive layer pattern. This has been a problem in making piezoresistive elements smaller.

又、セラミックス製の微粒子を使用しているために、分
圧抵抗素子の汚染、装置周辺の環境汚染等の問題が生じ
ていた。更に、セラミックス製の微粒子を噴射するノズ
ルの移動制御、切削速度の点で、高速度・高精度のトリ
ミングが行なえないという難点があった。そのため、こ
のサンドブラスト法に代わるトリミング法が望まれてい
た。
Furthermore, since ceramic particles are used, problems such as contamination of the partial voltage resistance element and environmental contamination around the device have arisen. Furthermore, there is a problem in that high-speed, high-precision trimming cannot be performed in terms of movement control of the nozzle that sprays ceramic fine particles and cutting speed. Therefore, a trimming method has been desired as an alternative to this sandblasting method.

この発明は、上記事情に鑑みなされたもので、トリミン
グ専用の抵抗層の形成やセラミックス製の微粒子を使用
せず、耐電圧性に優れ、高速で高精度にトリミングを行
なうことが出来る電子管内蔵用分圧抵抗素子の製造方法
を提供することを目的とする。
This invention was made in view of the above circumstances, and does not require the formation of a resistive layer specifically for trimming or the use of ceramic fine particles, has excellent voltage resistance, and is capable of high-speed, high-precision trimming for built-in electron tubes. An object of the present invention is to provide a method for manufacturing a voltage dividing resistor element.

〔発明の構成コ (課題を解決するための手段) この発明は、セラミックス製の絶縁基板上にルテニウム
酸鉛系の抵抗層を形成し、この抵抗層を局部的に800
〜1200℃の範囲で熱処理し、抵抗層の構造状態を変
質させ、それに伴なう抵抗値変化を利用してトリミング
を行なう電子管内蔵用分圧抵抗素子の製造方法である。
[Structure of the Invention (Means for Solving the Problem) This invention forms a lead ruthenate-based resistance layer on a ceramic insulating substrate, and locally coats this resistance layer with a
This is a method of manufacturing a voltage dividing resistor element for incorporating an electron tube, in which heat treatment is performed in the range of ~1200° C. to alter the structural state of the resistive layer, and trimming is performed using the resulting change in resistance value.

(作用) この発明によれば、熱処理してセラミックス製の絶縁基
板上に形成された抵抗層の構造状態を局部的に変質させ
ることにより、部分的に抵抗値を修正することが出来る
(Operation) According to the present invention, the resistance value can be partially corrected by locally altering the structural state of the resistance layer formed on the ceramic insulating substrate through heat treatment.

従って、従来の方法を使用した場合のように抵抗層にト
リミングしろを形成する必要がなく、又、サンドブラス
ト法のようにセラミックス製の微粒子を使用する必要が
ない。その結果、分圧抵抗素子の汚染等の諸問題を改善
出来る他、トリミング精度の大幅な向上が認められる。
Therefore, there is no need to form a trimming margin in the resistance layer as in the case of using conventional methods, and there is no need to use ceramic fine particles as in the case of sandblasting. As a result, various problems such as contamination of the voltage dividing resistor element can be improved, and trimming accuracy is significantly improved.

(実施例) 以下、図面を参照して、この発明の一実施例を詳細に説
明する。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

この発明による電子管内蔵用分圧抵抗素子は、第1図に
示すように構成され、外表部を形成する絶縁被覆層上か
ら透視した状態である。
The voltage dividing resistor element for incorporating an electron tube according to the present invention is constructed as shown in FIG. 1, as seen through the insulating coating layer forming the outer surface.

即ち、従来例と同一箇所には同一符号を付すと、図中の
符号11はセラミックス製の絶縁基板であり、この絶縁
基板11の表面には周縁に沿って複数の引出し電極12
が設けられている。更に、絶縁基板11の表面には、ル
テニウム酸鉛系の抵抗層13か引出し電極12に電気的
に接してジグザグパターンに形成されている。
That is, the same parts as in the conventional example are denoted by the same reference numerals. Reference numeral 11 in the figure is an insulating substrate made of ceramics, and a plurality of extraction electrodes 12 are provided on the surface of the insulating substrate 11 along the periphery.
is provided. Further, on the surface of the insulating substrate 11, a lead ruthenate-based resistance layer 13 is formed in a zigzag pattern in electrical contact with the extraction electrode 12.

さて次に、この発明による分圧抵抗素子の製造方法につ
いて、説明することにする。
Next, a method for manufacturing a voltage dividing resistor element according to the present invention will be explained.

先ず、セラミックス製の絶縁基板11上には、硼硅酸鉛
系ガラスを含むルテニウム酸鉛系の抵抗材料でシート抵
抗がIOKΩ/口程度の抵抗ペーストをスクリーン印刷
法により所定形状に印刷、乾燥して抵抗層中の引出し電
極12を形成する。
First, on the insulating substrate 11 made of ceramics, a resistance paste made of a lead ruthenate-based resistance material containing lead borosilicate glass and having a sheet resistance of about IOKΩ/mm is printed in a predetermined shape by a screen printing method and dried. Then, the lead electrode 12 in the resistance layer is formed.

次に、上記抵抗材料と同系の材料でシート抵抗か1〜I
OKΩ/四程度の抵抗ペーストを用い、スクリーン印刷
法により所定の分圧比率が得られるようなジグザグ状の
パターンを印刷、乾燥する。
Next, use a material similar to the above resistance material to obtain a sheet resistance of 1 to I.
Using a resistance paste of approximately OKΩ/4, a zigzag pattern that provides a predetermined partial pressure ratio is printed by screen printing and dried.

その後、840〜860℃、空気中で約8〜10分間加
熱し、焼成して抵抗層13を形成する。こうして得られ
た抵抗層13は、全抵抗値で2〜3GΩの抵抗値を有す
る。この時、各引き出し電極12での分圧比率が所定の
範囲内でない時には、トリミング工程により修正を行な
う。
Thereafter, the resistive layer 13 is formed by heating and baking at 840 to 860° C. in air for about 8 to 10 minutes. The resistance layer 13 thus obtained has a total resistance value of 2 to 3 GΩ. At this time, if the partial voltage ratio at each extraction electrode 12 is not within a predetermined range, a trimming process is performed to correct it.

この場合、トリミング装置(図示せず)は、絶縁基板1
1を固定した治具が、機械的に稼動する仕組みになって
いるものを使用する。これにより、レーザ光線が抵抗層
13上を正確にトレースすることが出来、又、連続的に
高速度で熱処理を行なうことが出来るようになっている
In this case, the trimming device (not shown)
Use a jig in which the jig in which 1 is fixed is mechanically operated. This allows the laser beam to accurately trace the top of the resistive layer 13, and allows continuous high-speed heat treatment.

そして、トリミングでの分圧比率の算出は、レーザ光線
により800〜1200℃の範囲で熱処理を実施しなが
ら抵抗値を測定し行なっており、所定の分圧比率に至っ
たところで処理を中止している。
Calculation of the partial pressure ratio during trimming is done by measuring the resistance value while performing heat treatment in the range of 800 to 1200 degrees Celsius with a laser beam, and the process is stopped when the predetermined partial pressure ratio is reached. There is.

これら熱処理を施す部分は、分圧比率の外れ方、抵抗層
13のパターン形状、分圧引き出し部の数、電界集中の
度合いにより決まる。
The portions to be subjected to these heat treatments are determined by how the partial voltage ratio deviates, the pattern shape of the resistive layer 13, the number of partial voltage lead-out portions, and the degree of electric field concentration.

さて、上記のトリミング工程は、既述のようにこの発明
ではレーザ光線を用いているが、下記表1のような条件
にて実施する。
Now, the above trimming process uses a laser beam in the present invention as described above, and is carried out under the conditions shown in Table 1 below.

表   1 この場合、スポット径は絶縁基板11上に形成された抵
抗層13パターンの幅及びトリミングする抵抗値変化の
量によって決まる。但し、スポット径を大きくすれば、
エネルギ密度は小さくなり、十分な熱量が得られず、逆
にスポット径を小さくすれば、エネルギ密度は大きくな
るが、抵抗層13パターンの幅よりも小さくなり過ぎる
。そのため、200〜500(μm)が好ましい。
Table 1 In this case, the spot diameter is determined by the width of the resistance layer 13 pattern formed on the insulating substrate 11 and the amount of resistance change to be trimmed. However, if the spot diameter is increased,
The energy density becomes small, and a sufficient amount of heat cannot be obtained. Conversely, if the spot diameter is made small, the energy density becomes large, but becomes too small than the width of the resistance layer 13 pattern. Therefore, 200 to 500 (μm) is preferable.

