JPH04174259A - Low and high temperature medium cooling refrigerator - Google Patents

Low and high temperature medium cooling refrigerator

Info

Publication number
JPH04174259A
JPH04174259A JP30135290A JP30135290A JPH04174259A JP H04174259 A JPH04174259 A JP H04174259A JP 30135290 A JP30135290 A JP 30135290A JP 30135290 A JP30135290 A JP 30135290A JP H04174259 A JPH04174259 A JP H04174259A
Authority
JP
Japan
Prior art keywords
refrigerant
low pressure
temperature
low
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30135290A
Other languages
Japanese (ja)
Other versions
JP2756362B2 (en
Inventor
Hitoshi Watabe
仁 渡部
Koichi Kodera
小寺 弘一
Akiyuki Kawashima
昭之 川嶋
Masaru Nakazawa
賢 中澤
Isao Nishio
西尾 勲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Toyota Motor Corp
Original Assignee
Sanki Engineering Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd, Toyota Motor Corp filed Critical Sanki Engineering Co Ltd
Priority to JP2301352A priority Critical patent/JP2756362B2/en
Publication of JPH04174259A publication Critical patent/JPH04174259A/en
Application granted granted Critical
Publication of JP2756362B2 publication Critical patent/JP2756362B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D16/00Devices using a combination of a cooling mode associated with refrigerating machinery with a cooling mode not associated with refrigerating machinery

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

PURPOSE:To reduce capacity of a compressor of a refrigerating cycle by coupling both ends of a cooling circuit in which a first switching valve, a refrigerant cooler using natural cold, a second switching valve are sequentially interposed at the upper side of a low pressure receiver. CONSTITUTION:If temperature of heat medium air to be cooled is, for example, higher than natural cold temperature, a compressor 20 is stopped, a first switching valve 33, a second switching valve 35 are opened, and then refrigerant is circulated in a passage of an evaporator 28, a first low pressure gas line 30, a low pressure receiver 24, a refrigerant cooler 34, the receiver 34, a liquid pump 29 and the evaporator 28. In this case, the refrigerant is heat exchanged with natural cold such as the atmosphere, well water, etc., by the cooler 34, and the medium air can be reduced at its temperature. That is, the capacity of the compressor 20 of a refrigerating cycle can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、低温域での冷却はもとより高温域での冷却を
効果的に行なうための低温媒体及び高温媒体兼用冷却用
冷凍装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a refrigeration system for cooling both a low-temperature medium and a high-temperature medium for effectively cooling not only low-temperature ranges but also high-temperature ranges. be.

〔従来の技術〕[Conventional technology]

この種の低温媒体及び高温媒体兼用冷却用冷凍装置は、
例えば、気象条件を再現する環境整備室。
This type of refrigeration equipment for cooling both low-temperature medium and high-temperature medium is
For example, an environmental maintenance room that reproduces weather conditions.

自動車関係の試験室、植物の実験室等の如く、地球上で
の色々の気象条件を再現するのに使用されている。そし
て、この環境整備室は、広域な制御範囲を持ち、例えば
−40°C乃至+50°Cという広い範囲で温度条件を
再現すると共に、湿度制限も+50°Cのように高温に
なると、90%と言うように高い条件を再現することが
ある。
It is used to reproduce various weather conditions on Earth, such as in automobile-related test laboratories and plant laboratories. This environmental maintenance room has a wide control range, for example, reproduces temperature conditions in a wide range of -40°C to +50°C, and also has a humidity limit of 90% at high temperatures such as +50°C. Sometimes high conditions are reproduced.

従来、このような装置に使用されている低温媒体及び高
温媒体兼用冷却用冷凍装置としては、直接膨張冷凍機を
用いたものが知られている。
Conventionally, as a refrigeration system for cooling both a low-temperature medium and a high-temperature medium used in such an apparatus, one using a direct expansion refrigerator is known.

これを第4図に基づいて説明する。This will be explained based on FIG.

この直接膨張冷凍機を用いた冷凍装置は、圧縮機(冷凍
機)■と凝縮器2と膨張弁3と低圧レシーバ4と液ポン
プ5と蒸発器6とを備え、圧縮機1と凝縮器2とを高圧
ガスライン7で連結し、凝縮器2と低圧レシーバ4とを
膨張弁3を介装して高圧液ライン8で連結し、低圧レシ
ーバ4と蒸発器6とを液ポンプ5を介装して低圧液ライ
ン9で連結し、蒸発器6と低圧レシーバ4とを第一低圧
ガスライン10で連結し、低圧レシーバ4と圧縮機1と
を第二低圧ガスライン11とを連結することによって冷
凍サイクルを形成している。
A refrigeration system using this direct expansion refrigerator includes a compressor (refrigerator) 1, a condenser 2, an expansion valve 3, a low pressure receiver 4, a liquid pump 5, and an evaporator 6. are connected by a high-pressure gas line 7, the condenser 2 and low-pressure receiver 4 are connected by a high-pressure liquid line 8 via an expansion valve 3, and the low-pressure receiver 4 and evaporator 6 are connected by a liquid pump 5. By connecting the evaporator 6 and the low pressure receiver 4 with the first low pressure gas line 10, and connecting the low pressure receiver 4 and the compressor 1 with the second low pressure gas line 11. It forms a refrigeration cycle.

先ず、ガス状態の冷媒を圧縮機1で高圧ガスに圧縮し、
この圧縮した高圧ガスを高圧ガスライン7を介して凝縮
器2へ送り、凝縮器2で凝縮して液化する。これを高圧
ガスライン8を介して低圧レシーバ4へ送る。この低圧
レシーバ4の前に設けた膨張弁3によって高圧液を膨張
させて冷たい液にすると同時に一部気化させる。低圧レ
シーバ4に送られたその冷たい液は、低圧液ライン9を
介して液ポンプ5によって蒸発器6に送られる。
First, the refrigerant in the gas state is compressed into high pressure gas by the compressor 1,
This compressed high pressure gas is sent to the condenser 2 via the high pressure gas line 7, where it is condensed and liquefied. This is sent to the low pressure receiver 4 via the high pressure gas line 8. An expansion valve 3 provided in front of the low-pressure receiver 4 expands the high-pressure liquid to make it a cold liquid and at the same time partially vaporizes it. The cold liquid sent to the low pressure receiver 4 is sent to the evaporator 6 by the liquid pump 5 via the low pressure liquid line 9.

蒸発器6を出たガスは、第一低圧ガスライン10を介し
て低圧レシーバ4に戻り、冷たいガスの一部が第二低圧
ガスライン11を介して圧縮機1に送られ、上述した如
き回路を形成する。
The gas leaving the evaporator 6 returns to the low pressure receiver 4 via a first low pressure gas line 10, and a portion of the cold gas is sent via a second low pressure gas line 11 to the compressor 1, which is then connected to the circuit as described above. form.

これによって蒸発器6を通過する被冷却熱媒空気を冷却
することができる。
Thereby, the heat medium air to be cooled passing through the evaporator 6 can be cooled.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の冷凍装置にあっては、被冷却熱媒空気の温湿度が
外気、井戸水等自然界の温湿度よりも高い場合でも、冷
凍サイクルを運転して冷却していた。
In conventional refrigeration systems, even when the temperature and humidity of the heat medium air to be cooled is higher than the temperature and humidity of the natural world, such as outside air or well water, the refrigeration cycle is operated to perform cooling.

ところが、被冷却熱媒空気の温湿度が高温・高 湿の場
合、通常の冷凍サイクルの運転においては、冷媒温度を
高温まで上昇できないため、空気冷却器を構成する蒸発
器6において、過剰な減湿が起こり、顕熱冷却量が不足
し、冷凍装置が必要以上に大きくなるだけでなく、圧縮
機1を運転するのでランニングコストも嵩むことになる
However, when the temperature and humidity of the heat transfer medium air to be cooled is high and high humidity, the refrigerant temperature cannot be raised to a high temperature during normal refrigeration cycle operation, so the evaporator 6 constituting the air cooler does not cause excessive depletion. Humidity occurs, the amount of sensible heat cooling becomes insufficient, and not only does the refrigeration system become larger than necessary, but running costs also increase because the compressor 1 is operated.

本発明は、上述の問題点を解決するためになされたもの
で、その目的は、被冷却熱媒空気が高温・高湿の場合は
、外気、井戸水等の安価な冷熱で冷媒を凝縮・液化させ
ることにより、過剰の減湿を起こさずに被冷却熱媒空気
を冷却することができる低温媒体及び高温媒体兼用冷却
用冷凍装置を提供することである。
The present invention has been made to solve the above-mentioned problems, and its purpose is to condense and liquefy the refrigerant using inexpensive cold heat from outside air, well water, etc. when the heat medium air to be cooled is high temperature and high humidity. It is an object of the present invention to provide a refrigeration device for cooling both a low-temperature medium and a high-temperature medium, which can cool heat medium air to be cooled without causing excessive dehumidification.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明は、圧縮機と凝縮器
と膨張弁と低圧レシーバと液ポンプと蒸発器とを備え、
圧縮機と凝縮器とを高圧ガスラインで連結し、凝縮器と
低圧レシーバとを膨張弁を介装して高圧液ラインで連結
し、低圧レシーバと蒸発器とを液ポンプを介装して低圧
液ラインで連結し、蒸発器と低圧レシーバとを第一低圧
ガスラインで連結し、低圧レシーバと圧縮機とを第二低
圧ガスラインとを連結することによって冷凍サイクルを
形成して成る冷凍装置において、低圧レシーバの上部側
に、第一切換弁、自然冷熱を利用して冷媒を冷却する冷
媒冷却器、第二切換弁を順番に介装した冷却回路の両端
を連結したものである。
In order to achieve the above object, the present invention includes a compressor, a condenser, an expansion valve, a low pressure receiver, a liquid pump, and an evaporator,
The compressor and condenser are connected by a high pressure gas line, the condenser and low pressure receiver are connected by a high pressure liquid line via an expansion valve, and the low pressure receiver and evaporator are connected by a liquid pump. In a refrigeration system in which a refrigeration cycle is formed by connecting a liquid line, an evaporator and a low pressure receiver by a first low pressure gas line, and a low pressure receiver and a compressor by connecting a second low pressure gas line. , both ends of a cooling circuit are connected to the upper side of the low-pressure receiver, in which a first switching valve, a refrigerant cooler that cools the refrigerant using natural cooling energy, and a second switching valve are installed in this order.

〔作 用〕[For production]

本発明においては、蒸発器における被冷却熱媒空気の温
度が、冷媒冷却器における自然冷熱温度より低い場合、
第−切換弁及び第二切換弁を閉じ、且つ、圧縮機を駆動
して、冷媒を圧縮機→凝縮器→膨張弁→低圧しシーバ→
液ポンプ→蒸発器→低圧しシーバ→圧縮機という径路を
循環させる。
In the present invention, when the temperature of the heat medium air to be cooled in the evaporator is lower than the natural cooling temperature in the refrigerant cooler,
The first switching valve and the second switching valve are closed, and the compressor is driven to transfer the refrigerant to the compressor → condenser → expansion valve → low pressure and sheaver →
The liquid is circulated through the following path: liquid pump → evaporator → low-pressure sheaver → compressor.

これにより、冷凍サイクルが形成され、被冷却熱媒空気
が蒸発器で冷却される。
As a result, a refrigeration cycle is formed, and the heat medium air to be cooled is cooled by the evaporator.

一方、蒸発器における被冷却熱媒空気の温度が、冷媒冷
却器における自然冷熱温度より高い場合、圧縮機を停止
し、第−切換弁及び第二切換弁を開き、冷媒を蒸発器→
第一低圧ガスライン→低圧レシーバ−冷媒冷却器−低圧
レシーバー液ポンチー蒸発器という径路で循環させる。
On the other hand, if the temperature of the heat medium air to be cooled in the evaporator is higher than the natural cooling temperature in the refrigerant cooler, the compressor is stopped, the first switching valve and the second switching valve are opened, and the refrigerant is transferred to the evaporator →
It is circulated through the first low pressure gas line -> low pressure receiver - refrigerant cooler - low pressure receiver liquid punchy evaporator.

これにより、冷媒は蒸発器において被冷却熱媒空気と熱
交換されて蒸発(気化)し、この蒸気になった冷媒は、
冷媒冷却器で外気または井戸水等の自然冷熱と熱交換さ
れ、冷却・凝縮される。
As a result, the refrigerant exchanges heat with the heat medium air to be cooled in the evaporator and evaporates (vaporizes), and this refrigerant becomes vapor.
The refrigerant cooler exchanges heat with natural cold heat such as outside air or well water, and cools and condenses it.

この場合において、蒸発器から低圧レシーバに導かれる
冷媒ガスに冷媒液、冷凍機油が含まれていると、低圧レ
シーバにおいて冷媒ガスと冷媒液。
In this case, if the refrigerant gas guided from the evaporator to the low-pressure receiver contains refrigerant liquid and refrigeration oil, the refrigerant gas and refrigerant liquid will be separated in the low-pressure receiver.

冷凍機油とが分離され、冷媒ガスのみが冷却回路を介し
て冷媒冷却器に導かれる。
The refrigerant oil is separated from the refrigerant gas, and only the refrigerant gas is guided to the refrigerant cooler via the cooling circuit.

また、圧縮機を用いた冷凍システムと冷媒冷却器を用い
た冷却システムとの切換の際、例えば前者から後者への
切換の場合、第一低圧ガスラインと冷却回路の間に低圧
レシーバが位置しているので、低圧レシーバが気液分離
の機能を果たし、冷媒ガスのみが冷媒冷却器に運ばれ、
冷媒冷却器において、冷媒ガスが相変化して冷媒液に凝
縮される。
Also, when switching between a refrigeration system using a compressor and a cooling system using a refrigerant cooler, for example, when switching from the former to the latter, a low pressure receiver is located between the first low pressure gas line and the cooling circuit. Since the low-pressure receiver performs the function of gas-liquid separation, only the refrigerant gas is transported to the refrigerant cooler,
In a refrigerant cooler, refrigerant gas undergoes a phase change and is condensed into refrigerant liquid.

〔実施例〕〔Example〕

以下、図面により本発明の実施例について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図ないし第3図は本発明の実施例に係る低温媒体及
び高温媒体兼用冷却用冷凍装置を示す。
1 to 3 show a refrigeration system for cooling both a low-temperature medium and a high-temperature medium according to an embodiment of the present invention.

第1図において、20は圧縮機で、この圧縮機20は、
高圧ガスライン21を介して凝縮器22と連結している
。この凝縮器22は、高圧液ライン23を介して低圧レ
シーバ24の源側と連結している。この高圧液ライン2
3には、第三切換弁25と膨張弁26とが介装されてい
る。この低圧レシーバ24の源側が低圧液ライン27を
介して蒸発器28と連結している。この低圧液ライン2
7には、液ポンプ29が介装されている。
In FIG. 1, 20 is a compressor, and this compressor 20 is
It is connected to a condenser 22 via a high pressure gas line 21. This condenser 22 is connected to the source side of a low pressure receiver 24 via a high pressure liquid line 23 . This high pressure liquid line 2
3 is provided with a third switching valve 25 and an expansion valve 26. The source side of this low pressure receiver 24 is connected to an evaporator 28 via a low pressure liquid line 27. This low pressure liquid line 2
7 is provided with a liquid pump 29.

蒸発器28の出口側と低圧レシーバ24のガス側とは、
第一低圧ガスライン30を介して連結している。
The outlet side of the evaporator 28 and the gas side of the low pressure receiver 24 are
They are connected via a first low pressure gas line 30.

低圧レシーバ24の上部側31には、冷却回路320両
端が連結している。この冷却回路32には、第一切換弁
33.冷媒冷却器34.第二切換弁35とが低圧レシー
バ24側から順番に介装されている。冷媒冷却器34は
、外気や井戸水等の自然冷熱を利用して冷媒を冷却する
Both ends of a cooling circuit 320 are connected to the upper side 31 of the low-pressure receiver 24 . This cooling circuit 32 includes a first switching valve 33. Refrigerant cooler 34. A second switching valve 35 is interposed in order from the low pressure receiver 24 side. The refrigerant cooler 34 cools the refrigerant using natural cooling heat such as outside air or well water.

また、低圧レシーバ24と圧縮機20とは、第二低圧ガ
スライン36を介して連結している。
Further, the low pressure receiver 24 and the compressor 20 are connected via a second low pressure gas line 36.

本実施例においては、被冷却熱媒空気の温度が=20°
C〜+50°Cの範囲で、湿度が30%〜90%の範囲
で適用され、本実施例の作用を以下の如く説明する。
In this example, the temperature of the heat medium air to be cooled is =20°
It is applied in the range of C to +50°C and the humidity is in the range of 30% to 90%, and the operation of this embodiment will be explained as follows.

先ず、蒸発器28における被冷却熱媒空気の温度が冷媒
冷却器34における自然冷熱温度より低い場合、第2図
に示す如き通常運転とすることができる。
First, when the temperature of the heat medium air to be cooled in the evaporator 28 is lower than the natural cooling temperature in the refrigerant cooler 34, normal operation as shown in FIG. 2 can be performed.

この通常運転とするためには、第一切換弁33及び第二
切換弁35を閉じ、第三切換弁25を開くことによって
太線で示す循環径路を形成する。
In order to achieve this normal operation, the first switching valve 33 and the second switching valve 35 are closed, and the third switching valve 25 is opened to form a circulation path shown by a bold line.

この通常運転では、圧縮機20で圧縮された高圧ガスを
高圧ガスライン21を介して凝縮器22へ送り、凝縮器
22で凝縮して液化する。これを高圧液ライン23を介
して低圧レシーバ24へ送る。この低圧レシーバ24の
手前に設けた膨張弁26によって高圧液を膨張させて冷
たい液にすると同時に一部気化させる。低圧レシーバ2
4に送られたその冷たい液は、低圧液ライン27を介し
て液ポンプ29によって蒸発器28に送られる。
In this normal operation, high-pressure gas compressed by the compressor 20 is sent to the condenser 22 via the high-pressure gas line 21, where it is condensed and liquefied. This is sent to the low pressure receiver 24 via the high pressure liquid line 23. An expansion valve 26 provided in front of the low pressure receiver 24 expands the high pressure liquid to make it a cold liquid and at the same time partially vaporizes it. Low pressure receiver 2
The cold liquid sent to 4 is sent to the evaporator 28 by a liquid pump 29 via a low pressure liquid line 27.

二の蒸発器28において、被冷却熱媒空気と熱交換して
ガス化し、そのガスは蒸発器28から第一低圧ガスライ
ン30を介して低圧レシーバ24に戻り、冷たいガスが
第二低圧ガスライン36を介して圧縮機20に送られ、
上述した如き回路を循環する。
In the second evaporator 28, the gas is gasified by exchanging heat with the heat medium air to be cooled, and the gas is returned from the evaporator 28 to the low pressure receiver 24 via the first low pressure gas line 30, and the cold gas is transferred to the second low pressure gas line. 36 to the compressor 20,
It cycles through the circuit as described above.

これにより、冷凍サイクルが形成され、被冷却熱媒空気
が蒸発器28で冷却される。
Thereby, a refrigeration cycle is formed, and the heat medium air to be cooled is cooled by the evaporator 28.

一方、被冷却熱媒空気の温度が自然冷熱温度より高い場
合、第3図に示す如き運転とすることができる。
On the other hand, when the temperature of the heat medium air to be cooled is higher than the natural cooling temperature, operation as shown in FIG. 3 can be performed.

この運転とするためには、圧縮機20を停止し、第一切
換弁33.第二切換弁35を開くことによって太線で示
す循環径路を形成する。
To achieve this operation, the compressor 20 is stopped and the first switching valve 33. By opening the second switching valve 35, a circulation path shown in bold line is formed.

この循環径路は、圧縮機20を用いず、冷媒冷却器34
を用いた冷房サイクルであって、冷媒は蒸発器28→第
一低圧ガスライン30→低圧レシ一バ24→冷媒冷却器
34→低圧レシーバ24→液ポンプ29→蒸発器28と
いう径路で循環する。
This circulation path does not use the compressor 20, but instead uses the refrigerant cooler 34.
In this cooling cycle, the refrigerant circulates along the path of evaporator 28 → first low pressure gas line 30 → low pressure receiver 24 → refrigerant cooler 34 → low pressure receiver 24 → liquid pump 29 → evaporator 28.

これにより、冷媒は蒸発器28において被冷却熱媒空気
と熱交換されて蒸発(気化)し、この黄気になった冷媒
は、冷媒冷却器34で外気または井戸水等の自然冷熱と
熱交換され、冷却・凝縮される。例えば、自然冷熱とし
て32°Cの外気を利用するとき、被冷却熱媒空気温度
を45°C程度に設定でき、また、自然冷熱として15
°Cの井戸水を利用するとき、被冷却熱媒空気温度を3
0°C程度に設定することもできる。
As a result, the refrigerant exchanges heat with the heat medium air to be cooled in the evaporator 28 and evaporates (vaporizes), and this yellowish refrigerant exchanges heat with natural cooling heat such as outside air or well water in the refrigerant cooler 34. , cooled and condensed. For example, when using outside air at 32°C as natural cooling heat, the temperature of the heat medium air to be cooled can be set to about 45°C, and the
When using well water at °C, the temperature of the cooled heat medium air should be set to 3
It can also be set to about 0°C.

ここで、蒸発器28の伝熱特性及び効率向上を目的とし
て、蒸発器2日へは液ポンプ29により過剰の冷媒液が
供給されるので、第一低圧ガスライン3.0には冷媒液
の一部が流入し、また、冷媒液に溶は込んだ冷凍機油も
冷媒の蒸発により分離して油滴となることがある。この
場合には、低圧レシーバ24において冷媒ガスと冷媒液
、冷凍機油とが分離され、冷媒ガスのみが冷却回路32
を介して冷媒冷却器34に導かれる。
Here, for the purpose of improving the heat transfer characteristics and efficiency of the evaporator 28, excess refrigerant liquid is supplied to the evaporator 2 by the liquid pump 29, so that the first low pressure gas line 3.0 is supplied with refrigerant liquid. A portion of the refrigerating machine oil that flows into the refrigerant liquid and dissolves in the refrigerant liquid may also separate and become oil droplets due to evaporation of the refrigerant. In this case, the refrigerant gas, refrigerant liquid, and refrigerating machine oil are separated in the low-pressure receiver 24, and only the refrigerant gas is sent to the cooling circuit 3.
The refrigerant is guided to the refrigerant cooler 34 via the refrigerant cooler 34.

そして、被冷却熱媒空気の温湿度を連続的に上昇或いは
下降させる際には、圧縮機20を用いた冷凍システムと
冷媒冷却器34を用いた冷却システムとを適切に切り換
える必要がある。
When continuously increasing or decreasing the temperature and humidity of the heat medium air to be cooled, it is necessary to appropriately switch between the refrigeration system using the compressor 20 and the cooling system using the refrigerant cooler 34.

例えば、前者から後者への切換の場合(第2図の状態→
第3図の状態)、予め冷媒冷却器34に井戸水等を流し
て、冷媒冷却器34の温度を低くして使用可能状態で待
機させた後、第一切換弁33、第二切換弁35を閉→開
に切り換えて、冷媒冷却器34を運転状態にし、次いで
、冷凍システムの圧縮機20を停止する。従って、冷凍
システムと冷却システムの切換えは円滑に行なわれ、蒸
発器28での温度変動は最小限に抑えられる。
For example, in the case of switching from the former to the latter (state in Figure 2 →
3), after flowing well water etc. into the refrigerant cooler 34 in advance to lower the temperature of the refrigerant cooler 34 and standby in a usable state, the first switching valve 33 and the second switching valve 35 are turned on. The refrigerant cooler 34 is put into operation by switching from closed to open, and then the compressor 20 of the refrigeration system is stopped. Therefore, switching between the refrigeration system and the cooling system is performed smoothly, and temperature fluctuations in the evaporator 28 are minimized.

また、冷媒冷却器34を用いた冷却システム(第3図図
示)から圧縮機20を用いた冷凍システム(第2図図示
)に切り換える際には、圧縮機20を起動し、第一切換
弁33.第二切換弁35を開→閉に切り換えれば、第3
図の状態から第2図の状態になる。
In addition, when switching from a cooling system using the refrigerant cooler 34 (shown in FIG. 3) to a refrigeration system using the compressor 20 (shown in FIG. 2), the compressor 20 is started, and the first switching valve 33 .. If the second switching valve 35 is switched from open to closed, the third
The state shown in the figure changes to the state shown in FIG.

以上の如き構成によれば、被冷却熱媒空気の温度が自然
冷熱温度より高い場合、冷凍サイクルを利用せず、自然
冷熱を利用することにより、被冷却熱媒空気の温度を低
くすることができる。
According to the above configuration, when the temperature of the heat medium air to be cooled is higher than the natural cooling temperature, the temperature of the heat medium air to be cooled can be lowered by using the natural cooling heat without using the refrigeration cycle. can.

この場合、被冷却熱媒空気が高温・高温でも、湿度を維
持しながら(過剰な減湿を起こさずに)被冷却熱媒空気
を冷却することができる。
In this case, even if the heat medium air to be cooled is at a high temperature, the heat medium air to be cooled can be cooled while maintaining humidity (without causing excessive dehumidification).

また、被冷却熱媒空気の温湿度が高温・高湿の場合、上
述のように通常の冷凍サイクルを利用しないことから、
蒸発器28において、従来例で述べたような過剰なM湿
分による顕熱冷却量が減少することなく、従って、冷凍
毎イクルの圧縮機20の能力も小さくすることができ、
圧縮機20の停止によるランニングコストも減少させる
ことができる。
In addition, if the temperature and humidity of the heat transfer medium air to be cooled is high and humid, the normal refrigeration cycle is not used as described above.
In the evaporator 28, the amount of sensible heat cooling due to excessive M moisture as described in the conventional example does not decrease, and therefore the capacity of the compressor 20 for each cycle of refrigeration can be reduced.
Running costs due to stopping the compressor 20 can also be reduced.

ここで、自然冷熱の利用をした運転範囲を広くすれば、
上述した効果を顕著にすることができる。
Here, if we widen the operating range using natural cooling,
The above-mentioned effects can be made more noticeable.

かかる自然冷熱利用運転の範囲は、自然冷熱の温度場と
、冷媒冷却器34の伝熱面積や液ポンプ29の容量等に
依存している。
The range of such operation using natural cooling depends on the temperature field of natural cooling, the heat transfer area of the refrigerant cooler 34, the capacity of the liquid pump 29, etc.

そして、冷凍サイクルを利用しない場合、蒸気になった
冷媒を、冷媒冷却器34で外気または井戸水等の自然冷
熱と熱交換し、冷却・凝縮するが、この場合において、
蒸発器28から第一低圧ガスライン30に導かれた冷媒
ガスに冷媒液、冷凍機油が上述したように含まれていて
も、低圧レシーバ24において冷媒ガスと冷媒液、冷凍
機油とを分離させ、冷媒ガスのみを冷却回路32を介し
て冷媒冷却器34に導くことができる。従って、冷媒冷
却器34における冷却効率の低下を防止することができ
る。これにより、冷媒冷却器34の容量を小さくしたり
、井戸水等の消費量を少なくすることができる。
When the refrigeration cycle is not used, the vaporized refrigerant is cooled and condensed by exchanging heat with natural cold heat such as outside air or well water in the refrigerant cooler 34.
Even if the refrigerant gas led from the evaporator 28 to the first low-pressure gas line 30 contains refrigerant liquid and refrigerating machine oil as described above, the refrigerant gas is separated from the refrigerant liquid and refrigerating machine oil in the low-pressure receiver 24, Only the refrigerant gas can be led to the refrigerant cooler 34 via the cooling circuit 32. Therefore, a decrease in cooling efficiency in the refrigerant cooler 34 can be prevented. Thereby, the capacity of the refrigerant cooler 34 can be reduced, and the consumption of well water and the like can be reduced.

そして、また、圧縮機20を用いた冷凍システムと冷媒
冷却器34を用いた冷却システムとの切換の際、例えば
前者から後者への切換の場合、第一低圧ガスライン30
と冷却回路32の間に低圧レシーバ24が位置している
ので、冷媒ガスのみが冷媒冷却器34に運ばれ、冷媒冷
却器34において、冷媒ガスが相変化して冷媒液に凝縮
され、冷媒冷却器34における冷却効率の低下がなくな
り、冷却回路32における切換時の温度変動を最小限に
抑えることができる。
When switching between a refrigeration system using the compressor 20 and a cooling system using the refrigerant cooler 34, for example, when switching from the former to the latter, the first low pressure gas line 30
Since the low pressure receiver 24 is located between the cooling circuit 32 and the cooling circuit 32, only the refrigerant gas is conveyed to the refrigerant cooler 34, where the refrigerant gas undergoes a phase change and is condensed into a refrigerant liquid to provide refrigerant cooling. There is no reduction in cooling efficiency in the cooling circuit 34, and temperature fluctuations at the time of switching in the cooling circuit 32 can be minimized.

なお、本実施例においては、被冷却熱媒空気の温度が一
20°C〜士50°Cの範囲で、湿度が30%〜90%
の範囲で通用した例について説明したが、かかる範囲に
限定されないことは勿論である。
In this example, the temperature of the heat medium air to be cooled is in the range of 120°C to 50°C, and the humidity is 30% to 90%.
Although an example has been described that is applicable within the range, it is needless to say that the range is not limited to this range.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明に係る低温媒体及び高温媒体
兼用冷却用冷凍装置によれば、被冷却熱媒空気の温度が
自然冷熱温度より高い場合、冷凍サイクルを利用せず、
自然冷熱を利用することにより、被冷却熱媒空気の温度
を低くすることができる。
As described above, according to the refrigeration system for cooling both low-temperature medium and high-temperature medium according to the present invention, when the temperature of the heat medium air to be cooled is higher than the natural cooling temperature, the refrigeration cycle is not used.
By utilizing natural cooling energy, the temperature of the heat medium air to be cooled can be lowered.

この場合、被冷却熱媒空気が高温・高温でも、湿度を維
持しながら(過剰な減湿を起こさずに)被冷却熱媒空気
を冷却することができる。
In this case, even if the heat medium air to be cooled is at a high temperature, the heat medium air to be cooled can be cooled while maintaining humidity (without causing excessive dehumidification).

また、被冷却熱媒空気の温湿度が高温・高湿の場合、上
述のように通常の冷凍サイクルを利用しないことから、
蒸発器において、従来例で述べたような過剰な減湿分に
よる顕熱冷却量が減少することなく、従って、冷凍サイ
クルの圧縮機の能力も小さくすることができ、圧縮機の
停止によるランニングコストも減少させることができる
In addition, if the temperature and humidity of the heat transfer medium air to be cooled is high and humid, the normal refrigeration cycle is not used as described above.
In the evaporator, the amount of sensible heat cooling does not decrease due to excessive dehumidification as described in the conventional example, and therefore the capacity of the compressor in the refrigeration cycle can be reduced, reducing running costs due to compressor stoppage. can also be reduced.

そして、冷凍サイクルを利用しない場合、蒸気になった
冷媒を、冷媒冷却器で外気または井戸水等の自然冷熱と
熱交換し、冷却・凝縮するが、この場合において、蒸発
器から第一低圧ガスラインを介して低圧レシーバに導か
れた冷媒ガスに冷媒液、冷凍機油が含まれていても、低
圧レシーバにおいて冷媒ガスと冷媒液、冷凍機油とを分
離させ、冷媒ガスのみを冷却回路を介して冷媒冷却器に
導くことができる。従って、冷媒冷却器における冷却効
率の低下を防止することができる。
When the refrigeration cycle is not used, the vaporized refrigerant is cooled and condensed by exchanging heat with natural cold heat such as outside air or well water in a refrigerant cooler. Even if the refrigerant gas led to the low-pressure receiver contains refrigerant liquid and refrigerating machine oil, the refrigerant gas, refrigerant liquid, and refrigerating machine oil are separated in the low-pressure receiver, and only the refrigerant gas is transferred to the refrigerant through the cooling circuit. It can be led to a cooler. Therefore, a decrease in cooling efficiency in the refrigerant cooler can be prevented.

そして、また、圧縮機を用いた冷凍システムと冷媒冷却
器を用いた冷却システムとの切換の際、例えば前者から
後者への切換の場合、第一低圧ガスラインと冷却回路の
間に低圧レシーバが位置しているので、低圧レシーバが
気液分離の機能を果たし、冷媒ガスのみが冷媒冷却器に
運ばれ、冷媒冷却器において、冷媒ガスが相変化して冷
媒液に凝縮され、冷媒冷却器における冷却効率の低下が
なくなり、冷却回路における切換時の温度変動を最小限
に抑えることができる効果を奏する。
Furthermore, when switching between a refrigeration system using a compressor and a cooling system using a refrigerant cooler, for example, when switching from the former to the latter, a low pressure receiver is installed between the first low pressure gas line and the cooling circuit. Because the low pressure receiver performs the function of gas-liquid separation, only the refrigerant gas is conveyed to the refrigerant cooler, in which the refrigerant gas undergoes a phase change and is condensed into refrigerant liquid, and the refrigerant gas in the refrigerant cooler is There is no reduction in cooling efficiency, and temperature fluctuations at the time of switching in the cooling circuit can be minimized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係る低温媒体及び高温媒体兼
用冷却用冷凍装置の構成図である。 第2図は同低温媒体及び高温媒体兼用冷却用冷凍装置に
おいて被冷却熱媒空気温度が自然冷熱より低い場合の冷
凍サイクルを示す説明図である。 第3図は同低温媒体及び高温媒体兼用冷却用冷凍装置に
おいて被冷却熱媒空気温度が自然冷熱より高い場合の冷
却サイクルを示す説明図である。 第4図は従来の直接膨張冷凍機を用いた冷凍装置を示す
構成図である。 〔主要な部分の符号の説明〕 20・・・圧縮機 21・・・高圧ガスライン 22・・・凝縮器 23・・・高圧液ライン 24・・・低圧レシーバ 26・・・膨張弁 27・・・低圧液ライン 28・・・蒸発器 29・・・液ポンプ 30・・・第一低圧ガスライン 32・・・冷却回路 33・・・第一切換弁 34・・・冷媒冷却器 35・・・第二切換弁 36・・・第二低圧ガスライン。
FIG. 1 is a block diagram of a refrigeration system for cooling both a low-temperature medium and a high-temperature medium according to an embodiment of the present invention. FIG. 2 is an explanatory diagram showing a refrigeration cycle when the temperature of the heat medium air to be cooled is lower than the natural cooling heat in the refrigeration system for cooling both low temperature medium and high temperature medium. FIG. 3 is an explanatory diagram showing a cooling cycle when the temperature of the heat medium air to be cooled is higher than the natural cooling heat in the refrigeration system for cooling both a low temperature medium and a high temperature medium. FIG. 4 is a block diagram showing a refrigeration system using a conventional direct expansion refrigerator. [Explanation of symbols of main parts] 20... Compressor 21... High pressure gas line 22... Condenser 23... High pressure liquid line 24... Low pressure receiver 26... Expansion valve 27... -Low pressure liquid line 28...evaporator 29...liquid pump 30...first low pressure gas line 32...cooling circuit 33...first switching valve 34...refrigerant cooler 35... Second switching valve 36...second low pressure gas line.

Claims (1)

【特許請求の範囲】[Claims] (1)圧縮機と凝縮器と膨張弁と低圧レシーバと液ポン
プと蒸発器とを備え、圧縮機と凝縮器とを高圧ガスライ
ンで連結し、凝縮器と低圧レシーバとを膨張弁を介装し
て高圧液ラインで連結し、低圧レシーバと蒸発器とを液
ポンプを介装して低圧液ラインで連結し、蒸発器と低圧
レシーバとを第一低圧ガスラインで連結し、低圧レシー
バと圧縮機とを第二低圧ガスラインとを連結することに
よって冷凍サイクルを形成して成る冷凍装置において、
低圧レシーバの上部側に、第一切換弁、自然冷熱を利用
して冷媒を冷却する冷媒冷却器、第二切換弁を順番に介
装した冷却回路の両端を連結したことを特徴とする低温
媒体及び高温媒体兼用冷却用冷凍装置。
(1) Equipped with a compressor, a condenser, an expansion valve, a low-pressure receiver, a liquid pump, and an evaporator, the compressor and condenser are connected by a high-pressure gas line, and the condenser and low-pressure receiver are connected with an expansion valve. The low pressure receiver and the evaporator are connected by a low pressure liquid line via a liquid pump, the evaporator and the low pressure receiver are connected by a first low pressure gas line, and the low pressure receiver and the compressor are connected by a first low pressure gas line. In a refrigeration system in which a refrigeration cycle is formed by connecting a machine and a second low pressure gas line,
A low-temperature medium characterized in that both ends of a cooling circuit are connected to the upper side of a low-pressure receiver, in which a first switching valve, a refrigerant cooler that cools the refrigerant using natural cooling energy, and a second switching valve are installed in this order. and refrigeration equipment that can also be used as a high-temperature medium.
JP2301352A 1990-11-07 1990-11-07 Refrigeration system for cooling both low temperature medium and high temperature medium Expired - Fee Related JP2756362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2301352A JP2756362B2 (en) 1990-11-07 1990-11-07 Refrigeration system for cooling both low temperature medium and high temperature medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2301352A JP2756362B2 (en) 1990-11-07 1990-11-07 Refrigeration system for cooling both low temperature medium and high temperature medium

Publications (2)

Publication Number Publication Date
JPH04174259A true JPH04174259A (en) 1992-06-22
JP2756362B2 JP2756362B2 (en) 1998-05-25

Family

ID=17895835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2301352A Expired - Fee Related JP2756362B2 (en) 1990-11-07 1990-11-07 Refrigeration system for cooling both low temperature medium and high temperature medium

Country Status (1)

Country Link
JP (1) JP2756362B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014020737A (en) * 2012-07-23 2014-02-03 Toyo Eng Works Ltd Refrigerant circulation cooling system
CN104236147A (en) * 2013-06-20 2014-12-24 重庆美的通用制冷设备有限公司 Water cooling unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014020737A (en) * 2012-07-23 2014-02-03 Toyo Eng Works Ltd Refrigerant circulation cooling system
CN104236147A (en) * 2013-06-20 2014-12-24 重庆美的通用制冷设备有限公司 Water cooling unit
CN104236147B (en) * 2013-06-20 2017-02-15 重庆美的通用制冷设备有限公司 Water cooling unit

Also Published As

Publication number Publication date
JP2756362B2 (en) 1998-05-25

Similar Documents

Publication Publication Date Title
KR20120022203A (en) Defrosting system using air cooling refrigerant evaporator and condenser
JPH04174259A (en) Low and high temperature medium cooling refrigerator
JPH0794926B2 (en) Refrigerating device for both low temperature medium and high temperature medium
JP2003121025A (en) Heating-cooling combination appliance
JPH02302560A (en) Cooling refrigerator for low temperature and high temperature medium
JPH04174258A (en) Refrigerator for cooling both low and high temperature mediums
KR0154429B1 (en) Refrigerant blocking apparatus for refrigeration cycle
CN220287831U (en) Air-cooled double-channel explosion-proof compression condensing unit
JP2004028375A (en) Refrigerating equipment combined with absorption type and compression type and operating method thereof
JP2833339B2 (en) Thermal storage type air conditioner
JP2661313B2 (en) Thermal storage refrigeration cycle device
JP2004028374A (en) Refrigerating equipment combined with absorption type and compression type
JP2000320908A (en) Refrigerating cycle circuit
KR100510851B1 (en) Condenser Structure Of Outdoor Unit For Air Conditioner
JPH06281270A (en) Air conditioner
KR950004396Y1 (en) Arrangement for vaporising residuum of liquid refrigerant
KR0136046B1 (en) Refrigeration apparatus with two evaporators
JP3097971U (en) Refrigeration equipment
KR970009803B1 (en) Refrigerating cycle apparatus
KR20210114736A (en) Apparatus for providing cold water and ice with function to detach ice
KR19990011324A (en) Cooling system
JPS61110851A (en) Joule-thomson refrigerator
JPS5888563A (en) Cooling device
JPH02203162A (en) Heat accumulating refrigerator
JP2536219B2 (en) Thermal storage refrigeration cycle device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees