JPH04173856A - Solid polymer electrolyte - Google Patents

Solid polymer electrolyte

Info

Publication number
JPH04173856A
JPH04173856A JP29896390A JP29896390A JPH04173856A JP H04173856 A JPH04173856 A JP H04173856A JP 29896390 A JP29896390 A JP 29896390A JP 29896390 A JP29896390 A JP 29896390A JP H04173856 A JPH04173856 A JP H04173856A
Authority
JP
Japan
Prior art keywords
alkali metal
fine particles
acrylate
solid polymer
metal salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29896390A
Other languages
Japanese (ja)
Inventor
Satohiro Amano
聡博 天野
Hideshi Mizumura
水村 秀史
Kazuhiko Seki
和彦 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP29896390A priority Critical patent/JPH04173856A/en
Publication of JPH04173856A publication Critical patent/JPH04173856A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To provide a solid polymer electrolyte composed of ceramic fine particles having alkali metal sulfonate group, a matrix polymer and an alkali metal salt electrolyte substance, having high ionic conductance and useful for cells, various sensors, etc. CONSTITUTION:The objective solid polymer electrolyte is composed of (A) fine particles produced by bonding an alkali metal sulfonate group to the surface of fine particles of oxide ceramics (e.g. silica or alumina) having particle diameter of :<=1mum, (B) a matrix polymer having a glass transition point of <=-20 deg.C (preferably acrylic elastomer such as ethyl acrylate and 2-methoxyethyl acrylate) and (C) an alkali metal salt electrolyte substance compatible with the component B and containing the same kind of alkali metal as the metal salt of the component A (preferably perchlorate, quaternary ammonium salt, etc.). The amounts of the components A and B are 20-70vol.% and 30-80vol.%, respectively, and the amount of the component C is 0.5-60vol.% based on the composite material.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、固体高分子電解質に関する。更に詳しくは、
マトリックスポリマーおよび塩電解質物質を含有する固
体高分子電解質に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to solid polymer electrolytes. For more details,
A solid polymer electrolyte containing a matrix polymer and a salt electrolyte material.

〔従来の技術〕[Conventional technology]

本出願人は先に、マトリックスとしてのアクリルエラス
トマーおよびこれと相溶し得る塩電解質物質と高分子酸
塩との同一1価塩混合物よりなるアクリルエラストマー
組成物を提案している(特開平1−249,851号公
報)。このアクリルエラストマーに塩電解質物質を相溶
させた固体高分子電解質に高分子酸塩微粒子を複合化さ
せることにより、イオン導電度は101〜10−slo
−5S−のオーダーに迄高められる。
The present applicant has previously proposed an acrylic elastomer composition comprising an acrylic elastomer as a matrix and a mixture of the same monovalent salt of a salt electrolyte substance and a polymeric acid salt that are compatible with the acrylic elastomer (Japanese Patent Application Laid-Open No. 1999-1-1923-1). 249,851). By compounding polymeric acid salt fine particles with a solid polymer electrolyte made by dissolving a salt electrolyte substance in this acrylic elastomer, the ionic conductivity is 101 to 10-slo.
It is raised to the order of -5S-.

更に、このようなアクリルエラストマー組成物において
、高分子酸塩としてスルホン酸型ならびにカルボン酸型
の2種類のものを併用することにより、4オン導電度は
lo−5S−C11−1のオーダー乃至1.8 X 1
0−’S−em−1程度迄高められることも1本出願人
によって確認されている(特開平2−206,640号
公報)。
Furthermore, in such an acrylic elastomer composition, by using two types of polymeric acid salts, sulfonic acid type and carboxylic acid type, the 4-on conductivity can be increased from the order of lo-5S-C11-1 to 1. .8 X 1
It has been confirmed by the present applicant that it can be increased to about 0-'S-em-1 (Japanese Patent Laid-Open No. 206,640/1999).

しかしながら、この程度のレベルのイオン導電度では、
それの用途が限定されてしまう面があり、更にそれのレ
ベルアップが望まれる。
However, at this level of ionic conductivity,
There is an aspect that its uses are limited, and further improvement of its level is desired.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、マトリックスポリマーおよび塩電解質
物質を含有する固体高分子電解質であって、それのイオ
ン導電度を更に高めたものを提供することにある。
An object of the present invention is to provide a solid polymer electrolyte containing a matrix polymer and a salt electrolyte material, which has further increased ionic conductivity.

〔課題を解決するための手段〕[Means to solve the problem]

かかる本発明の目的は、微粒子表面にスルホン酸アルカ
リ金属塩基を結合させた酸化物系セラミックス微粒子、
ガラス転移点−20℃以下のマトリックスポリマーおよ
び該マトリックスポリマーと相溶性がありかつ前記スル
ホン酸アルカリ金属塩と金属塩の種類を同一にするアル
カリ金属塩電解質物質よりなる固体高分子電解質によっ
て達成される。
The object of the present invention is to provide oxide-based ceramic fine particles having an alkali metal sulfonate base bonded to the surface of the fine particles;
This is achieved by a solid polymer electrolyte consisting of a matrix polymer having a glass transition point of -20°C or lower and an alkali metal salt electrolyte substance that is compatible with the matrix polymer and has the same type of metal salt as the alkali metal sulfonic acid salt. .

微粒子表面にスルホン酸アルカリ金属塩基を結合させた
酸化物系セラミックス微粒子は、粒径約1μ■以下、好
ましくは約0.001〜0.1のシリカ、アルミナ、ジ
ルコニア、チタン酸バリウムなどの酸化物系セラミック
ス微粒子を、濃度約40%以上の濃硫酸中で約10分間
〜3時間程度煮沸し、それを口過後約100〜200℃
で約1〜3時間乾燥し、水洗してから純水中に再分散し
、−旦イオン交換カラムによりH+型にして不純物イオ
ンを取り除いた後、水酸化リチウム、水酸化ナトリウム
、水酸化カリウムなどのアルカリ金属の水溶液中に浸漬
し、アルカリ金属塩化することにより得られる。
The oxide-based ceramic fine particles having an alkali metal sulfonate base bonded to the surface of the fine particles are made of oxides such as silica, alumina, zirconia, barium titanate, etc., with a particle size of about 1μ or less, preferably about 0.001 to 0.1. The ceramic particles are boiled in concentrated sulfuric acid with a concentration of about 40% or more for about 10 minutes to about 3 hours, and after being passed through the mouth, the mixture is heated to about 100 to 200°C.
After drying for about 1 to 3 hours, washing with water, redispersing in pure water, and converting it into H+ form using an ion exchange column to remove impurity ions, lithium hydroxide, sodium hydroxide, potassium hydroxide, etc. It is obtained by immersing it in an aqueous solution of an alkali metal and converting it into an alkali metal salt.

微粒子表面に結合された−050.−M+基の密度は高
密度であり、例えば一般の高分子酸塩微粒子では、その
粒子表面の−0803−Li”の平均距離が6人程度で
あるのに対し、後記実施例の場合には、pHと表面積と
の比較から、約1.2倍程度高密度化されている。
-050. bound to the surface of the microparticles. The density of -M+ groups is high; for example, in general polymeric acid acid fine particles, the average distance of -0803-Li" on the particle surface is about 6, whereas in the case of the example described later, From a comparison of pH and surface area, the density is about 1.2 times higher.

マトリックスポリマーとしては、ポリエチレンオキサイ
ド、ポリプロピレンオキサイド、ポリホスファゼンなど
のガラス転移点が一20°C以下であって、アルカリ金
属塩電解質物質を相溶し得るものが用いられるが、好ま
しくはアクリルエラストマーが用いられる。
As the matrix polymer, those having a glass transition point of 120° C. or lower and compatible with the alkali metal salt electrolyte substance, such as polyethylene oxide, polypropylene oxide, and polyphosphazene, are used, but acrylic elastomer is preferably used. It will be done.

アクリルエラストマーとしては、(a)炭素数1〜8の
アルキル基を有するアルキルアクリレートおよび/また
は(b)炭素数2〜8のアルコキシアルキル基を有する
アルコキシアルキルアクリレートの重合体が用いられる
As the acrylic elastomer, a polymer of (a) an alkyl acrylate having an alkyl group having 1 to 8 carbon atoms and/or (b) an alkoxyalkyl acrylate having an alkoxyalkyl group having 2 to 8 carbon atoms is used.

このようなアクリルエラストマーを形成する(a)成分
のアルキルアクリレートとしては、例えばメチルアクリ
レート、エチルアクリレート、n−またはイソ−プロピ
ルアクリレ−)zn−またはイソ−ブチルアクリレート
、n−アミルアクリレート、ローへキシルアクリレート
、2−エチルへキシルアクリレート、n−オクチルアク
リレート、2−シアノエチルアクリレートなどの炭素数
1〜8のアルキル基(シアノ基などの置換基を有するも
のを含む)を有するアルキルアクリレートが用いられ、
好ましくはエチルアクリレートまたはn−ブチルアクリ
レートが用いられる。
Examples of the alkyl acrylate as component (a) forming such an acrylic elastomer include methyl acrylate, ethyl acrylate, n- or iso-propyl acrylate), n- or iso-butyl acrylate, n-amyl acrylate, and An alkyl acrylate having an alkyl group having 1 to 8 carbon atoms (including those having a substituent such as a cyano group) such as xyl acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, and 2-cyanoethyl acrylate is used,
Preferably ethyl acrylate or n-butyl acrylate is used.

(b)成分のアルコキシアルキルアクリレートとしては
7、例えばメトキシメチルアクリレート、エトキシメチ
ルアクリレート、2−メトキシエチルアクリレート、2
−エトキシエチルアクリレート、2−ブトキシエチルア
クリレートなどの炭素数2〜8のアルコキシアルキル基
を有するアルコキシアルキルアクリレートが用いられ、
好ましくは2−メトキシエチルアクリレート、2−エト
キシエチルアクリレートが用いられる。
The alkoxyalkyl acrylate of component (b) is 7, such as methoxymethyl acrylate, ethoxymethyl acrylate, 2-methoxyethyl acrylate, 2
-Alkoxyalkyl acrylate having an alkoxyalkyl group having 2 to 8 carbon atoms such as ethoxyethyl acrylate and 2-butoxyethyl acrylate is used,
Preferably, 2-methoxyethyl acrylate and 2-ethoxyethyl acrylate are used.

これらの(a)成分および(b)成分は、それぞれ単独
重合体としても用いられるが、一般には約99.9〜9
0モル%の割合で共重合させて用いられ、(a)成分お
よび(b)成分の両者が用いられる場合には前者が約1
0〜90モル%、また後者が約90〜10モル%の割合
で一般に用いられる。
These components (a) and (b) are each used as a homopolymer, but generally have a polymer content of about 99.9 to 9
It is copolymerized and used at a ratio of 0 mol%, and when both components (a) and (b) are used, the former has a content of about 1% by mole.
The latter is generally used in a proportion of 0 to 90 mol %, with the latter being about 90 to 10 mol %.

これら(a)成分および/または(b)成分の一部、具
体的には約10モル%程度迄を他の共重合性単量体と置
換し、共重合させてもよい。かかる共重合性単量体とし
ては、例えば塩化ビニル、塩化ビニリデン、アクリロニ
トリル、スチレン、酢酸ビニノC′、エチルビニルエー
テル、ブチルビニルエーテル、アルキルメタクリレート
、アルコキシアルキルメタクリレートなどが挙げられる
A part of these components (a) and/or (b), specifically up to about 10 mol %, may be substituted with other copolymerizable monomers and copolymerized. Examples of such copolymerizable monomers include vinyl chloride, vinylidene chloride, acrylonitrile, styrene, vinyl C' acetate, ethyl vinyl ether, butyl vinyl ether, alkyl methacrylate, and alkoxyalkyl methacrylate.

アクリルエラストマーの用途によって、そこに架橋性基
を導入することも行われる。架橋点を形成する成分とし
ては、エポキシ基、カルボキシル基、反応性ハロゲン基
、水酸基、アミド基などを含有するビニル単量体、ジエ
ン系単量体などが用いられる。
Depending on the use of the acrylic elastomer, crosslinkable groups may be introduced therein. As the component forming the crosslinking points, vinyl monomers, diene monomers, etc. containing epoxy groups, carboxyl groups, reactive halogen groups, hydroxyl groups, amide groups, etc. are used.

また、これらのマトリックスポリマーと相溶性を有する
アルカリ金属塩電解質物質としては、ハロゲン化水素酸
、過ハロゲン化酸素酸、ハロゲン化酸素酸、亜ハロゲン
化酸素酸、次亜ハロゲン化酸素酸、四ハロゲン化ホウ素
酸、六ハロゲン化リン酸、三ハロゲン化メタスルホン酸
、チオシアン酸、硝酸、硫酸、リン酸、炭酸などのアル
カリ金属塩、アンモニウム塩、更には有機カルボン酸塩
、有機スルホン酸塩、各種オニウム塩、第4アンモニウ
ム塩などが用いられ、好ましくは過塩素酸リチウムなど
の過塩素酸塩、ベンジルピリジニウムクロライトなどの
第4アンモニウム塩、チオシアン酸ナトリウム、チオシ
アン酸リチウムなどのチオシアン酸塩が用いられる。
In addition, the alkali metal salt electrolyte substances that are compatible with these matrix polymers include hydrohalic acid, perhalogenated oxyacid, halogenated oxyacid, subhalogenated oxyacid, hypohalogenated oxyacid, and tetrahalogenated oxyacid. Alkali metal salts such as boronic acid, hexahalogenated phosphoric acid, trihalogenated metasulfonic acid, thiocyanic acid, nitric acid, sulfuric acid, phosphoric acid, and carbonic acid, ammonium salts, as well as organic carboxylates, organic sulfonates, and various onium salts. Salts, quaternary ammonium salts, etc. are used, and preferably perchlorates such as lithium perchlorate, quaternary ammonium salts such as benzylpyridinium chlorite, and thiocyanates such as sodium thiocyanate and lithium thiocyanate are used. .

これらのアルカリ金属塩電解質物質は、酸化物系セラミ
ックス微粒子の表面に結合させたスルホン酸アルカリ金
属塩と金属塩の種類を同一にするものが用いられる。
These alkali metal salt electrolyte substances are those in which the type of metal salt is the same as that of the alkali metal sulfonate bonded to the surface of the oxide ceramic fine particles.

以上の各成分から形成される複合物中、スルホン酸塩化
されたセラミックス微粒子は約20〜70体積%、好ま
しくは約30〜60体積%の割合で、マトリックスポリ
マーは約30〜80体積%、好ましくは約40〜70体
積%の割合で、またアルカリ金属塩電解質物質は上記複
合物に対して約0.5〜60体積%、好ましくは約1〜
20体積%の割合でそわぞれ用いられる。
In the composite formed from each of the above components, the sulfonated ceramic fine particles are present in a proportion of about 20 to 70 volume%, preferably about 30 to 60 volume%, and the matrix polymer is contained in a proportion of about 30 to 80 volume%, preferably is about 40-70% by volume, and the alkali metal salt electrolyte material is about 0.5-60% by volume, preferably about 1-60% by volume of the composite.
Each is used in a proportion of 20% by volume.

セラミックス微粒子については、その粒径にもよるが、
本来最密充填構造をとり、その隙間をマトリックスポリ
マーが埋めるような状態で最もイオン導電度が高くなる
と考えられ、一方ハンドリング時に空孔を生じないこと
もまた重要であり、このような点の兼ね合いから上記割
合の範囲が選択される。また、電解質物質については、
マトリックスポリマーへの相溶性、セラミックス微粒子
表面への吸着の度合いなどによっても左右されるが、−
船釣にはこのような割合範囲のものが用いられる。
Regarding ceramic fine particles, it depends on the particle size, but
It is believed that the ionic conductivity is highest when the material originally has a close-packed structure and the matrix polymer fills the gaps, but it is also important that no pores are created during handling. The above ratio range is selected from . Regarding electrolyte substances,
Although it depends on the compatibility with the matrix polymer and the degree of adsorption on the surface of the ceramic fine particles, -
For boat fishing, a ratio within this range is used.

これら複合物は、メチルエチルケトン、ジメチルホルム
アミド、ジメチルスルホキシド、ヘキサメチルホスホル
アミドなどの有機溶媒中に添加されてスラリーを形成し
、これにキャスティング法を適用した後、真空ロール、
真空プレスなどによって膜状物に成形され、固体高分子
電解質として用いられる。
These composites are added into an organic solvent such as methyl ethyl ketone, dimethyl formamide, dimethyl sulfoxide, hexamethyl phosphoramide, etc. to form a slurry, which is then subjected to a casting method and then vacuum rolled.
It is formed into a film-like material using a vacuum press or the like and used as a solid polymer electrolyte.

〔作用〕および〔発明の効果〕 高分子酸スルホン酸塩微粒子とマトリックスポリマーと
の界面における高イオン導電化の現象は、微粒子表面の
スルホン酸塩基に電解質物質がカップリングして、混合
アニオン効果を誘起し、そのためにカチオンの移動度が
上昇するためであると考えられるが、本発明においては
、微粒子表面にスルホン酸アルカリ金属塩基を結合させ
た酸化物系セラミックス微粒子を用いることにより、そ
れとマトリックスポリマーならびに電解質物質から形成
される固体高分子電解質のイオン導電度を10−’S−
em−1に近い値迄高め、その用途の拡大を可能とさせ
る。
[Operation] and [Effects of the Invention] The phenomenon of high ionic conductivity at the interface between the polymeric acid sulfonate fine particles and the matrix polymer is caused by coupling of the electrolyte substance to the sulfonate base on the surface of the fine particles, resulting in a mixed anion effect. This is thought to be due to the increase in the mobility of cations, but in the present invention, by using oxide-based ceramic fine particles with an alkali metal sulfonate base bonded to the surface of the fine particles, it is possible to combine them with the matrix polymer. and the ionic conductivity of the solid polymer electrolyte formed from the electrolyte material to 10-'S-
The value can be increased to a value close to that of em-1, making it possible to expand its uses.

従って、本発明の固体高分子電解質は、電池。Therefore, the solid polymer electrolyte of the present invention can be used in batteries.

電気二重層コンデンサ、エレクトロクロミック表示素子
、各種センサなどに有効に使用することができる。
It can be effectively used in electric double layer capacitors, electrochromic display elements, various sensors, etc.

〔実施例〕〔Example〕

次に、実施例について本発明を説明する。 Next, the present invention will be explained with reference to examples.

実施例 3モル%のジルコニアを含有するイツトリア微粒子(日
本触媒製品;粒径200人、比表面積50m2/g)4
.0gを、98%濃硫酸中で20分間煮沸した後口過し
、200℃で2時間乾燥させ、水洗した。これを、純水
中に再分散し、イオン交換カラムによりH+型にした後
、5%水酸化リチウム水溶液中に浸漬して、Li+型と
した。
Example 3 Ittria fine particles containing mol% zirconia (Nippon Shokubai products; particle size 200, specific surface area 50 m2/g) 4
.. 0 g was boiled in 98% concentrated sulfuric acid for 20 minutes, passed through the mouth, dried at 200°C for 2 hours, and washed with water. This was redispersed in pure water and made into an H+ form using an ion exchange column, and then immersed in a 5% lithium hydroxide aqueous solution to make it into a Li+ form.

このスルホン酸リチウム塩化したイツトリア微粒子、マ
トリックスとしてのポリエチルアクリレート(数平均分
子量1.5X105)1.0gおよび過塩素酸リチウム
0.2gを0.5++Qのメチルエチルケトン中に加え
てスラリーを形成させ、このスラリーをテフロン基板上
にキャスティングし、120℃、1O−3Torr、2
4時間の条件下で乾燥させた後真空プレスし、厚さ10
0μmのフィルムを成形した。
This lithium sulfonate salted ittria fine particles, 1.0 g of polyethyl acrylate (number average molecular weight 1.5 x 105) as a matrix, and 0.2 g of lithium perchlorate were added to 0.5++Q methyl ethyl ketone to form a slurry. The slurry was cast on a Teflon substrate at 120°C, 1O-3Torr, 2
After drying for 4 hours, vacuum press to a thickness of 10
A 0 μm film was molded.

このフィルムについて、乾燥窒素ガス中で導電度(20
℃で周波数5〜13 X 10’Hzにおける複素イン
ピーダンスプロットから求めた値)を20℃で測定する
と、8.5 X 10−’5−cm−1の値が得られた
The conductivity (20
The value obtained from the complex impedance plot at a frequency of 5 to 13 x 10'Hz) was measured at 20°C, and a value of 8.5 x 10-'5-cm was obtained.

Claims (1)

【特許請求の範囲】[Claims] 1.微粒子表面にスルホン酸アルカリ金属塩基を結合さ
せた酸化物系セラミックス微粒子、ガラス転移点−20
℃以下のマトリックスポリマーおよび該マトリックスポ
リマーと相溶性がありかつ前記スルホン酸アルカリ金属
塩と金属塩の種類を同一にするアルカリ金属塩電解質物
質よりなる固体高分子電解質。
1. Oxide ceramic fine particles with an alkali metal sulfonate base bonded to the surface of the fine particles, glass transition point -20
A solid polymer electrolyte comprising a matrix polymer having a temperature of 0.degree.
JP29896390A 1990-11-06 1990-11-06 Solid polymer electrolyte Pending JPH04173856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29896390A JPH04173856A (en) 1990-11-06 1990-11-06 Solid polymer electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29896390A JPH04173856A (en) 1990-11-06 1990-11-06 Solid polymer electrolyte

Publications (1)

Publication Number Publication Date
JPH04173856A true JPH04173856A (en) 1992-06-22

Family

ID=17866450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29896390A Pending JPH04173856A (en) 1990-11-06 1990-11-06 Solid polymer electrolyte

Country Status (1)

Country Link
JP (1) JPH04173856A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002505506A (en) * 1998-02-24 2002-02-19 ラモツト・ユニバーシテイ・オーソリテイ・フオー・アプライド・リサーチ・アンド・インダストリアル・デベロツプメント・リミテツド Ion conductive matrix and use thereof
WO2007139147A1 (en) * 2006-05-31 2007-12-06 University Of Yamanashi Ion conductive polymer composition, method for producing the same, film containing the ion conductive polymer composition, and electrochemical device using the film
JP2009009703A (en) * 2006-06-12 2009-01-15 Shin Etsu Chem Co Ltd Organic solid electrolyte and secondary battery using this

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002505506A (en) * 1998-02-24 2002-02-19 ラモツト・ユニバーシテイ・オーソリテイ・フオー・アプライド・リサーチ・アンド・インダストリアル・デベロツプメント・リミテツド Ion conductive matrix and use thereof
JP4937449B2 (en) * 1998-02-24 2012-05-23 テル−アビブ・ユニバーシテイ・フユーチヤー・テクノロジー・デベロツプメント・エル・ピー Ion conductive matrix and use thereof
WO2007139147A1 (en) * 2006-05-31 2007-12-06 University Of Yamanashi Ion conductive polymer composition, method for producing the same, film containing the ion conductive polymer composition, and electrochemical device using the film
JP2009009703A (en) * 2006-06-12 2009-01-15 Shin Etsu Chem Co Ltd Organic solid electrolyte and secondary battery using this

Similar Documents

Publication Publication Date Title
CN102005609B (en) Composite gel polymer electrolyte membrane and application thereof
CN108365260B (en) A kind of quasi-solid electrolyte and its preparation method and application
Lytle et al. Structural and electrochemical properties of three-dimensionally ordered macroporous tin (IV) oxide films
CN105259218B (en) A kind of zinc oxide nanowire-graphene gas sensor and preparation method thereof
CN105428571B (en) Poly-dopamine modified lithium ceramic particle prepares PVDF HFP based polyalcohols membranes and preparation method
CN112701345B (en) Super-hydrophobic material capable of conducting lithium ions as well as preparation method and application thereof
CN108493387B (en) Adhesive for battery diaphragm coating and preparation method thereof
JPH08509100A (en) Polymer electrolytic cell separator membrane and method for producing the same
CN109119574A (en) Porosity lithium ion battery separator and the preparation method and application thereof based on crosslinking with line polymer
CN108281705A (en) Modified Nano SiO2Particle, preparation method and nano fibrous membrane, gel electrolyte and lithium metal battery comprising it
CN109599593A (en) The preparation method of the solid state battery of MULTILAYER COMPOSITE electrolyte
CN108538633B (en) Novel high-conductivity polymeric ionic liquid electrolyte for super capacitor
CN110690396A (en) Lithium battery diaphragm, preparation method thereof and lithium battery
CN112552896A (en) Electrochromic conductive polymer composite film and device preparation method
CN108417758A (en) A kind of lithium ion battery ceramic diaphragm slurry and preparation method thereof
CN101409364A (en) Self-supporting lithium ion battery gel polymer electrolyte and preparation method thereof
CN103840207B (en) A kind of resistant to elevated temperatures lithium ion battery gel polymer electrolyte and preparation method thereof
CN1944520A (en) Process for preparing hybridized porous lithium ion cell electrolyte film
TW200421653A (en) Composition of composite polymer electrolyte containing nano-tube and manufacturing method thereof
JPH04173856A (en) Solid polymer electrolyte
CN102936351B (en) Method for preparing polyvinylidene fluoride (PVDF)/barium titanate (BT) composite membrane materials
CN109456479A (en) A kind of RuO2Load the synthetic method of poly 1,5-naphthalene diamine nanotube
CN114156485A (en) Composite modification layer and application thereof in anode-free lithium battery
JPH0782450A (en) Electrolyte sheet
CN105552362B (en) A kind of non-stoichiometric cobalt zinc composite oxide and its preparation method and application