エネルギは、1. 0〜10. 0 (sj/puls
e )が好ましい。これ以下のエネルギでは加熱が不十
分であり、これ以上のエネルギでは、抵抗層13が昇華
してしまい、抵抗層13パターンの断線を引き起こすた
めである。
Energy is 1. 0-10. 0 (sj/puls
e) is preferred. This is because heating is insufficient if the energy is lower than this, and if the energy is higher than this, the resistive layer 13 will sublimate, causing disconnection of the resistive layer 13 pattern.

パルス幅は上記のエネルギに対し、所定のエネルギ密度
を得るために必要なパルス幅で、40(μ5ec)より
小さいとエネルギ密度が高くなり過ぎ、70(μ5ec
)を超えるとエネルギ密度が低くなる。
The pulse width is the pulse width necessary to obtain a predetermined energy density with respect to the above energy. If it is smaller than 40 (μ5ec), the energy density will be too high;
), the energy density decreases.

そこで、この実施例では、下記表2の条件でトリミング
を実施した。
Therefore, in this example, trimming was performed under the conditions shown in Table 2 below.

表   2 尚、トリミング工程以降は、常用の方法を用いて製造を
行なった。
Table 2 After the trimming step, manufacturing was carried out using a commonly used method.

′ 上記のようなトリミング工程を取り入れることによ
り、この発明では、従来、分圧抵抗素子の小形化に対し
て障害となっていたトリミングしろを削除した抵抗パタ
ーン設計を行なうことが出来るようになった。この結果
、分圧抵抗素子のサイズを従来の92%程度に小形化す
ることが出来た。
'By incorporating the above-mentioned trimming process, the present invention makes it possible to design a resistor pattern that eliminates the trimming margin that has traditionally been an obstacle to miniaturizing voltage dividing resistor elements. . As a result, the size of the voltage dividing resistor element could be reduced to about 92% of the conventional size.

又、セラミックス製の微粒子を使用する必要がなくなり
、問題となっていた分圧抵抗素子の汚染、装置周辺の環
境汚染等が解決された。更に、この発明のトリミング工
程の採用により、高速度・高精度・耐電圧の優れた分圧
抵抗素子を製造するたとか出来た。
Furthermore, it is no longer necessary to use ceramic particles, and problems such as contamination of the partial voltage resistance element and contamination of the environment around the device are solved. Furthermore, by employing the trimming process of the present invention, it was possible to manufacture a voltage dividing resistor element with high speed, high precision, and excellent withstand voltage.

[発明の効果コ 以上説明したようにこの発明によれば、抵抗層にトリミ
ングしろを形成する必要がなくなり、分圧抵抗素子の小
形化か図れ、又、問題となっていたセラミックス製の微
粒子の使用による分圧抵抗素子の汚染、装置周辺の環境
汚染等が解決することが出来る。
[Effects of the Invention] As explained above, according to the present invention, there is no need to form a trimming margin in the resistance layer, the voltage dividing resistance element can be made smaller, and the problem of ceramic fine particles can be reduced. It is possible to solve problems such as contamination of the voltage dividing resistor element due to use and environmental contamination around the device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例に係る製造方法により得ら
れた電子管内蔵用分圧抵抗素子を示す平面図、第2図(
a)は従来の製造方法により得られた電子管内蔵用分圧
抵抗素子を示す平面図、同図(b)は同図(a)のA−
A’線に沿って切断し矢印方向に見た断面図である。 11・・・絶縁基板、13・・・抵抗層。 出願人代理人 弁理士 鈴江武彦
FIG. 1 is a plan view showing a voltage dividing resistor element built into an electron tube obtained by a manufacturing method according to an embodiment of the present invention, and FIG.
(a) is a plan view showing a voltage dividing resistor element for built-in electron tube obtained by the conventional manufacturing method, and (b) is a plan view showing A- in (a).
FIG. 3 is a cross-sectional view taken along line A' and viewed in the direction of the arrow. 11... Insulating substrate, 13... Resistance layer. Applicant's agent Patent attorney Takehiko Suzue

Claims (1)

【特許請求の範囲】 セラミックス製の絶縁基板上にルテニウム酸鉛系の抵抗
層を形成する電子管内蔵用分圧抵抗素子の製造方法にお
いて、 上記抵抗層を局部的に800〜1200℃の範囲で熱処
理して、上記抵抗層の抵抗値を局部的に修正するトリミ
ング工程を含むことを特徴とする電子管内蔵用分圧抵抗
素子の製造方法。
[Claims] A method for manufacturing a voltage dividing resistor element for use in an electron tube, in which a lead ruthenate-based resistance layer is formed on a ceramic insulating substrate, the resistance layer being locally heat-treated at a temperature in the range of 800 to 1200°C. A method for manufacturing a voltage dividing resistor element for built-in an electron tube, comprising a trimming step of locally modifying the resistance value of the resistor layer.
JP30321790A 1990-11-08 1990-11-08 Manufacture of voltage-dividing resistor element to be incorporated in electron tube Pending JPH04174942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30321790A JPH04174942A (en) 1990-11-08 1990-11-08 Manufacture of voltage-dividing resistor element to be incorporated in electron tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30321790A JPH04174942A (en) 1990-11-08 1990-11-08 Manufacture of voltage-dividing resistor element to be incorporated in electron tube

Publications (1)

Publication Number Publication Date
JPH04174942A true JPH04174942A (en) 1992-06-23

Family

ID=17918289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30321790A Pending JPH04174942A (en) 1990-11-08 1990-11-08 Manufacture of voltage-dividing resistor element to be incorporated in electron tube

Country Status (1)

Country Link
JP (1) JPH04174942A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100438505B1 (en) * 2000-12-26 2004-07-03 가부시끼가이샤 도시바 A resistor for an electron gun assembly, a method for manufacturing the resistor, an electron gun assembly having the resistor, and a cathode ray tube apparatus having the resistor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51113148A (en) * 1975-03-31 1976-10-06 Hitachi Ltd Laser trimming method
JPS582002A (en) * 1981-06-26 1983-01-07 株式会社日立製作所 Method of adjusting resistance value of cermet resistor
JPS60124340A (en) * 1983-12-08 1985-07-03 Sony Corp Resistor built in cathode ray tube
JPS63252344A (en) * 1987-04-08 1988-10-19 Toshiba Corp Voltage division resistance element built in electron tube

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51113148A (en) * 1975-03-31 1976-10-06 Hitachi Ltd Laser trimming method
JPS582002A (en) * 1981-06-26 1983-01-07 株式会社日立製作所 Method of adjusting resistance value of cermet resistor
JPS60124340A (en) * 1983-12-08 1985-07-03 Sony Corp Resistor built in cathode ray tube
JPS63252344A (en) * 1987-04-08 1988-10-19 Toshiba Corp Voltage division resistance element built in electron tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100438505B1 (en) * 2000-12-26 2004-07-03 가부시끼가이샤 도시바 A resistor for an electron gun assembly, a method for manufacturing the resistor, an electron gun assembly having the resistor, and a cathode ray tube apparatus having the resistor

Similar Documents

Publication Publication Date Title
US3330696A (en) Method of fabricating thin film capacitors
US11170918B2 (en) Chip resistor and chip resistor production method
JP2018195637A (en) Manufacturing method of chip resistor
JPH01220402A (en) Resistor, manufacture thereof and thermal head using same
JPH04174942A (en) Manufacture of voltage-dividing resistor element to be incorporated in electron tube
EP0764334B1 (en) Process for manufacturing components on a metal film base
JP2002008902A (en) Resistor part and method of regulating its resistance
JPS5771160A (en) Manufacture of thick film printed circuit substrate
US11742116B2 (en) Chip resistor
JPS5952804A (en) Method of producing film resistor
CN109378147B (en) Adjustment method for trimming resistance value of thin film resistor and thin film resistor
JPS557474A (en) Forming method for film resistor of thermal recording head
JPH06310052A (en) Voltage dividing resistance element and manufacture thereof
JPH0770378B2 (en) Circuit board
CN111195727A (en) Manufacturing method of electronic cigarette atomization assembly
WO2021163962A1 (en) Manufacturing method for electronic cigarette atomizing assembly
JPH0384902A (en) Manufacture of resistance element for voltage division
JPH06112018A (en) Thick-film resistor forming method
JPH05217712A (en) Chip type thermistor and its manufacture
JPS5941872B2 (en) Method of manufacturing thermal head
JPH05131666A (en) Method for manufacture of thermal head
JPH03190102A (en) Thick film resistor
JPH03110803A (en) Manufacture of chip resistor
JPH04144203A (en) Manufacture of chip resistor
JPH07153608A (en) Manufacture of chip resistor