JP3847424B2 - Polymer ultrafine particle adsorption structure and method for producing the same - Google Patents

Polymer ultrafine particle adsorption structure and method for producing the same Download PDF

Info

Publication number
JP3847424B2
JP3847424B2 JP26779297A JP26779297A JP3847424B2 JP 3847424 B2 JP3847424 B2 JP 3847424B2 JP 26779297 A JP26779297 A JP 26779297A JP 26779297 A JP26779297 A JP 26779297A JP 3847424 B2 JP3847424 B2 JP 3847424B2
Authority
JP
Japan
Prior art keywords
polymer
ultrafine
particles
particle
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26779297A
Other languages
Japanese (ja)
Other versions
JPH1177908A (en
Inventor
満 明石
武 芹澤
寛子 竹下
Original Assignee
明石 満
ユニケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 明石 満, ユニケミカル株式会社 filed Critical 明石 満
Priority to JP26779297A priority Critical patent/JP3847424B2/en
Publication of JPH1177908A publication Critical patent/JPH1177908A/en
Application granted granted Critical
Publication of JP3847424B2 publication Critical patent/JP3847424B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高分子超微粒子吸着構造体及びその製造方法に関し、特に電子材料や光学的材料等の機能性材料、各種センサー、診断試薬用担体等に利用可能な高分子超微粒子吸着構造体及びその製造方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
表面積の大きな高分子超微粒子は従来より塗料、接着剤、クロマトグラフィーの固定相、化粧品、医薬品等多くの分野における利用可能性が期待されており、これまでにポリスチレンラテックス、アクリルラテックス等種々の単分散性ラテックスが実用化されている。
【0003】
またこのような高分子超微粒子の集積体としては、高分子超微粒子の乳化・分散液を基板上に塗工したものや、電着塗装により高分子超微粒子を基板上に吸着あるいは凝集・堆積させたもの等が実用化されている。しかしながら、このような方法で作製された高分子超微粒子の集積体は、超微粒子の分散均一性が不十分であり、機能的にも超微粒子としての特性が発揮されないという問題がある。
【0004】
一方、静電的な相互作用を駆動力とした超微粒子の積層技術としては、荷電ポリマーの静電複合化法を使って超薄膜を作製する方法が報告されている。このような方法は、具体的には鎖状ポリマー、タンパク質、又は金属アルコキシドや(Chem. Lett. , 125 頁, 1996年)、シリカ等の酸化物粒子(Chem. Lett., 125頁,1997 年)を静電相互作用を利用して積層するものである。
【0005】
さらに水面単分子膜化、溶媒の蒸発に伴うポリスチレン微粒子の配列化(特開平6-277501号、特開平8-229474号、Langmuir, 12巻,1303 頁, 1996年)、電場印加(Science , 272 巻,706 頁, 1996 年)等による高分子微粒子の集積化の技術が検討されている。これらの技術によって得られる高分子超微粒子の集積体は、 装飾用途(特開平8-234007号)や光学用途(J.Colloid Interface Sci.,144 巻,2号,538 頁,1991年)等への応用が検討されている。
【0006】
しかしながら、上記の技術はいずれも高分子超微粒子を最密充填又は凝集状態で集積・積層するものであり、高分子超微粒子の集積密度を制御し、高分子超微粒子を均一に分散させつつ基板上に吸着させる方法は実現されていない。
【0007】
従って本発明の目的は、高分子超微粒子を凝集させることなく実質的に均一に分散して、単層で基板上に吸着させた高分子超微粒子吸着構造体、及びその製造方法を提供することである。
【0008】
【課題を解決するための手段】
上記目的に鑑み鋭意研究の結果、本発明者等は、基板上に形成された荷電性高分子薄膜上に、荷電性高分子超微粒子を静電的な相互作用を主な駆動力として実質的に均一に吸着させることにより、センサーや試薬用担体を始めとして、電子材料、光学材料等に利用可能な高分子超微粒子吸着構造体が得られることを発見し、本発明を完成した。
【0009】
すなわち、本発明の高分子超微粒子吸着構造体は、基板表面に形成された荷電性高分子薄膜上に、荷電性高分子超微粒子が実質的に均一に分散して吸着していることを特徴とする。
【0010】
また本発明の高分子超微粒子吸着構造体の製造方法は、荷電性高分子薄膜を形成した基板を、荷電性高分子超微粒子の分散液中に浸漬し、前記荷電性高分子薄膜上に前記荷電性高分子超微粒子を静電相互作用により実質的に均一に分散して吸着させることを特徴とする。
【0011】
【発明の実施の形態】
[1] 高分子超微粒子吸着構造体の構成
(1) 荷電性高分子超微粒子
本発明に使用する荷電性高分子超微粒子は、界面活性剤や保護コロイドの存在下又は界面活性剤の不存在下で、乳化重合によって調製することができる。乳化重合法により、真球度の高い高分子超微粒子を得ることができる。素材としては、ポリスチレン、ポリメチルメタクリレート、メタクリル酸エステル/アクリル酸エステル共重合体、スチレン/アクリル酸エステル共重合体、ポリ酢酸ビニル、酢酸ビニル/メタクリル酸エステル共重合体、酢酸ビニル/アクリル酸エステル共重合体、スチレン/ブタジエン共重合体(SB)、アクリロニトリル/ブタジエン共重合体(NB)、メチルメタクリレート/ブタジエン共重合体(MB)、ポリブタジエン、ポリクロロプレン、これらのブレンド又はこれらの3元系以上の共重合体を挙げることができる。
【0012】
上記荷電性高分子超微粒子は、表面に結合した官能基、重合開始剤断片、界面活性剤、又は保護コロイドの電荷によって荷電性を示す。表面にカルボキシル基、水酸基、スルホン基等の官能基又はアニオン性界面活性剤が結合したアニオン性高分子超微粒子はアニオン性を示し、表面にアミノ基、4級アンモニウム塩基等の官能基又はカチオン性界面活性剤が結合したカチオン性高分子超微粒子はカチオン性を示す。
【0013】
荷電性高分子超微粒子の平均粒径は、一般に数nm〜数十μmとすることができるが、作業性や分散性等の観点から粒径のばらつきを小さくするのが好ましい。平均粒径は10nm〜10μmの範囲が好ましく、50nm〜3μmの範囲がより好ましく、70nm〜2μmの範囲が最も好ましい。なお粒径は電子顕微鏡、レーザー光散乱法等により測定することができる。
【0014】
荷電性高分子超微粒子の単分散性の程度は高分子超微粒子吸着構造体の用途により異なるが、いずれの場合でも高分子超微粒子の粒径分布(C.V.)値は20%以下であるのが好ましく、15%以下であるのがより好ましい。特に高度の単分散性が要求される場合には、C.V.値は5%以下、さらに3%以下であるのが好ましい。C.V.値が20%を超えると、粒径のばらつきが大きくなり、高分子超微粒子集合体の構造が不均一になるため好ましくない。粒径分布(C.V.)は、平均粒径(R)の測定値と標準偏差(S.D.)とから、C.V.=S.D./R(%)の式により算出する。
【0015】
荷電性高分子超微粒子は、分散媒として水、又は水に水溶性高分子、界面活性剤又は水溶性塩類等を溶解した溶液に懸濁して用いるのが好ましい。このような荷電性高分子超微粒子の分散液の市販品としては、例えばSTANDEX SC、IMMUTEX G 、及び MPP(いずれも日本合成ゴム(株)製)、エスタポール(ローヌ・プーラン社製)、ポリビード(フナコシ(株)製)等が挙げられる。
【0016】
(2) 荷電性高分子薄膜
基板上に形成する荷電性高分子薄膜は、荷電性高分子超微粒子を単層で吸着するとともに、基板の凹凸を覆って表面を平坦化する。
【0017】
荷電性高分子薄膜は、ある程度の厚みを確保するとともに表面上の荷電分布を均一にするために、カチオン性の水溶性高分子とアニオン性の水溶性高分子とをそれぞれ少なくとも一層ずつ交互に積層することにより形成するのが好ましい。得られた積層体はコンプレックスを形成して水に不溶化しており、安定である。荷電性高分子薄膜の厚さは3nm〜1μmとするのが好ましく、5nm〜0.1 μmとするのがより好ましい。
【0018】
薄膜を形成する荷電性高分子は、ポリビニル系、ポリアクリル酸エステル系、ポリメタクリル酸エステル系、ポリスチレン系等の高分子にイオン性官能基が結合したものである。イオン性官能基としては、▲1▼スルホン酸基、カルボキシル基、リン酸基等のアルカリ金属塩又はアルカリ土類金属塩(アニオン性)、又は▲2▼1級〜3級のアミノ基の塩酸塩、4級アンモニウム塩基(カチオン性)等が挙げられる。このような荷電性高分子の具体例を以下に例示する。
【0019】
(イ) 下記式(1) :
【化1】

Figure 0003847424
(ただし、nは重合度を表す整数である。)により表されるポリアリルアミン塩酸塩。
【0020】
(ロ) 下記式(2) :
【化2】
Figure 0003847424
(ただし、nは重合度を表す整数である。)により表されるポリトリメチルアンモニウムメチルスチレンクロライド。
【0021】
(ハ) 下記式(3) :
【化3】
Figure 0003847424
(ただし、nは重合度を表す整数である。)により表されるポリアクリル酸2-トリメチルアンモニウムエチルエステルクロライド。
【0022】
(ニ) 下記式(4) :
【化4】
Figure 0003847424
(ただし、nは重合度を表す整数である。)により表されるポリスチレンスルホン酸ナトリウム。
【0023】
(ホ) 下記式(5) :
【化5】
Figure 0003847424
(ただし、nは重合度を表す整数である。)により表されるポリアミンサルホン。
【0024】
上記荷電性高分子薄膜の形成方法としては、▲1▼基板の表面上に前記荷電性高分子を塗布する方法、好ましくはカチオン性とアニオン性それぞれの荷電性高分子溶液を交互に基板の表面上に塗布(乾燥)する方法、▲2▼他のプラスチック材料に荷電性高分子を混練し成形する方法等が挙げられる。
【0025】
この荷電性高分子薄膜形成時に、水溶性高分子鎖中の電荷が水中で分離するのを促進させるとともに、基板表面あるいは薄膜表面へ吸着及び堆積する速度を向上させるために、アルカリ金属やアルカリ土類金属のハロゲン化物等の電解質を共存させるのが好ましい。電解質を共存させることにより、未添加の時に比較して粒子の吸着速度や分散性が向上する。電解質の具体例としては、LiCl、LiBr、LiI 、NaCl、NaBr、NaI 、KCl 、KBr 、KI、MgCl 2、MgBr 2、MgI 2 、CaCl 2、CaBr 2、CaI 2 等が挙げられるが、NaCl、NaBr、KCl 、KBr 等の1価の塩が好ましい。電解質の濃度は0.01〜10Mの範囲であるのが好ましく、0.02〜5Mの範囲であるのがより好ましい。0.01M未満であると共存による効果が小さく、10Mを超えると過剰となるため好ましくない。
【0026】
(3) 基板
基板の素材としては、例えばガラス、プラスチック、金属、セラミックス、黒鉛や炭素繊維等の炭素系材料、もしくは雲母、カオリン、モンモリロナイト等の粘土鉱物のケイ酸塩類、及びこれらの複合体等が挙げられる。基板の形状は、表面が十分に平滑であれば特に限定されない。
【0027】
[2] 高分子超微粒子吸着構造体の製造方法
高分子超微粒子吸着構造体を製造するには、荷電性高分子超微粒子が分散した液中に荷電性高分子薄膜を形成した基板を浸漬する方法が好ましい。例えばカチオン性の高分子超微粒子を使用する場合、それを分散した液中にアニオン性の水溶性高分子からなる薄膜(又はその表面層)を有する基板を浸漬すると、前記カチオン性高分子超微粒子が静電相互作用により表面に吸着する。またアニオン性の高分子超微粒子を使用する場合には、カチオン性の水溶性高分子からなる薄膜(又はその表面層)を有する基板を浸漬すると、同様に静電相互作用により前記アニオン性高分子超微粒子が表面に吸着する。
【0028】
荷電性高分子超微粒子の分散濃度は1×107 〜1015個/mlの範囲が好ましい。吸着量は分散濃度が増すことによって増加する。分散媒は水、特に純水が好ましいが、荷電性高分子超微粒子の荷電性を損なわず、浸潤しないものであれば他の極性溶媒でも使用することができる。
【0029】
荷電性高分子超微粒子の吸着性を促進するために、浸漬温度は0〜60℃程度の範囲が好ましい。分散媒が水である場合、浸漬温度は1〜30℃程度の範囲がより好ましく、1〜15℃程度の温度範囲がさらに好ましい。温度が高過ぎると荷電性高分子超微粒子が種類によっては分散液中で会合し易くなり、荷電性高分子超微粒子は実質的に均一に分散して薄膜に吸着しない。
【0030】
荷電性高分子超微粒子の所望の吸着量を達成するために、浸漬時間は1分〜3時間の範囲が好ましい。この範囲において吸着量は浸漬時間の経過とともに増加する。ただし他の浸漬条件によってはさらに長時間浸漬してもよく、吸着平衡に達した後の吸着量はほとんど変化しないと推測される。
【0031】
本発明では、機能的に高分子超微粒子の単粒子としての特性を発揮させるために、荷電性高分子超微粒子は実質的に均一な分散状態で吸着させる。ここで「実質的に均一」とは、吸着した超微粒子の相当数が実質的に接触していないことを意味し、各粒子間の距離が一定である必要はない。具体的には、荷電性高分子薄膜に吸着している荷電性高分子超微粒子のうち、単粒子で吸着しているものの割合を単粒子率とすると、単粒子率は30%以上であるのが好ましく、特に40%以上が好ましい。30%以上の単粒子率で吸着させると、高分子超微粒子層は単層となる。
【0032】
高分子薄膜が形成された基板を荷電性高分子超微粒子の分散液中に所定時間浸漬した後、取り出し、室温あるいは加熱下で、静置あるいは窒素, アルゴン等の不活性ガスや空気等を送風して乾燥する。高分子超微粒子は比表面積が大きいため、その吸着量に応じて高分子超微粒子吸着構造体の表面積も大きくなる。
【0033】
【実施例】
本発明を以下の実施例に基づいて具体的に説明するが、本発明はそれらに限定されるものではない。
【0034】
実施例1
基板として水晶発振子マイクロバランス(QCM 、9MHz )を用い、この基板をカチオン性の水溶性高分子としてポリアリルアミン塩酸塩(重量平均分子量Mw:8,500 〜11,000)の0.02mol %水溶液、及びアニオン性の水溶性高分子としてポリスチレンスルホン酸ナトリウム(重量平均分子量Mw:70,000)の0.02mol %水溶液に交互に20℃で3回ずつ浸漬し、QCM の金電極表面に厚さ約6nmの高分子薄膜を形成した。なおそれぞれの水溶液には2MのNaClを添加した。高分子薄膜表面をカチオン性にするために、最後の浸漬液をポリアリルアミン塩酸塩水溶液とした。
【0035】
次に平均粒径548nm のポリスチレン超微粒子(表面電荷アニオン性、ポリビード(フナコシ(株)製))を、それぞれ(a) 19×1010個/ml、(b) 3.8 ×1010個/ml、及び(c) 7.6 ×109 個/mlの濃度で純水中に分散した20℃の液中に、上記高分子薄膜被覆電極を0〜60分間浸漬し、その間基板表面の振動数変化ΔFをQCM によりモニターした。電極表面の単位面積当たりのポリスチレン超微粒子の吸着重量Δm/S(ng/cm2 )は、QCM によりモニターした振動数変化ΔFをもとに、以下の関係式(6) :
−ΔF= 0.87×Δm ・・・(6)
(但しΔFは振動数変化を表し、Δm は吸着重量(ng)を表す。)と電極表面積S(0.32cm2 )とから算出した。結果を図1に示す。図1から明らかなように、ポリスチレン超微粒子の吸着量は短時間の浸漬で急増した。
【0036】
ポリスチレン超微粒子を3.8 ×1010個/mlの濃度で分散した水中に高分子薄膜被覆電極を60分間浸漬して作製したポリスチレン超微粒子吸着構造体を乾燥後、薄膜表面のポリスチレン超微粒子をSEM(5,000 倍)観察した。結果を図2に示す。
【0037】
図2より、高分子薄膜表面に分散状態(隣接微粒子が接触しない状態で)で吸着しているポリスチレン超微粒子の単粒子率は約56%であることが分かった。このポリスチレン超微粒子吸着構造体の表面に空気流を吹付けたり水流を当ててもポリスチレン超微粒子が脱離せず、安定な構造を維持していた。
【0038】
実施例2
平均粒径548 nmのポリスチレン超微粒子を3.8 ×1010個/mlの濃度で純水に分散させ、それに実施例1と同じ高分子薄膜被覆電極を表1に示す通り5〜40℃の範囲の温度でそれぞれ60分間浸漬し、ポリスチレン超微粒子吸着構造体を作製した。薄膜表面のポリスチレン超微粒子をSEM(5,000 倍)観察した。SEM写真より、ポリスチレン超微粒子の単粒子率は高分子薄膜表面の約30%以上であることが分かった。
【0039】
表1
サンプル 浸漬温度 ポリスチレン超微粒
No. (℃) 子の単粒子率(%)
2−1 5 71
2−2 10 67
2−3 20 56
2−4 30 42
2−5 40 31
【0040】
実施例3
平均粒径が(a) 780 nm、(b) 548 nm、及び(c) 84 nm のポリスチレン超微粒子(ポリビード、フナコシ(株)製)を3.8 ×1010個/mlの濃度で純水に分散した液を使用した以外は実施例1と同様にして、ポリスチレン超微粒子吸着構造体を作製した。表面の振動数変化をQCM によりモニターし、また上記式(6) により吸着重量(ng/cm2 )を実施例1と同様にして算出した。結果を図3に示す。
【0041】
図3から明らかなように、浸漬時間の経過とともにポリスチレン微粒子の吸着量が増加し、またポリスチレン微粒子の平均粒径が大きくなるにつれて吸着量が飛躍的に増大した。
【0042】
実施例4
荷電性高分子薄膜を形成する際に荷電性高分子水溶液に添加するNaClの濃度を(a) 2M、(b) 0.2 M、及び(c) 0M(無添加)とし、かつ浸漬液中のポリスチレン超微粒子(平均粒径:548 nm)の分散濃度を3.8 ×1010個/mlとした以外は実施例1と同様にして、ポリスチレン超微粒子吸着構造体を作製した。表面の振動数変化をQCM によりモニターし、また上記式(6) により吸着重量(ng/cm2 )を実施例1と同様にして算出した。結果を図4に示す。
【0043】
図4から明らかなように、NaClの添加量が増大すると、同一浸漬時間におけるポリスチレン微粒子の吸着量が増加した。NaCl無添加の場合(c) において、60分間浸漬して作製したポリスチレン超微粒子吸着構造体のポリスチレン超微粒子をSEM(5,000 倍)観察した。結果を図5に示す。図5から算出したポリスチレン超微粒子の単粒子率は64%であった。
【0044】
実施例
実施例1と同じ条件で作製したポリスチレン超微粒子吸着構造体(使用したポリスチレン超微粒子の濃度:3.8 ×1010個/ml、60分間浸漬)の表面に、カチオン性の水溶性高分子としてポリアリルアミン塩酸塩(重量平均分子量:8,500 〜11,000)を0.02mol %含有する水溶液(2MのNaCl含有)、及びアニオン性の水溶性高分子としてポリスチレンスルホン酸ナトリウム(重量平均分子量:70,000)を0.02 mol%含有する水溶液(2MのNaCl含有)に15℃で交互に浸漬し、3層のポリアリルアミン塩酸塩の層及び2層のポリスチレンスルホン酸ナトリウムの層からなる厚さ約5nmの第二の高分子薄膜を形成した。ただし表面がカチオン性になるように、最上層はポリアリルアミン塩酸塩の層とした。
【0045】
平均粒径548 nmのポリスチレン超微粒子を3.8 ×1010個/mlの濃度で純水中に分散した15℃の液中に、第二の高分子薄膜を被覆したポリスチレン超微粒子吸着構造体を0〜60分間浸漬し、ポリスチレン超微粒子吸着構造体の表面に、第二の荷電性高分子薄膜とポリスチレン超微粒子とからなる組合せを積層した。その間振動数変化をQCM によりモニターし、ポリスチレン超微粒子の吸着重量(ng/cm2 )を実施例1と同様にして算出した。結果を図6に示す。図6から明らかなように、浸漬時間の経過とともにポリスチレン超微粒子の吸着量が増加した。
【0046】
また60分間浸漬することにより第二の荷電性高分子薄膜表面に吸着させたポリスチレン超微粒子をSEM(10,000倍)観察した。結果を図7に示す。図7から明らかなように、2層目のポリスチレン超微粒子も2層目の高分子薄膜上に実質的に均一に分散して吸着していた。ただし図7において、第二の荷電性高分子薄膜は実質的に透明であるので、下層にあるポリスチレン超微粒子は暗い粒子として見え、上層にあるポリスチレン超微粒子は明るい粒子として見える。
【0047】
【発明の効果】
以上詳述したように、本発明によれば、基板上に形成した高分子薄膜上に高分子超微粒子を実質的に均一に分散させて(単層で)吸着させた高分子超微粒子吸着構造体を簡便かつ迅速に得ることができる。単分散性の高い高分子超微粒子を吸着させた高分子超微粒子吸着構造体は、各種のセンサーや診断用等の試験担体、或いは電子材料や光学的用途等へ利用することができる。
【図面の簡単な説明】
【図1】 実施例1で得られたポリスチレン超微粒子吸着構造体について、種々の濃度のポリスチレン超微粒子の分散液への高分子薄膜被覆電極の浸漬時間と振動数変化及びポリスチレン超微粒子の吸着重量との関係を示すグラフである。
【図2】 実施例1で得られたポリスチレン超微粒子吸着構造体の表面のSEM写真(倍率5,000 倍)である。
【図3】 実施例3で得られたポリスチレン超微粒子吸着構造体について、種々の平均粒径のポリスチレン超微粒子の分散液への高分子薄膜被覆電極の浸漬時間と振動数変化及びポリスチレン超微粒子の吸着重量との関係を示すグラフである。
【図4】 実施例4で得られたポリスチレン超微粒子吸着構造体について、種々の濃度のNaClを添加して形成した高分子薄膜を被覆した電極をポリスチレン超微粒子の分散液へ浸漬した場合に、浸漬時間と振動数変化及びポリスチレン超微粒子の吸着重量との関係を示すグラフである。
【図5】 実施例4で得られたポリスチレン超微粒子吸着構造体の表面のSEM写真(倍率5,000 倍)である。
【図6】 実施例5で得られたポリスチレン超微粒子吸着構造体について、2層目用のポリスチレン超微粒子の分散液への浸漬時間と振動数変化及びポリスチレン超微粒子の吸着重量との関係を示すグラフである。
【図7】 実施例5で得られたポリスチレン超微粒子吸着構造体の表面のSEM写真(倍率10,000倍)である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultrafine polymer particle adsorption structure and a method for producing the same, and more particularly to an ultrafine polymer particle adsorption structure that can be used in functional materials such as electronic materials and optical materials, various sensors, diagnostic reagent carriers and the like It relates to the manufacturing method.
[0002]
[Prior art and problems to be solved by the invention]
High molecular ultrafine particles with a large surface area are expected to be used in many fields such as paints, adhesives, chromatographic stationary phases, cosmetics, pharmaceuticals, and so on. Dispersible latex has been put into practical use.
[0003]
In addition, as an aggregate of such polymer ultrafine particles, an emulsion or dispersion of polymer ultrafine particles is coated on the substrate, or the polymer ultrafine particles are adsorbed, aggregated or deposited on the substrate by electrodeposition coating. And the like have been put into practical use. However, the polymer ultrafine particle assembly produced by such a method has a problem that the dispersion uniformity of the ultrafine particles is insufficient and the characteristics as the ultrafine particles are not exhibited functionally.
[0004]
On the other hand, as a technique for laminating ultrafine particles using electrostatic interaction as a driving force, a method of producing an ultrathin film by using an electrostatic composite method of charged polymer has been reported. Specifically, such methods include chain polymers, proteins, or metal alkoxides (Chem. Lett., 125, 1996), and oxide particles such as silica (Chem. Lett., 125, 1997). ) Using an electrostatic interaction.
[0005]
Furthermore, the formation of monomolecular film on the water surface, the arrangement of polystyrene fine particles along with the evaporation of the solvent (JP-A-62-277501, JP-A-8-229474, Langmuir, 12, 1303, 1996), electric field application (Science, 272 Vol., P. 706, 1996), etc., are investigating techniques for polymer fine particle integration. The polymer ultrafine particle aggregates obtained by these techniques can be used for decorative applications (Japanese Patent Laid-Open No. 8-234007) and optical applications (J. Colloid Interface Sci., 144, 2, 538, 1991). Application of is being studied.
[0006]
However, all of the above techniques are to accumulate and stack polymer ultrafine particles in a close packed or agglomerated state, and control the integration density of the polymer ultrafine particles to uniformly disperse the polymer ultrafine particles. The method of adsorbing on top has not been realized.
[0007]
Accordingly, an object of the present invention is to provide an ultrafine polymer particle adsorption structure in which ultrafine polymer particles are substantially uniformly dispersed without agglomeration and adsorbed on a substrate in a single layer, and a method for producing the same. It is.
[0008]
[Means for Solving the Problems]
As a result of diligent research in view of the above object, the inventors of the present invention have found that the chargeable polymer ultrafine particles are substantially charged with electrostatic interaction as the main driving force on the chargeable polymer thin film formed on the substrate. It was discovered that a polymer ultrafine particle adsorption structure that can be used for electronic materials, optical materials, etc., including sensors and reagent carriers, can be obtained by uniformly adsorbing them to each other.
[0009]
That is, the ultrafine polymer particle adsorption structure of the present invention is characterized in that the ultrafine charged polymer particles are substantially uniformly dispersed and adsorbed on the charged polymer thin film formed on the substrate surface. And
[0010]
The method for producing a polymer ultrafine particle adsorbing structure of the present invention comprises immersing a substrate on which a charged polymer thin film is formed in a dispersion of charged polymer ultrafine particles, and placing the substrate on the charged polymer thin film. Charged polymer ultrafine particles are dispersed and adsorbed substantially uniformly by electrostatic interaction.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
[1] Structure of ultrafine polymer particle adsorption structure
(1) Charged polymer ultrafine particles The chargeable polymer ultrafine particles used in the present invention can be prepared by emulsion polymerization in the presence of a surfactant or a protective colloid or in the absence of a surfactant. By the emulsion polymerization method, ultrafine polymer particles having high sphericity can be obtained. Materials include polystyrene, polymethyl methacrylate, methacrylic acid ester / acrylic acid ester copolymer, styrene / acrylic acid ester copolymer, polyvinyl acetate, vinyl acetate / methacrylic acid ester copolymer, vinyl acetate / acrylic acid ester. Copolymer, styrene / butadiene copolymer (SB), acrylonitrile / butadiene copolymer (NB), methyl methacrylate / butadiene copolymer (MB), polybutadiene, polychloroprene, blends thereof or ternary system or more Can be mentioned.
[0012]
The above-mentioned ultrafine charged polymer particles are charged by the charge of the functional group, polymerization initiator fragment, surfactant, or protective colloid bonded to the surface. Anionic polymer ultrafine particles with functional groups such as carboxyl group, hydroxyl group, sulfone group or anionic surfactant on the surface are anionic and have functional groups such as amino groups and quaternary ammonium bases on the surface or cationic properties. Cationic polymer ultrafine particles to which a surfactant is bound exhibit a cationic property.
[0013]
The average particle size of the charged polymer ultrafine particles can generally be several nm to several tens of μm, but it is preferable to reduce the variation in particle size from the viewpoint of workability and dispersibility. The average particle size is preferably in the range of 10 nm to 10 μm, more preferably in the range of 50 nm to 3 μm, and most preferably in the range of 70 nm to 2 μm. The particle size can be measured by an electron microscope, a laser light scattering method, or the like.
[0014]
The degree of monodispersity of the charged ultrafine polymer particles varies depending on the use of the ultrafine polymer particle adsorption structure, but in any case, the particle size distribution (CV) value of the ultrafine polymer particles is 20% or less. Preferably, it is 15% or less. In particular, when a high degree of monodispersity is required, the CV value is preferably 5% or less, more preferably 3% or less. When the CV value exceeds 20%, the particle size variation becomes large, and the structure of the polymer ultrafine particle aggregate becomes non-uniform, which is not preferable. The particle size distribution (CV) is calculated from the measured value of the average particle size (R) and the standard deviation (SD) by the formula CV = SD / R (%).
[0015]
The charged polymer ultrafine particles are preferably used by suspending them in water as a dispersion medium or in a solution in which water-soluble polymers, surfactants or water-soluble salts are dissolved in water. Commercially available dispersions of such charged polymer ultrafine particles include, for example, STANDEX SC, IMMUTEX G, and MPP (all manufactured by Nippon Synthetic Rubber Co., Ltd.), Estapol (manufactured by Rhone-Poulenc), polybead (Manufactured by Funakoshi Co., Ltd.).
[0016]
(2) The charged polymer thin film formed on the charged polymer thin film substrate adsorbs the charged polymer ultrafine particles in a single layer and flattens the surface covering the irregularities of the substrate.
[0017]
In order to ensure a certain thickness and make the charge distribution on the surface uniform, the chargeable polymer thin film is alternately laminated with at least one layer of cationic water-soluble polymer and anionic water-soluble polymer. It is preferable to form by doing. The obtained laminate forms a complex and is insoluble in water, and is stable. The thickness of the chargeable polymer thin film is preferably 3 nm to 1 μm, and more preferably 5 nm to 0.1 μm.
[0018]
The chargeable polymer that forms the thin film is a polymer in which an ionic functional group is bonded to a polymer such as polyvinyl, polyacrylate, polymethacrylate, or polystyrene. Examples of the ionic functional group include (1) alkali metal salt or alkaline earth metal salt (anionic) such as sulfonic acid group, carboxyl group and phosphoric acid group, or (2) hydrochloric acid of primary to tertiary amino group. Salt, quaternary ammonium base (cationic) and the like. Specific examples of such a chargeable polymer are illustrated below.
[0019]
(B) The following formula (1):
[Chemical 1]
Figure 0003847424
(Wherein n is an integer representing the degree of polymerization).
[0020]
(B) Following formula (2):
[Chemical 2]
Figure 0003847424
(Wherein n is an integer representing the degree of polymerization) polytrimethylammonium methylstyrene chloride.
[0021]
(C) The following formula (3):
[Chemical 3]
Figure 0003847424
(Wherein n is an integer representing the degree of polymerization), polyacrylic acid 2-trimethylammonium ethyl ester chloride.
[0022]
(D) The following formula (4):
[Formula 4]
Figure 0003847424
(Wherein n is an integer representing the degree of polymerization) sodium polystyrenesulfonate.
[0023]
(E) Following formula (5):
[Chemical formula 5]
Figure 0003847424
(Wherein n is an integer representing the degree of polymerization).
[0024]
As the method for forming the above charged polymer thin film, (1) a method of coating the charged polymer on the surface of the substrate, preferably, the cationic polymer and the anionic charged polymer solutions are alternately applied to the surface of the substrate. Examples thereof include a method of coating (drying), and a method of kneading and molding a chargeable polymer in another plastic material.
[0025]
In order to promote the separation of the charges in the water-soluble polymer chain in water during the formation of the charged polymer thin film, and to increase the rate of adsorption and deposition on the substrate surface or thin film surface, It is preferable to coexist an electrolyte such as a halide of a metal. By allowing the electrolyte to coexist, the adsorption speed and dispersibility of the particles are improved as compared to when no electrolyte is added. Specific examples of electrolytes, LiCl, LiBr, LiI, NaCl , NaBr, NaI, KCl, KBr, KI, MgCl 2, MgBr 2, MgI 2, CaCl 2, CaBr 2, but CaI 2, and the like, NaCl, Monovalent salts such as NaBr, KCl and KBr are preferred. The concentration of the electrolyte is preferably in the range of 0.01 to 10M, more preferably in the range of 0.02 to 5M. If it is less than 0.01M, the effect of coexistence is small, and if it exceeds 10M, it becomes excessive, which is not preferable.
[0026]
(3) Examples of the substrate substrate material include glass, plastic, metal, ceramics, carbon-based materials such as graphite and carbon fiber, or silicates of clay minerals such as mica, kaolin, and montmorillonite, and composites thereof. Is mentioned. The shape of the substrate is not particularly limited as long as the surface is sufficiently smooth.
[0027]
[2] Production method of ultrafine polymer particle adsorption structure To produce an ultrafine polymer particle adsorption structure, a substrate on which a charged polymer thin film is formed is immersed in a liquid in which charged polymer ultrafine particles are dispersed. The method is preferred. For example, in the case of using cationic polymer ultrafine particles, the cationic polymer ultrafine particles are obtained by immersing a substrate having a thin film (or a surface layer thereof) made of an anionic water-soluble polymer in a liquid in which the cationic ultrafine particles are dispersed. Is adsorbed on the surface by electrostatic interaction. When anionic ultrafine polymer particles are used, when the substrate having a thin film (or its surface layer) made of a cationic water-soluble polymer is immersed, the anionic polymer is similarly caused by electrostatic interaction. Ultra fine particles are adsorbed on the surface.
[0028]
The dispersion concentration of the charged polymer ultrafine particles is preferably in the range of 1 × 10 7 to 10 15 particles / ml. The amount of adsorption increases with increasing dispersion concentration. The dispersion medium is preferably water, particularly pure water, but other polar solvents can be used as long as they do not impair the chargeability of the charged polymer ultrafine particles and do not infiltrate.
[0029]
In order to promote the adsorptivity of the charged polymer ultrafine particles, the immersion temperature is preferably in the range of about 0 to 60 ° C. When the dispersion medium is water, the immersion temperature is more preferably in the range of about 1 to 30 ° C, and further preferably in the temperature range of about 1 to 15 ° C. If the temperature is too high, the charged polymer ultrafine particles are likely to associate in the dispersion depending on the type, and the charged polymer ultrafine particles are substantially uniformly dispersed and do not adsorb to the thin film.
[0030]
In order to achieve a desired adsorption amount of the charged polymer ultrafine particles, the immersion time is preferably in the range of 1 minute to 3 hours. In this range, the adsorption amount increases with the lapse of immersion time. However, depending on other immersion conditions, it may be immersed for a longer time, and it is estimated that the amount of adsorption after reaching the adsorption equilibrium hardly changes.
[0031]
In the present invention, the charged ultrafine polymer particles are adsorbed in a substantially uniform dispersed state in order to functionally exhibit the characteristics of the ultrafine polymer particles as single particles. Here, “substantially uniform” means that a considerable number of adsorbed ultrafine particles are not substantially in contact with each other, and the distance between the particles does not have to be constant. Specifically, if the ratio of the charged polymer ultrafine particles adsorbed on the charged polymer thin film to the single particles is defined as the single particle ratio, the single particle ratio is 30% or more. Is preferable, and 40% or more is particularly preferable. When adsorbed at a single particle ratio of 30% or more, the polymer ultrafine particle layer becomes a single layer.
[0032]
The substrate on which the polymer thin film has been formed is immersed in a dispersion of charged polymer ultrafine particles for a predetermined time, then taken out, left at room temperature or under heating, or blown with an inert gas such as nitrogen or argon or air. And dry. Since the polymer ultrafine particles have a large specific surface area, the surface area of the polymer ultrafine particle adsorption structure also increases according to the amount of adsorption.
[0033]
【Example】
The present invention will be specifically described based on the following examples, but the present invention is not limited thereto.
[0034]
Example 1
Quartz crystal microbalance (QCM, 9 MHz) is used as a substrate, and a 0.02 mol% aqueous solution of polyallylamine hydrochloride (weight average molecular weight Mw: 8,500 to 11,000) as a cationic water-soluble polymer and anionic As a water-soluble polymer, a polymer thin film with a thickness of about 6 nm is formed on the surface of the gold electrode of QCM by alternately immersing it in 0.02 mol% aqueous solution of polystyrene sulfonate (weight average molecular weight Mw: 70,000) three times at 20 ° C. did. Note that 2M NaCl was added to each aqueous solution. In order to make the surface of the polymer thin film cationic, the last immersion liquid was a polyallylamine hydrochloride aqueous solution.
[0035]
Next, polystyrene ultrafine particles (surface charge anionic, polybead (manufactured by Funakoshi Co., Ltd.)) having an average particle diameter of 548 nm were respectively (a) 19 × 10 10 pieces / ml, (b) 3.8 × 10 10 pieces / ml, And (c) the polymer thin film-coated electrode is immersed in a liquid at 20 ° C. dispersed in pure water at a concentration of 7.6 × 10 9 cells / ml for 0 to 60 minutes, during which the frequency change ΔF on the substrate surface is changed. Monitored by QCM. The adsorption weight Δm / S (ng / cm 2 ) of the ultrafine polystyrene particles per unit area of the electrode surface is based on the frequency change ΔF monitored by QCM.
-ΔF = 0.87 × Δm (6)
(Where ΔF represents the change in frequency and Δm represents the adsorption weight (ng)) and the electrode surface area S (0.32 cm 2 ). The results are shown in FIG. As is clear from FIG. 1, the amount of adsorbed polystyrene ultrafine particles increased rapidly after a short immersion.
[0036]
After drying the polystyrene ultrafine particle adsorption structure prepared by immersing the polymer thin film-coated electrode in water in which polystyrene ultrafine particles are dispersed at a concentration of 3.8 × 10 10 particles / ml for 60 minutes, the polystyrene ultrafine particles on the thin film surface are subjected to SEM ( 5,000 times). The results are shown in FIG.
[0037]
From FIG. 2, it was found that the single particle ratio of the ultrafine polystyrene particles adsorbed on the polymer thin film surface in a dispersed state (in a state where the adjacent fine particles do not contact) is about 56%. Even when an air stream was blown or a water stream was applied to the surface of this polystyrene ultrafine particle adsorption structure, the polystyrene ultrafine particles were not detached, and a stable structure was maintained.
[0038]
Example 2
Polystyrene ultrafine particles having an average particle diameter of 548 nm are dispersed in pure water at a concentration of 3.8 × 10 10 particles / ml, and the same polymer thin film-coated electrode as in Example 1 is in the range of 5 to 40 ° C. as shown in Table 1. Each was immersed for 60 minutes at a temperature to produce a polystyrene ultrafine particle adsorbing structure. The ultrafine polystyrene particles on the thin film surface were observed by SEM (5,000 times). From the SEM photograph, it was found that the single particle ratio of the polystyrene ultrafine particles was about 30% or more of the polymer thin film surface.
[0039]
Table 1
Sample Soaking temperature Polystyrene ultrafine particles
No. (℃) Single particle ratio of child (%)
2-1 5 71
2-2 10 67
2-3 20 56
2-4 30 42
2-5 40 31
[0040]
Example 3
Disperse ultrafine polystyrene particles (poly beads, manufactured by Funakoshi Co., Ltd.) with average particle diameters of (a) 780 nm, (b) 548 nm, and (c) 84 nm in pure water at a concentration of 3.8 × 10 10 particles / ml A polystyrene ultrafine particle adsorbing structure was produced in the same manner as in Example 1 except that the obtained liquid was used. The surface frequency change was monitored by QCM, and the adsorption weight (ng / cm 2 ) was calculated in the same manner as in Example 1 by the above formula (6). The results are shown in FIG.
[0041]
As apparent from FIG. 3, the adsorption amount of polystyrene fine particles increased with the lapse of the immersion time, and the adsorption amount dramatically increased as the average particle size of the polystyrene fine particles increased.
[0042]
Example 4
The concentration of NaCl added to the charged polymer aqueous solution when forming the charged polymer thin film is (a) 2M, (b) 0.2M, and (c) 0M (no addition), and the polystyrene in the immersion liquid A polystyrene ultrafine particle adsorption structure was prepared in the same manner as in Example 1 except that the dispersion concentration of ultrafine particles (average particle size: 548 nm) was 3.8 × 10 10 particles / ml. The surface frequency change was monitored by QCM, and the adsorption weight (ng / cm 2 ) was calculated in the same manner as in Example 1 by the above formula (6). The results are shown in FIG.
[0043]
As is clear from FIG. 4, the amount of polystyrene fine particles adsorbed during the same immersion time increased as the amount of NaCl added increased. In the case of no addition of NaCl (c), the polystyrene ultrafine particles of the polystyrene ultrafine particle adsorbing structure prepared by immersion for 60 minutes were observed by SEM (5,000 times). The results are shown in FIG. The single particle ratio of the ultrafine polystyrene particles calculated from FIG. 5 was 64%.
[0044]
Example 5
Polyallylamine as a cationic water-soluble polymer on the surface of a polystyrene ultrafine particle adsorbing structure prepared under the same conditions as in Example 1 (concentration of polystyrene ultrafine particles used: 3.8 × 10 10 particles / ml, immersed for 60 minutes) An aqueous solution (containing 2 M NaCl) containing 0.02 mol% of hydrochloride (weight average molecular weight: 8,500 to 11,000) and 0.02 mol% of sodium polystyrene sulfonate (weight average molecular weight: 70,000) as an anionic water-soluble polymer A second polymer thin film having a thickness of about 5 nm consisting of three layers of polyallylamine hydrochloride and two layers of sodium polystyrenesulfonate is immersed in an aqueous solution (containing 2M NaCl) alternately at 15 ° C. Formed. However, the top layer was a polyallylamine hydrochloride layer so that the surface was cationic.
[0045]
A polystyrene ultrafine particle adsorption structure in which a second polymer thin film is coated in a 15 ° C. solution in which ultrafine polystyrene particles with an average particle size of 548 nm are dispersed in pure water at a concentration of 3.8 × 10 10 particles / ml. It was immersed for ˜60 minutes, and a combination of the second charged polymer thin film and the polystyrene ultrafine particles was laminated on the surface of the polystyrene ultrafine particle adsorption structure. Meanwhile, the change in frequency was monitored by QCM, and the adsorption weight (ng / cm 2 ) of the ultrafine polystyrene particles was calculated in the same manner as in Example 1. The results are shown in FIG. As is apparent from FIG. 6, the amount of adsorption of the ultrafine polystyrene particles increased with the elapse of the immersion time.
[0046]
Further, SEM (10,000 times) was observed for the ultrafine polystyrene particles adsorbed on the surface of the second chargeable polymer thin film by being immersed for 60 minutes. The results are shown in FIG. As is apparent from FIG. 7, the second layer of ultrafine polystyrene particles was adsorbed substantially uniformly dispersed on the second layer polymer thin film. However, in FIG. 7, since the second chargeable polymer thin film is substantially transparent, the polystyrene ultrafine particles in the lower layer appear as dark particles, and the polystyrene ultrafine particles in the upper layer appear as bright particles.
[0047]
【The invention's effect】
As described above in detail, according to the present invention, the ultrafine polymer particle adsorption structure in which the ultrafine polymer particles are substantially uniformly dispersed (in a single layer) and adsorbed on the polymer thin film formed on the substrate. The body can be obtained easily and quickly. The ultrafine polymer particle adsorbing structure in which ultrafine polymer particles with high monodispersibility are adsorbed can be used for various sensors, test carriers for diagnosis, electronic materials, optical applications, and the like.
[Brief description of the drawings]
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows the structure of adsorption of ultrafine polystyrene particles obtained in Example 1, the immersion time and frequency change of a polymer thin film-coated electrode in dispersions of various concentrations of ultrafine polystyrene particles, and the adsorption weight of the ultrafine polystyrene particles. It is a graph which shows the relationship.
2 is a SEM photograph (5,000 magnifications) of the surface of the polystyrene ultrafine particle adsorption structure obtained in Example 1. FIG.
FIG. 3 shows the immersion time and frequency change of a polymer thin film-coated electrode in a dispersion of polystyrene ultrafine particles having various average particle diameters and the change in frequency of the polystyrene ultrafine particles adsorbed structure obtained in Example 3. It is a graph which shows the relationship with adsorption | suction weight.
FIG. 4 shows a case in which an electrode coated with a polymer thin film formed by adding various concentrations of NaCl is immersed in a dispersion of ultrafine polystyrene particles for the polystyrene ultrafine particle adsorption structure obtained in Example 4. It is a graph which shows the relationship between immersion time, a frequency change, and the adsorption weight of a polystyrene ultrafine particle.
5 is a SEM photograph (5,000 magnifications) of the surface of the polystyrene ultrafine particle adsorption structure obtained in Example 4. FIG.
FIG. 6 shows the relationship between the immersion time in the dispersion of the polystyrene ultrafine particles for the second layer, the frequency change, and the adsorption weight of the polystyrene ultrafine particles for the polystyrene ultrafine particle adsorption structure obtained in Example 5; It is a graph.
7 is a SEM photograph (10,000 magnifications) of the surface of the polystyrene ultrafine particle adsorption structure obtained in Example 5. FIG.

Claims (13)

基板表面に形成された荷電性高分子薄膜上に、荷電性高分子超微粒子が実質的に均一に分散して吸着していることを特徴とする高分子超微粒子吸着構造体。A polymer ultrafine particle adsorbing structure, wherein charged polymer ultrafine particles are substantially uniformly dispersed and adsorbed on a chargeable polymer thin film formed on a substrate surface. 請求項1に記載の高分子超微粒子吸着構造体において、前記荷電性高分子超微粒子が単層で吸着していることを特徴とする高分子超微粒子吸着構造体。The ultrafine polymer particle adsorption structure according to claim 1, wherein the ultrafine polymer particle is adsorbed in a single layer. 請求項1又は2に記載の高分子超微粒子吸着構造体において、前記荷電性高分子薄膜に吸着している前記荷電性高分子超微粒子のうち、単粒子で吸着しているものの割合が30%以上であることを特徴とする高分子超微粒子吸着構造体。3. The ultrafine polymer particle adsorption structure according to claim 1, wherein, among the charged ultrafine polymer particles adsorbed on the chargeable polymer thin film, the proportion of those adsorbed as single particles is 30%. The polymer ultrafine particle adsorption structure characterized by the above. 請求項1〜3のいずれかに記載の高分子超微粒子吸着構造体において、前記荷電性高分子超微粒子の平均粒径が10nm〜10μmであることを特徴とする高分子超微粒子吸着構造体。The ultrafine polymer particle adsorption structure according to any one of claims 1 to 3, wherein the charged ultrafine polymer particle has an average particle size of 10 nm to 10 µm. 請求項1〜4のいずれかに記載の高分子超微粒子吸着構造体において、前記基板表面上に前記荷電性高分子薄膜及び前記荷電性高分子超微粒子層からなる組合せが2層以上積層されていることを特徴とする高分子超微粒子吸着構造体。The polymer ultrafine particle adsorption structure according to any one of claims 1 to 4, wherein two or more combinations of the chargeable polymer thin film and the chargeable polymer ultrafine particle layer are laminated on the substrate surface. A polymer ultrafine particle adsorbing structure characterized by comprising: 請求項1〜5のいずれかに記載の高分子超微粒子吸着構造体において、前記荷電性高分子薄膜は、カチオン性の電荷を有する水溶性高分子と、アニオン性の電荷を有する水溶性高分子とが少なくとも一層ずつ交互に積層してなることを特徴とする高分子超微粒子吸着構造体。6. The ultrafine polymer particle adsorption structure according to claim 1, wherein the chargeable polymer thin film includes a water-soluble polymer having a cationic charge and a water-soluble polymer having an anionic charge. And a polymer ultrafine particle adsorbing structure, wherein at least one layer is alternately laminated. 請求項1〜6のいずれかに記載の高分子超微粒子吸着構造体を製造する方法において、荷電性高分子薄膜が形成された基板を荷電性高分子超微粒子の分散液中に浸漬し、前記荷電性高分子超微粒子を静電相互作用により実質的に均一に分散させて前記荷電性高分子薄膜上に吸着させることを特徴とする方法。The method for producing an ultrafine polymer particle adsorption structure according to any one of claims 1 to 6, wherein the substrate on which the chargeable polymer thin film is formed is immersed in a dispersion of charged polymer ultrafine particles, Charged polymer ultrafine particles are dispersed substantially uniformly by electrostatic interaction and adsorbed on the charged polymer thin film. 請求項7に記載の高分子超微粒子吸着構造体の製造方法において、前記荷電性高分子超微粒子を単層で吸着させることを特徴とする方法。8. The method for producing an ultrafine polymer particle adsorption structure according to claim 7, wherein the charged ultrafine polymer particles are adsorbed in a single layer. 請求項7又は8に記載の高分子超微粒子吸着構造体の製造方法において、前記荷電性高分子超微粒子の単粒子率を30%以上とすることを特徴とする方法。9. The method for producing an ultrafine polymer particle adsorption structure according to claim 7 or 8, wherein a single particle ratio of the charged ultrafine polymer particles is 30% or more. 請求項7〜9のいずれかに記載の高分子超微粒子吸着構造体の製造方法において、前記荷電性高分子超微粒子の平均粒径が10nm〜10μmであることを特徴とする方法。10. The method for producing a polymer ultrafine particle adsorption structure according to any one of claims 7 to 9, wherein the charged ultrafine polymer particles have an average particle size of 10 nm to 10 [mu] m. 請求項7〜10のいずれかに記載の高分子超微粒子吸着構造体の製造方法において、前記基板表面上に前記荷電性高分子薄膜及び前記荷電性高分子超微粒子層からなる組合せを2層以上積層することを特徴とする方法。The method for producing a polymer ultrafine particle adsorption structure according to any one of claims 7 to 10, wherein two or more combinations of the chargeable polymer thin film and the chargeable polymer ultrafine particle layer are formed on the substrate surface. A method characterized by laminating. 請求項7〜11のいずれかに記載の高分子超微粒子吸着構造体の製造方法において、前記荷電性高分子薄膜を、カチオン性の電荷を有する水溶性高分子と、アニオン性の電荷を有する水溶性高分子とを少なくとも一層ずつ交互に積層させて形成することを特徴とする方法。12. The method for producing an ultrafine polymer particle adsorption structure according to claim 7, wherein the chargeable polymer thin film comprises a water-soluble polymer having a cationic charge and a water-soluble polymer having an anionic charge. A method in which at least one layer of the conductive polymer is alternately laminated. 請求項12に記載の高分子超微粒子吸着構造体の製造方法において、前記荷電性高分子薄膜を形成する際に、前記水溶性高分子の溶液中に電解質を共存させることを特徴とする方法。13. The method for producing a polymer ultrafine particle adsorption structure according to claim 12, wherein an electrolyte is allowed to coexist in the solution of the water-soluble polymer when the chargeable polymer thin film is formed.
JP26779297A 1997-09-12 1997-09-12 Polymer ultrafine particle adsorption structure and method for producing the same Expired - Fee Related JP3847424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26779297A JP3847424B2 (en) 1997-09-12 1997-09-12 Polymer ultrafine particle adsorption structure and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26779297A JP3847424B2 (en) 1997-09-12 1997-09-12 Polymer ultrafine particle adsorption structure and method for producing the same

Publications (2)

Publication Number Publication Date
JPH1177908A JPH1177908A (en) 1999-03-23
JP3847424B2 true JP3847424B2 (en) 2006-11-22

Family

ID=17449665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26779297A Expired - Fee Related JP3847424B2 (en) 1997-09-12 1997-09-12 Polymer ultrafine particle adsorption structure and method for producing the same

Country Status (1)

Country Link
JP (1) JP3847424B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10022750A1 (en) * 2000-05-10 2001-11-22 Wolfgang Schuhmann Preparing surface with immobilized recognition elements, useful e.g. in biosensors, by electrodeposition of resin from emulsion containing active substances
JP5084081B2 (en) * 2001-09-27 2012-11-28 大日本印刷株式会社 Polymer fine particle layered product
KR100741242B1 (en) 2005-07-05 2007-07-19 삼성전자주식회사 Method for Dispersing Nanoparticles and Method for Producing Nanoparticles Thin Film Using the Same
KR100768632B1 (en) * 2006-10-30 2007-10-18 삼성전자주식회사 Method for dispersing nanoparticles and method for producing nanoparticles thin film using the same
DE102008043682B4 (en) * 2008-11-12 2014-01-23 Chemetall Gmbh Method for coating metallic surfaces with particles, coating produced by this method and use of the substrates coated by this method
JP2014184378A (en) * 2013-03-22 2014-10-02 Daicel Corp Cationic polymer and anionic polymer composite semipermeable membrane
EP3067462B1 (en) 2013-11-07 2018-08-22 Unicharm Corporation Composite material for absorbent article, and method for manufacturing said material
JP5975968B2 (en) * 2013-11-07 2016-08-23 ユニ・チャーム株式会社 Composite material for absorbent articles
JP6721897B2 (en) * 2016-03-17 2020-07-15 国立研究開発法人物質・材料研究機構 Nanomechanical sensor using polyallylamine hydrochloride as acceptor and acetone concentration measuring device

Also Published As

Publication number Publication date
JPH1177908A (en) 1999-03-23

Similar Documents

Publication Publication Date Title
Sun et al. Aqueous latex/ceramic nanoparticle dispersions: colloidal stability and coating properties
Kato et al. Thin multilayer films of weak polyelectrolytes on colloid particles
AU2018206760A1 (en) Encapsulation barrier stack comprising dendrimer encapsulated nanoparticles
Caruso et al. Preparation and characterization of ordered nanoparticle and polymer composite multilayers on colloids
JP3847424B2 (en) Polymer ultrafine particle adsorption structure and method for producing the same
US9595363B2 (en) Surface chemical modification of nanocrystals
JP2020505220A (en) Method for producing multilayer film on solid support using amphiphilic block copolymer
US8117902B2 (en) Nanopatterned surfaces and related methods for selective adhesion, sensing and separation
Yap et al. Colloid surface engineering via deposition of multilayered thin films from polyelectrolyte blend solutions
Park et al. Amphiphilic layer-by-layer assembly overcoming solvent polarity between aqueous and nonpolar media
Mangeney et al. Magnetic Fe2O3− polystyrene/ppy core/shell particles: bioreactivity and self-assembly
Wu et al. Polyhedral oligomeric silsesquioxane nanocomposite thin films via layer-by-layer electrostatic self-assembly
US20170120327A1 (en) Silver nanowires, and production method and dispersion of the same
JP2012246162A (en) Nano-porous thin film and method for producing the same
Zhu et al. Monolayer arrays of nanoparticles on block copolymer brush films
KR20020069210A (en) Method for forming ordered structure of fine metal particles
Sawada et al. Immobilization of highly oriented filamentous viruses onto polymer substrates
CN101808952B (en) Modified surfaces and method for modifying surface
JP4297831B2 (en) Manufacturing method of micro phase separation structure membrane with controlled orientation
US20140271444A1 (en) Fractionation of 2-dimensional plate particles by size selective adhesion with spherical particles
CN112837843A (en) Ink formula and preparation method of conductive film
US7752931B2 (en) Nanopatterned surfaces and related methods for selective adhesion, sensing and separation
Zhang et al. Controlling the assembly of nanoparticle mixtures with two orthogonal polymer complexation reactions
Ding et al. Water vapor induced phase separation: A simple and efficient method for fabricating polyetherimide microspheres
Yin et al. Low dielectric constant ultrathin polyimide films alternated by poly (amic acid) salt/poly (allylamine hydrochloride)/imogolite through layer by layer deposition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060823

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140901

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees