JPH04174258A - Refrigerator for cooling both low and high temperature mediums - Google Patents

Refrigerator for cooling both low and high temperature mediums

Info

Publication number
JPH04174258A
JPH04174258A JP30135190A JP30135190A JPH04174258A JP H04174258 A JPH04174258 A JP H04174258A JP 30135190 A JP30135190 A JP 30135190A JP 30135190 A JP30135190 A JP 30135190A JP H04174258 A JPH04174258 A JP H04174258A
Authority
JP
Japan
Prior art keywords
refrigerant
low
gas
temperature
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30135190A
Other languages
Japanese (ja)
Other versions
JP2756361B2 (en
Inventor
Hitoshi Watabe
仁 渡部
Koichi Kodera
小寺 弘一
Akiyuki Kawashima
昭之 川嶋
Masaru Nakazawa
賢 中澤
Isao Nishio
西尾 勲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Toyota Motor Corp
Original Assignee
Sanki Engineering Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd, Toyota Motor Corp filed Critical Sanki Engineering Co Ltd
Priority to JP30135190A priority Critical patent/JP2756361B2/en
Publication of JPH04174258A publication Critical patent/JPH04174258A/en
Application granted granted Critical
Publication of JP2756361B2 publication Critical patent/JP2756361B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To reduce capacity of a compressor of a refrigerating cycle by interposing a first switching valve, a refrigerant cooler, a second switching valve, and a gas/liquid separator on the way of a cooling circuit, and coupling the separator to a low pressure receiver via a drain conduit. CONSTITUTION:If temperature of heat medium air to be cooled is higher than natural cold temperature, a compressor 20 is stopped, and refrigerant is circulated in a passage of an evaporator 28, a gas/liquid separator 25, a refrigerant cooler 34, a low pressure receiver 24, a liquid pump 29 and the evaporator 28. Thus, the refrigerant is heat exchanged with the heat medium air to be cooled by the evaporator 28 to be evaporated, the evaporated refrigerant is heat exchanged with natural cold such as the atmosphere, well water, etc., by the cooler 34, cooled, and condensed. That is, if the temperature of the heat medium air to be cooled is higher than the natural cold temperature, the temperature of the air can be reduced by using the natural cold without using a refrigerating cycle. Thus, the capacity of the compressor 20 of a refrigerating cycle can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、低温域での冷却はもとより高温域での冷却を
効果的に行なうための低温媒体及び高温媒体兼用冷却用
冷凍装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a refrigeration system for cooling both a low-temperature medium and a high-temperature medium for effectively cooling not only low-temperature ranges but also high-temperature ranges. be.

〔従来の技術〕[Conventional technology]

この種の低温媒体及び高温媒体兼用冷却用冷凍装置は、
例えば、気象条件を再現する環境整備室。
This type of refrigeration equipment for cooling both low-temperature medium and high-temperature medium is
For example, an environmental maintenance room that reproduces weather conditions.

自動車関係の試験室、植物の実験室等の如く、地球上で
の色々の気象条件を再現するのに使用されている。そし
て、この環境整備室は、広域な制御範囲を持ち、例えば
−40°C乃至+50°Cという広い範囲で温度条件を
再現すると共に、湿度制限も+50°Cのように高温に
なると、90%と言うように高い条件を再現することが
ある。
It is used to reproduce various weather conditions on Earth, such as in automobile-related test laboratories and plant laboratories. This environmental maintenance room has a wide control range, for example, reproduces temperature conditions in a wide range of -40°C to +50°C, and also has a humidity limit of 90% at high temperatures such as +50°C. Sometimes high conditions are reproduced.

従来、このような装置に使用されている低温媒体及び高
温媒体兼用冷却用冷凍装置としては、直接膨張冷凍機を
用いたものが知られている。
Conventionally, as a refrigeration system for cooling both a low-temperature medium and a high-temperature medium used in such an apparatus, one using a direct expansion refrigerator is known.

これを第4図に基づいて説明する。This will be explained based on FIG.

この直接膨張冷凍機を用いた冷凍装置は、圧縮機(冷凍
機)1と凝縮器2と膨張弁3と低圧レシーバ4と液ポン
プ5と蒸発器6とを備え、圧縮機lと凝縮器2とを高圧
ガスライン7で連結し、凝縮器2と低圧レシーバ4とを
膨張弁3を介装して高圧液ライン8で連結し、低圧レシ
ーバ4と蒸発器6とを液ポンプ5を介装して低圧液ライ
ン9で連結し、蒸発器6と低圧レシーバ4とを第一低圧
ガスライン10で連結し、低圧レシーバ4と圧縮機1と
を第二低圧ガスライン11とを連結することによって冷
凍サイクルを形成している。
A refrigeration system using this direct expansion refrigerator includes a compressor (refrigerator) 1, a condenser 2, an expansion valve 3, a low pressure receiver 4, a liquid pump 5, and an evaporator 6. are connected by a high-pressure gas line 7, the condenser 2 and low-pressure receiver 4 are connected by a high-pressure liquid line 8 via an expansion valve 3, and the low-pressure receiver 4 and evaporator 6 are connected by a liquid pump 5. By connecting the evaporator 6 and the low pressure receiver 4 with the first low pressure gas line 10, and connecting the low pressure receiver 4 and the compressor 1 with the second low pressure gas line 11. It forms a refrigeration cycle.

先ず、ガス状態の冷媒を圧縮@1で高圧ガスに圧縮し、
この圧縮した高圧ガスを高圧ガスライン7を介して凝縮
器2へ送り、凝縮器2で凝縮して液化する。これを高圧
ガスライン8を介して低圧レシーバ4へ送る。この低圧
レシーバ4の前に設けた膨張弁3によって高圧液を膨張
させて冷たい液にすると同時に一部気化させる。低圧レ
シーバ4に送られたその冷たい液は、低圧液ライン9を
介して液ポンプ5によって蒸発器6に送られる。
First, the refrigerant in the gas state is compressed into high-pressure gas using compression @1.
This compressed high pressure gas is sent to the condenser 2 via the high pressure gas line 7, where it is condensed and liquefied. This is sent to the low pressure receiver 4 via the high pressure gas line 8. An expansion valve 3 provided in front of the low-pressure receiver 4 expands the high-pressure liquid to make it a cold liquid and at the same time partially vaporizes it. The cold liquid sent to the low pressure receiver 4 is sent to the evaporator 6 by the liquid pump 5 via the low pressure liquid line 9.

蒸発器6を出たガスは、第一低圧ガスライン10を介し
て低圧レシーバ4に戻り、冷たいガスの一部が第二低圧
ガスライン11を介して圧縮機1に送られ、上述した如
き回路を形成する。
The gas leaving the evaporator 6 is returned to the low pressure receiver 4 via a first low pressure gas line 10, and a portion of the cold gas is sent via a second low pressure gas line 11 to the compressor 1, which is connected to the circuit as described above. form.

これによって蒸発器6を通過する被冷却熱媒空気を冷却
することができる。
Thereby, the heat medium air to be cooled passing through the evaporator 6 can be cooled.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の冷凍装置にあっては、被冷却熱媒空気の温湿度が
外気、井戸水等自然界の温湿度よりも高い場合でも、冷
凍サイクルを運転して冷却していた。
In conventional refrigeration systems, even when the temperature and humidity of the heat medium air to be cooled is higher than the temperature and humidity of the natural world, such as outside air or well water, the refrigeration cycle is operated to perform cooling.

ところが、被冷却熱媒空気の温湿度が高温・高温の場合
、通常の冷凍サイクルの運転においては、冷媒温度を高
温まで上昇できないため、空気冷却器を構成する蒸発器
6において、過剰な減湿が起こり、顕熱冷却量が不足し
、冷凍装置が必要以上に大きくなるだけでなく、圧縮機
1を運転するのでランニングコストも嵩むことになる。
However, when the temperature and humidity of the heat medium air to be cooled is high and high, the refrigerant temperature cannot be raised to a high temperature during normal refrigeration cycle operation, so excessive dehumidification occurs in the evaporator 6 that constitutes the air cooler. occurs, the amount of sensible heat cooling becomes insufficient, and not only does the refrigeration system become larger than necessary, but running costs also increase because the compressor 1 is operated.

本発明は、上述の問題点を解決するためになされたもの
で、その目的は、被冷却熱媒空気が高温・高湿の場合は
、外気、井戸水等の安価な冷熱で冷媒を凝縮・液化させ
ることにより、過剰の減湿を起こさずに被冷却熱媒空気
を冷却することができる低温媒体及び高温媒体兼用冷却
用冷凍装置を提供することである。
The present invention has been made to solve the above-mentioned problems, and its purpose is to condense and liquefy the refrigerant using inexpensive cold heat from outside air, well water, etc. when the heat medium air to be cooled is high temperature and high humidity. It is an object of the present invention to provide a refrigeration device for cooling both a low-temperature medium and a high-temperature medium, which can cool heat medium air to be cooled without causing excessive dehumidification.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明は、圧縮機と凝縮器
と膨張弁と低圧レシーバと液ポンプと蒸発器とを備え、
圧縮機と凝縮器とを高圧ガスラインで連結し、凝縮器と
低圧レシーバとを膨張弁を介装して高圧液ラインで連結
し、低圧レシーバと蒸発器とを液ポンプを介装して低圧
液ラインで連結し、蒸発器と低圧レシーバとを第一低圧
ガスラインで連結し、低圧レシーバと圧縮機とを第二低
圧ガスラインとを連結することによって冷凍サイクルを
形成して成る冷凍装置において、低圧レシーバと第一低
圧ガスラインとを連結する冷却回路を配置し、この冷却
回路途中に、低圧レシーバ側から順番に第一切換弁、自
然冷熱を利用して冷媒を冷却する冷媒冷却器、第二切換
弁、冷却回路内のガス分と液分との分離を行ないガス分
のみを冷媒冷却器に導く気液分離装置を介装し、気液分
離装置と低圧レシーバとをドレン管路を介して連結した
ものである。
In order to achieve the above object, the present invention includes a compressor, a condenser, an expansion valve, a low pressure receiver, a liquid pump, and an evaporator,
The compressor and condenser are connected by a high pressure gas line, the condenser and low pressure receiver are connected by a high pressure liquid line via an expansion valve, and the low pressure receiver and evaporator are connected by a liquid pump. In a refrigeration system in which a refrigeration cycle is formed by connecting a liquid line, an evaporator and a low pressure receiver by a first low pressure gas line, and a low pressure receiver and a compressor by connecting a second low pressure gas line. A cooling circuit connecting the low-pressure receiver and the first low-pressure gas line is arranged, and in the middle of this cooling circuit, in order from the low-pressure receiver side, a first switching valve, a refrigerant cooler that cools the refrigerant using natural cooling energy, The second switching valve is equipped with a gas-liquid separator that separates the gas and liquid in the cooling circuit and guides only the gas to the refrigerant cooler, and connects the gas-liquid separator and the low-pressure receiver to the drain pipe. They are connected via

〔作 用〕[For production]

本発明においては、蒸発器における被冷却熱媒空気の温
度が、冷媒冷却器における口器冷熱温度より低い場合、
第−切換弁及び第二切換弁を閉じ、且つ、圧縮機を駆動
して、冷媒を圧縮機→凝縮器→膨張弁→低圧しシーバ→
液ポンプ→蒸発器→気液分離装置→低圧しジ=バ→圧縮
機という径路を循環させる。
In the present invention, when the temperature of the heat medium air to be cooled in the evaporator is lower than the mouthpiece cooling temperature in the refrigerant cooler,
The first switching valve and the second switching valve are closed, and the compressor is driven to transfer the refrigerant to the compressor → condenser → expansion valve → low pressure and sheaver →
The liquid is circulated through the following path: liquid pump → evaporator → gas-liquid separator → low pressure generator → compressor.

これにより、冷凍サイクルが形成され、被冷却熱媒空気
が蒸発器で冷却される。
As a result, a refrigeration cycle is formed, and the heat medium air to be cooled is cooled by the evaporator.

一方、蒸発器における被冷却熱媒空気の温度が、冷媒冷
却器における自然冷熱温度より高い場合、圧縮機を停止
し、第−切換弁及び第二切換弁を開き、冷媒を蒸発器→
気液分離装置→冷媒冷却器→低圧しシーバ→液ポンプ→
蒸発器という径路で循環させる。
On the other hand, if the temperature of the heat medium air to be cooled in the evaporator is higher than the natural cooling temperature in the refrigerant cooler, the compressor is stopped, the first switching valve and the second switching valve are opened, and the refrigerant is transferred to the evaporator →
Gas-liquid separator → Refrigerant cooler → Low pressure sheaver → Liquid pump →
It is circulated through a path called an evaporator.

これにより、冷媒は蒸発器において被冷却熱媒空気と熱
交換されて蒸発(気化)し、この蒸気になった冷媒は、
冷媒冷却器で外気または井戸水等の自然冷熱と熱交換さ
れ、冷却・凝縮される。
As a result, the refrigerant exchanges heat with the heat medium air to be cooled in the evaporator and evaporates (vaporizes), and this refrigerant becomes vapor.
The refrigerant cooler exchanges heat with natural cold heat such as outside air or well water, and cools and condenses it.

この場合において、蒸発器から冷却回路に導かれる冷媒
ガスに冷媒液、冷凍機油が含まれていると、気液分離装
置により、冷媒ガスと冷媒液、冷凍機油とが分離され、
冷媒ガスのみが冷却回路を介して冷媒冷却器に導かれる
。また、冷媒液、冷凍機油は、ドレン管路を介して低圧
レシーバに導かれる。
In this case, if the refrigerant gas guided from the evaporator to the cooling circuit contains refrigerant liquid and refrigerating machine oil, the refrigerant gas, refrigerant liquid, and refrigerating machine oil are separated by the gas-liquid separator,
Only refrigerant gas is led to the refrigerant cooler via the cooling circuit. Further, the refrigerant liquid and the refrigerating machine oil are guided to the low pressure receiver via the drain pipe.

また、圧縮機を用いた冷凍システムと冷媒冷却器を用い
た冷却システムとの切換の際、例えば前者から後者への
切換の場合、冷却回路に気液分離装置が介装されている
ので、冷媒ガスのみが冷媒冷却器に運ばれ、冷媒冷却器
において、冷媒ガスが相変化して冷媒液に凝縮される。
Furthermore, when switching between a refrigeration system using a compressor and a cooling system using a refrigerant cooler, for example, when switching from the former to the latter, a gas-liquid separator is installed in the cooling circuit, so the refrigerant Only the gas is conveyed to the refrigerant cooler, where the refrigerant gas undergoes a phase change and is condensed into refrigerant liquid.

〔実施例〕〔Example〕

以下、図面により本発明の実施例について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図ないし第3図は本発明の実施例に係る低温媒体及
び高温媒体兼用冷却用冷凍装置を示す。
1 to 3 show a refrigeration system for cooling both a low-temperature medium and a high-temperature medium according to an embodiment of the present invention.

第1図において、20は圧縮機で、この圧縮機20は、
高圧ガスライン21を介して凝縮器22と連結している
。この凝縮器22は、高圧液ライン23を介して低圧レ
シーバ24の淡側と連結している。この高圧液ライン2
3には、第三切換弁25と膨張弁26とが介装されてい
る。この低圧レシーバ24の淡側が低圧液ライン27を
介して蒸発器28と連結している。この低圧液ライン2
7には、液ポンプ29が介装されている。
In FIG. 1, 20 is a compressor, and this compressor 20 is
It is connected to a condenser 22 via a high pressure gas line 21. This condenser 22 is connected to the lean side of a low pressure receiver 24 via a high pressure liquid line 23. This high pressure liquid line 2
3 is provided with a third switching valve 25 and an expansion valve 26. The low-pressure receiver 24 has a light side connected to an evaporator 28 via a low-pressure liquid line 27 . This low pressure liquid line 2
7 is provided with a liquid pump 29.

蒸発器28の出口側と低圧レシーバ24のガス側とは、
気液分離装置35の介装される第一低圧ガスライン30
を介して連結している。
The outlet side of the evaporator 28 and the gas side of the low pressure receiver 24 are
First low pressure gas line 30 interposed with gas-liquid separator 35
are connected via.

気液分離装置35のガス部と低圧レシーバ24のガス側
とは、冷却回路32を介して連結している。この冷却回
路32には、第一切換弁33.冷媒冷却器348第二切
換弁36とが低圧レシーバ24側から順番に介装されて
いる。冷媒冷却器34は、外気や井戸水等の自然冷熱を
利用して冷媒を冷却する。気液分離装置35は第一低圧
ガスライン30内の冷媒ガスと冷媒液、冷凍機油との分
離を行ない冷媒ガスのみを冷媒冷却器34に導く。
The gas section of the gas-liquid separator 35 and the gas side of the low-pressure receiver 24 are connected via a cooling circuit 32. This cooling circuit 32 includes a first switching valve 33. A refrigerant cooler 348 and a second switching valve 36 are interposed in order from the low pressure receiver 24 side. The refrigerant cooler 34 cools the refrigerant using natural cooling energy such as outside air or well water. The gas-liquid separator 35 separates the refrigerant gas, refrigerant liquid, and refrigerating machine oil in the first low-pressure gas line 30 and guides only the refrigerant gas to the refrigerant cooler 34 .

そして、気液分離装置35と低圧レシーバ24とはドレ
ン管路30Aを介して連結されている。
The gas-liquid separator 35 and the low-pressure receiver 24 are connected via a drain pipe 30A.

さらに、低圧レシーバ24のガス側と圧縮機20とは、
第二低圧ガスライン37を介して連結している。
Furthermore, the gas side of the low pressure receiver 24 and the compressor 20 are
It is connected via a second low pressure gas line 37.

本実施例においては、被冷却熱媒空気の温度が一20°
C〜+50℃の範囲で、湿度が30%〜90%の範囲で
適用され、本実施例の作用を以下の如く説明する。
In this embodiment, the temperature of the heat medium air to be cooled is 120 degrees.
It is applied in the range of C to +50C and humidity in the range of 30% to 90%, and the operation of this embodiment will be explained as follows.

先ず、蒸発器28における被冷却熱媒空気の温度が冷媒
冷却器34における自然冷熱温度より低い場合、第2図
に示す如き通常運転とすることができる。
First, when the temperature of the heat medium air to be cooled in the evaporator 28 is lower than the natural cooling temperature in the refrigerant cooler 34, normal operation as shown in FIG. 2 can be performed.

この通常運転とするためには、第一切換弁33及び第二
切換弁36を閉じ、第三切換弁25を開くことによって
太線で示す循環径路を形成する。
In order to achieve this normal operation, the first switching valve 33 and the second switching valve 36 are closed, and the third switching valve 25 is opened to form a circulation path shown by a bold line.

この通常運転では、圧縮機20で圧縮された高圧ガスを
高圧ガスライン21を介して凝縮器22へ送り、凝縮器
22で凝縮して液化する。これを高圧液ライン23を介
して低圧レシーバ24へ送る。この低圧レシーバ24の
手前に設けた膨張弁26によって高圧液を膨張させて冷
たい液にすると同時に一部気化させる。低圧レシーバ2
4に送られたその冷たい液は、低圧液ライン27を介し
て液ポンプ29によって蒸発器28に送られる。
In this normal operation, high-pressure gas compressed by the compressor 20 is sent to the condenser 22 via the high-pressure gas line 21, where it is condensed and liquefied. This is sent to the low pressure receiver 24 via the high pressure liquid line 23. An expansion valve 26 provided in front of the low pressure receiver 24 expands the high pressure liquid to make it a cold liquid and at the same time partially vaporizes it. Low pressure receiver 2
The cold liquid sent to 4 is sent to the evaporator 28 by a liquid pump 29 via a low pressure liquid line 27.

この蒸発器28において、被冷却熱媒空気と熱交換して
ガス化し、そのガスは蒸発器28から第一低圧ガスライ
ン30を介して低圧レシーバ24に戻り、冷たいガスが
第二低圧ガスライン37を介して圧縮機20に送られ、
上述した如き回路を循環する。
In this evaporator 28, the gas is gasified by exchanging heat with the heat medium air to be cooled, and the gas is returned from the evaporator 28 to the low pressure receiver 24 via the first low pressure gas line 30, and the cold gas is transferred to the second low pressure gas line 37. is sent to the compressor 20 via
It cycles through the circuit as described above.

これにより、冷凍サイクルが形成され、被冷却熱媒空気
が蒸発器28で冷却される。
Thereby, a refrigeration cycle is formed, and the heat medium air to be cooled is cooled by the evaporator 28.

一方、被冷却熱媒空気の温度が自然冷熱温度より高い場
合、第3図に示す如き運転とすることができる。
On the other hand, when the temperature of the heat medium air to be cooled is higher than the natural cooling temperature, operation as shown in FIG. 3 can be performed.

この運転とするためには、圧縮機20を停止し、第一切
換弁33.第二切換弁36を開き、太線で示す循環径路
を形成する。
To achieve this operation, the compressor 20 is stopped and the first switching valve 33. The second switching valve 36 is opened to form a circulation path shown by a bold line.

この循環径路は、圧縮機20を用いず、冷媒冷却器34
を用いた冷房サイクルであって、冷媒は蒸発器28→気
液分離装置35→冷媒冷却器34→低圧レシーバ24→
液ポンプ29−蒸発器28という径路で循環する。
This circulation path does not use the compressor 20, but instead uses the refrigerant cooler 34.
This is a cooling cycle using
The liquid is circulated through a path of liquid pump 29 and evaporator 28.

これにより、冷媒は蒸発器28において被冷却熱媒空気
と熱交換されて蒸発(気化)し、この蒸気になった冷媒
は、冷媒冷却器34で外気または井戸水等の自然冷熱と
熱交換され、冷却・凝縮される。例えば、自然冷熱とし
て32°Cの外気を利用するとき、被冷却熱媒空気温度
を45°C程度に設定でき、また、自然冷熱として15
°Cの井戸水を利用するとき、被冷却熱媒空気温度を3
0°C程度に設定することもできる。
As a result, the refrigerant exchanges heat with the heat medium air to be cooled in the evaporator 28 and evaporates (vaporizes), and this vaporized refrigerant exchanges heat with natural cold heat such as outside air or well water in the refrigerant cooler 34. Cooled and condensed. For example, when using outside air at 32°C as natural cooling heat, the temperature of the heat medium air to be cooled can be set to about 45°C, and the
When using well water at °C, the temperature of the cooled heat medium air should be set to 3
It can also be set to about 0°C.

ここで、蒸発器2日の伝熱特性及び効率向上を目的とし
て、蒸発器28へは液ポンプ29により過剰の冷媒液が
供給されるので、第一低圧ガスライン30には冷媒液の
一部が流入し、また、冷媒液に溶は込んだ冷凍機油も冷
媒の蒸発により分離して油滴となることがある。この場
合には、気液分離装置35により、冷媒ガスと冷媒液、
冷凍機油とが分離され、冷媒ガスのみが冷却回路32を
介して冷媒冷却器34に導かれ、一方、冷媒液。
Here, for the purpose of improving the heat transfer characteristics and efficiency of the evaporator 28, excess refrigerant liquid is supplied to the evaporator 28 by the liquid pump 29, so a portion of the refrigerant liquid is supplied to the first low pressure gas line 30. In addition, the refrigerating machine oil that has dissolved in the refrigerant liquid may separate and become oil droplets due to evaporation of the refrigerant. In this case, the gas-liquid separator 35 separates the refrigerant gas and refrigerant liquid.
The refrigerant oil is separated from the refrigerant oil, and only the refrigerant gas is led to the refrigerant cooler 34 via the cooling circuit 32, while the refrigerant liquid.

冷凍機油はドレン管路30Aを介して低圧レシーバ24
に導かれる。
The refrigerating machine oil is sent to the low pressure receiver 24 via the drain pipe 30A.
guided by.

そして、被冷却熱媒空気の温湿度を連続的に上昇或いは
下降させる際には、圧縮機20を用いた冷凍システムと
冷媒冷却器34を用いた冷却システムとを適切に切り換
える必要がある。
When continuously increasing or decreasing the temperature and humidity of the heat medium air to be cooled, it is necessary to appropriately switch between the refrigeration system using the compressor 20 and the cooling system using the refrigerant cooler 34.

例えば、前者から後者への切換の場合(第2図の状態→
第3図の状態)、予め冷媒冷却器34に井戸水等を流し
て、冷媒冷却器34の温度を低くして使用可能状態で待
機させた後、第一切換弁33、第二切換弁36を閉→開
に切り換えて、冷媒冷却器34を運転状態にし、次いで
、冷凍システムの圧縮機20を停止する。従って、冷凍
システムと冷却システムは円滑に切り換わり、蒸発器2
日の温度変動は最小に抑えられる。
For example, in the case of switching from the former to the latter (state in Figure 2 →
3), after flowing well water etc. into the refrigerant cooler 34 in advance to lower the temperature of the refrigerant cooler 34 and standby in a usable state, the first switching valve 33 and the second switching valve 36 are turned on. The refrigerant cooler 34 is put into operation by switching from closed to open, and then the compressor 20 of the refrigeration system is stopped. Therefore, the refrigeration system and the cooling system are smoothly switched, and the evaporator 2
Diurnal temperature fluctuations are kept to a minimum.

また、冷媒冷却器34を用いた冷却システム(第3図図
示)から圧縮機20を用いた冷凍システム(第2図図示
)に切り換える際には、圧縮機20を起動し、第一切換
弁33.第二切換弁36を開−閉に切り換えれた後、冷
媒冷却器34を停止すれば、第3図の状態から第2図の
状態になる。
In addition, when switching from a cooling system using the refrigerant cooler 34 (shown in FIG. 3) to a refrigeration system using the compressor 20 (shown in FIG. 2), the compressor 20 is started, and the first switching valve 33 .. If the refrigerant cooler 34 is stopped after the second switching valve 36 is switched between opening and closing, the state shown in FIG. 3 changes to the state shown in FIG. 2.

以上の如き構成によれば、被冷却熱媒空気の温度が自然
冷熱温度より高い場合、冷凍サイクルを利用せず、自然
冷熱を利用することにより、被冷却熱媒空気の温度を低
くすることができる。
According to the above configuration, when the temperature of the heat medium air to be cooled is higher than the natural cooling temperature, the temperature of the heat medium air to be cooled can be lowered by using the natural cooling heat without using the refrigeration cycle. can.

この場合、被冷却熱媒空気が高温・高温でも、湿度を維
持しながら(過剰なfiIi湿を起こさずに)被冷却熱
媒空気を冷却することができる。
In this case, even if the heat medium air to be cooled is at a high temperature, the heat medium air to be cooled can be cooled while maintaining humidity (without causing excessive fiIi humidity).

また、被冷却熱媒空気の温湿度が高温・高湿の場合、上
述のように通常の冷凍サイクルを利用しないことから、
蒸発器28において、従来例で述べたような過剰な減湿
骨による顕熱冷却量が減少することなく、従って、冷凍
サイクルの圧縮機20の能力も小さくすることができ、
圧縮機20の停止によるランニングコストも減少させる
ことができる。
In addition, if the temperature and humidity of the heat transfer medium air to be cooled is high and humid, the normal refrigeration cycle is not used as described above.
In the evaporator 28, the amount of sensible heat cooling due to excessive dehumidification as described in the conventional example does not decrease, and therefore, the capacity of the compressor 20 of the refrigeration cycle can also be reduced.
Running costs due to stopping the compressor 20 can also be reduced.

ここで、自然冷熱の利用をした運転範囲を広くすれば、
上述した効果を顕著にすることができる。
Here, if we widen the operating range using natural cooling,
The above-mentioned effects can be made more noticeable.

かかる自然冷熱利用運転の範囲は、自然冷熱の温度場と
、冷媒冷却器34の伝熱面積や液ポンプ29の容量等に
依存している。
The range of operation using natural cooling depends on the temperature field of natural cooling, the heat transfer area of the refrigerant cooler 34, the capacity of the liquid pump 29, etc.

そして、冷凍サイクルを利用しない場合、蒸気になった
冷媒を、冷媒冷却器34で外気または井戸水等の自然冷
熱と熱交換し、冷却・凝縮す葛が、この場合において、
蒸発器28から冷却回路32に導かれた冷媒ガスに冷媒
液、冷凍機油が上述したように含まれていても、気液分
離装置35によリ、冷媒ガスと冷媒液、冷凍機油とを分
離させ、冷媒ガスのみを冷却回路32を介して冷媒冷却
器34に導(ことができる。従って、冷媒冷却器34に
おける冷却効率の低下を防止することができる。即ち、
気液分離装W35を設けない場合には、冷媒冷却器34
の冷却効率が低下し、冷媒冷却器34の容量を予め大き
くするか、または井戸水等を多量に消費することを余儀
なくされる。
When the refrigeration cycle is not used, the refrigerant that has become vapor is exchanged with natural cold heat such as outside air or well water in the refrigerant cooler 34, and is cooled and condensed.
Even if the refrigerant gas led from the evaporator 28 to the cooling circuit 32 contains refrigerant liquid and refrigerating machine oil as described above, the gas-liquid separator 35 separates the refrigerant gas from the refrigerant liquid and refrigerating machine oil. This allows only the refrigerant gas to be guided to the refrigerant cooler 34 via the cooling circuit 32. Therefore, it is possible to prevent a decrease in cooling efficiency in the refrigerant cooler 34. That is,
If the gas-liquid separator W35 is not provided, the refrigerant cooler 34
The cooling efficiency of the refrigerant cooler 34 decreases, and the capacity of the refrigerant cooler 34 must be increased in advance, or a large amount of well water or the like must be consumed.

そして、また、圧縮機20を用いた冷凍システムと冷媒
冷却器34を用いた冷却システムとの切換の際、例えば
前者から後者への切換の場合、冷却回路32に気液分離
装置35が介装されているので、冷媒ガスのみが冷媒冷
却器34に運ばれ、冷媒冷却器34において、冷媒ガス
が相変化して冷媒液に凝縮され、冷媒冷却器34におけ
る冷却効率の低下がなくなり、冷却回路32における切
換時の温度変動を最小限に抑えることができる。
Furthermore, when switching between a refrigeration system using the compressor 20 and a cooling system using the refrigerant cooler 34, for example, when switching from the former to the latter, a gas-liquid separation device 35 is installed in the cooling circuit 32. Therefore, only the refrigerant gas is conveyed to the refrigerant cooler 34, and in the refrigerant cooler 34, the refrigerant gas undergoes a phase change and is condensed into refrigerant liquid, eliminating the reduction in cooling efficiency in the refrigerant cooler 34, and improving the cooling circuit. Temperature fluctuations during switching at 32 can be minimized.

なお、本実施例においては、被冷却熱媒空気の温度が一
20°C〜+50°Cの範囲で、湿度が30%〜90%
の範囲で適用した例について説明したが、かかる範囲に
限定されないことは勿論である。
In this example, the temperature of the heat medium air to be cooled is in the range of 120°C to +50°C, and the humidity is in the range of 30% to 90%.
Although an example has been described in which the invention is applied within this range, it is needless to say that the invention is not limited to this range.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明に係る低温媒体及び高温媒体
兼用冷却用冷凍装置によれば、被冷却熱媒空気の温度が
自然冷熱温度より高い場合、冷凍サイクルを利用せず、
自然冷熱を利用することにより、被冷却熱媒空気の温度
を低くすることができる。
As described above, according to the refrigeration system for cooling both low-temperature medium and high-temperature medium according to the present invention, when the temperature of the heat medium air to be cooled is higher than the natural cooling temperature, the refrigeration cycle is not used.
By utilizing natural cooling energy, the temperature of the heat medium air to be cooled can be lowered.

この場合、被冷却熱媒空気が高温・高温でも、湿度を維
持しながら(過剰な減湿を起こさずに)被冷却熱媒空気
を冷却することができる。
In this case, even if the heat medium air to be cooled is at a high temperature, the heat medium air to be cooled can be cooled while maintaining humidity (without causing excessive dehumidification).

また、被冷却熱媒空気の温湿度が高温・高湿の場合、上
述のように通常の冷凍サイクルを利用しないことから、
蒸発器において、従来例で述べたような過剰な減湿分に
よる顕熱冷却量が減少することなく、従って、冷凍サイ
クルの圧縮機の能力も小さくすることができ、圧縮機の
停止によるランニングコストも減少させることができる
In addition, if the temperature and humidity of the heat transfer medium air to be cooled is high and humid, the normal refrigeration cycle is not used as described above.
In the evaporator, the amount of sensible heat cooling does not decrease due to excessive dehumidification as described in the conventional example, and therefore the capacity of the compressor in the refrigeration cycle can be reduced, reducing running costs due to compressor stoppage. can also be reduced.

そして、冷凍サイクルを利用しない場合、蒸気になった
冷媒を、冷媒冷却器で外気または井戸水等の自然冷熱と
熱交換し、冷却・凝縮するが、この場合において、蒸発
器から冷却回路に導かれた冷媒ガスに冷媒液、冷凍機油
が含まれていても、気液分離装置により、冷媒ガスと冷
媒液、冷凍機油とを分離させ、冷媒ガスのみを冷却回路
を介して冷媒冷却器に導くことができる。従って、冷媒
冷却器における冷却効率の低下を防止することができる
When the refrigeration cycle is not used, the vaporized refrigerant is cooled and condensed by exchanging heat with natural cold heat such as outside air or well water in a refrigerant cooler. Even if the refrigerant gas contains refrigerant liquid and refrigerating machine oil, a gas-liquid separation device separates the refrigerant gas from the refrigerant liquid and refrigerating machine oil, and only the refrigerant gas is guided to the refrigerant cooler via the cooling circuit. I can do it. Therefore, a decrease in cooling efficiency in the refrigerant cooler can be prevented.

そして、また、圧縮機を用いた冷凍システムと冷媒冷却
器を用いた冷却システムとの切換の際、例えば前者から
後者への切換の場合、冷却回路に気液分離装置が介装さ
れているので、冷媒ガスのみが冷媒冷却器に運ばれ、冷
媒冷却器において、冷媒ガスが相変化して冷媒液に凝縮
され、冷媒冷却器における冷却効率の低下がなくなり、
冷却回路における切換時の温度変動を最小限に抑えるこ
とができる効果を奏する。
Furthermore, when switching between a refrigeration system using a compressor and a cooling system using a refrigerant cooler, for example, when switching from the former to the latter, a gas-liquid separation device is installed in the cooling circuit. , Only the refrigerant gas is transported to the refrigerant cooler, and in the refrigerant cooler, the refrigerant gas undergoes a phase change and is condensed into refrigerant liquid, eliminating the reduction in cooling efficiency in the refrigerant cooler.
This has the effect of minimizing temperature fluctuations during switching in the cooling circuit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係る低温媒体及び高温媒体兼
用冷却用冷凍装置の構成図である。 第2図は同低温媒体及び高温媒体兼用冷却用冷凍装置に
おいて被冷却熱媒空気温度が自然冷熱より低い場合の冷
凍サイクルを示す説明図である。 第3図は同低温媒体及び高温媒体兼用冷却用冷凍装置に
おいて被冷却熱媒空気温度が自然冷熱より高い場合の冷
却サイクルを示す説明図である。 第4図は従来の直接膨張冷凍機を用いた冷凍装置を示す
構成図である。 〔主要な部分の符号の説明〕 20・・・圧縮機 21・・・高圧ガスライン 22・・・凝縮器 23・・・高圧液ライン 24・・・低圧レシーバ 26・・・膨張弁 27・・・低圧液ライン 28・・・蒸発器 2つ・・・液ポンプ 30・・・第一低圧ガスライン 30A・・・ドレン管路 32・・・冷却回路 33・・・第一切換弁 34・・・冷媒冷却器 35・・・気液分離装置 36・・・第二切換弁 37・・・第二低圧ガスライン。
FIG. 1 is a block diagram of a refrigeration system for cooling both a low-temperature medium and a high-temperature medium according to an embodiment of the present invention. FIG. 2 is an explanatory diagram showing a refrigeration cycle when the temperature of the heat medium air to be cooled is lower than the natural cooling heat in the refrigeration system for cooling both low temperature medium and high temperature medium. FIG. 3 is an explanatory diagram showing a cooling cycle when the temperature of the heat medium air to be cooled is higher than the natural cooling heat in the refrigeration system for cooling both a low temperature medium and a high temperature medium. FIG. 4 is a block diagram showing a refrigeration system using a conventional direct expansion refrigerator. [Explanation of symbols of main parts] 20... Compressor 21... High pressure gas line 22... Condenser 23... High pressure liquid line 24... Low pressure receiver 26... Expansion valve 27... -Low pressure liquid line 28...Two evaporators...Liquid pump 30...First low pressure gas line 30A...Drain pipe line 32...Cooling circuit 33...First switching valve 34... - Refrigerant cooler 35...gas-liquid separation device 36...second switching valve 37...second low pressure gas line.

Claims (1)

【特許請求の範囲】[Claims] (1)圧縮機と凝縮器と膨張弁と低圧レシーバと液ポン
プと蒸発器とを備え、圧縮機と凝縮器とを高圧ガスライ
ンで連結し、凝縮器と低圧レシーバとを膨張弁を介装し
て高圧液ラインで連結し、低圧レシーバと蒸発器とを液
ポンプを介装して低圧液ラインで連結し、蒸発器と低圧
レシーバとを第一低圧ガスラインで連結し、低圧レシー
バと圧縮機とを第二低圧ガスラインとを連結することに
よって冷凍サイクルを形成して成る冷凍装置において、
低圧レシーバと第一低圧ガスラインとを連結する冷却回
路を配置し、この冷却回路途中に、低圧レシーバ側から
順番に第一切換弁、自然冷熱を利用して冷媒を冷却する
冷媒冷却器、第二切換弁、冷却回路内のガス分と液分と
の分離を行ないガス分のみを冷媒冷却器に導く気液分離
装置を介装し、気液分離装置と低圧レシーバとをドレン
管路を介して連結したことを特徴とする低温媒体及び高
温媒体兼用冷却用冷凍装置。
(1) Equipped with a compressor, a condenser, an expansion valve, a low-pressure receiver, a liquid pump, and an evaporator, the compressor and condenser are connected by a high-pressure gas line, and the condenser and low-pressure receiver are connected with an expansion valve. The low pressure receiver and the evaporator are connected by a low pressure liquid line via a liquid pump, the evaporator and the low pressure receiver are connected by a first low pressure gas line, and the low pressure receiver and the compressor are connected by a first low pressure gas line. In a refrigeration system in which a refrigeration cycle is formed by connecting a machine and a second low pressure gas line,
A cooling circuit connecting the low-pressure receiver and the first low-pressure gas line is arranged, and in the middle of this cooling circuit, in order from the low-pressure receiver side, a first switching valve, a refrigerant cooler that cools the refrigerant using natural cooling energy, and a first switching valve are installed in order from the low-pressure receiver side. It is equipped with a two-way valve, a gas-liquid separator that separates the gas and liquid in the cooling circuit and guides only the gas to the refrigerant cooler, and connects the gas-liquid separator and the low-pressure receiver through a drain pipe. 1. A refrigeration system for cooling both a low-temperature medium and a high-temperature medium.
JP30135190A 1990-11-07 1990-11-07 Refrigeration system for cooling both low temperature medium and high temperature medium Expired - Fee Related JP2756361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30135190A JP2756361B2 (en) 1990-11-07 1990-11-07 Refrigeration system for cooling both low temperature medium and high temperature medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30135190A JP2756361B2 (en) 1990-11-07 1990-11-07 Refrigeration system for cooling both low temperature medium and high temperature medium

Publications (2)

Publication Number Publication Date
JPH04174258A true JPH04174258A (en) 1992-06-22
JP2756361B2 JP2756361B2 (en) 1998-05-25

Family

ID=17895824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30135190A Expired - Fee Related JP2756361B2 (en) 1990-11-07 1990-11-07 Refrigeration system for cooling both low temperature medium and high temperature medium

Country Status (1)

Country Link
JP (1) JP2756361B2 (en)

Also Published As

Publication number Publication date
JP2756361B2 (en) 1998-05-25

Similar Documents

Publication Publication Date Title
JPS63213753A (en) Refrigeration cycle
US20180306473A1 (en) Heat Pump Unit Control System
US4528823A (en) Heat pump apparatus
KR102173814B1 (en) Cascade heat pump system
JPH04174258A (en) Refrigerator for cooling both low and high temperature mediums
JPH04174259A (en) Low and high temperature medium cooling refrigerator
JPH02223773A (en) Refrigerating device for cooling, which is used in combination both for low-temperature medium and high-temperature medium
JPH02302560A (en) Cooling refrigerator for low temperature and high temperature medium
JP2003121025A (en) Heating-cooling combination appliance
CN220287831U (en) Air-cooled double-channel explosion-proof compression condensing unit
KR102312664B1 (en) Apparatus for providing cold water and ice with function to detach ice
CN114111076B (en) Modularized non-azeotropic working medium relay evaporation refrigeration system and control method thereof
KR0154429B1 (en) Refrigerant blocking apparatus for refrigeration cycle
JPS6176852A (en) Separation type air conditioner
NO159504B (en) PROCEDURE FOR OPERATING A REFRIGERATOR CIRCUIT AND A REFRIGERATING CIRCUIT FOR IMPLEMENTING THE PROCEDURE.
JPS61110851A (en) Joule-thomson refrigerator
KR19990011324A (en) Cooling system
KR950004396Y1 (en) Arrangement for vaporising residuum of liquid refrigerant
JP2661313B2 (en) Thermal storage refrigeration cycle device
JPH02203162A (en) Heat accumulating refrigerator
JPS5888563A (en) Cooling device
KR200298357Y1 (en) temperature-control structure between receiver tank and accumulator
JP2004279005A (en) Heat storage type air-conditioner
JPS63271083A (en) Condenser
KR19990011325A (en) Cooling system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090306

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100306

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees