JP2009009703A - Organic solid electrolyte and secondary battery using this - Google Patents

Organic solid electrolyte and secondary battery using this Download PDF

Info

Publication number
JP2009009703A
JP2009009703A JP2007151262A JP2007151262A JP2009009703A JP 2009009703 A JP2009009703 A JP 2009009703A JP 2007151262 A JP2007151262 A JP 2007151262A JP 2007151262 A JP2007151262 A JP 2007151262A JP 2009009703 A JP2009009703 A JP 2009009703A
Authority
JP
Japan
Prior art keywords
solid electrolyte
organic solid
secondary battery
polymerization
polymer substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007151262A
Other languages
Japanese (ja)
Other versions
JP4985959B2 (en
Inventor
Ikuo Fukui
育生 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2007151262A priority Critical patent/JP4985959B2/en
Publication of JP2009009703A publication Critical patent/JP2009009703A/en
Application granted granted Critical
Publication of JP4985959B2 publication Critical patent/JP4985959B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic solid electrolyte of high ion conductivity which does not react with an electrochemical active material, and a secondary battery using the electrolyte. <P>SOLUTION: The organic solid electrolyte is characterized by being composed by compounding a polymer substance which is obtained by polymerizing or copolymerizing a monomer shown by a formula (1) CH<SB>2</SB>=CHCOO-(CH<SB>2</SB>)<SB>2</SB>-CN and/or a monomer shown by a formula (2) CH<SB>2</SB>=C(CH<SB>3</SB>)COO-(CH<SB>2</SB>)<SB>2</SB>-CN and an inorganic ion salt. Since the organic solid electrolyte uses the polymer substance which has high ion conductivity and has no hydroxide group, there can be provided a secondary battery that is not accompanied the generation of gas in the substance and has a great industrial value when used, for example, as the secondary battery. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は電池、エレクトロクロミック素子、センサー、アクチュエーター等に有用な高イオン伝導性を有する固体電解質、特にはシアノ基を有するモノマーを重合又は共重合して得られる高分子物質を用いた有機固体電解質及びこれを用いた2次電池に関する。   The present invention is a solid electrolyte having high ionic conductivity useful for batteries, electrochromic devices, sensors, actuators, etc., in particular, an organic solid electrolyte using a polymer material obtained by polymerizing or copolymerizing a monomer having a cyano group And a secondary battery using the same.

近年、電池、特に2次電池、即ちバッテリーへの関心が高まっている。その用途は、携帯電話、ポータブルビデオカメラ、ポータブルコンピューター、電気自動車等広範囲に亘っている。特にリチウムイオン2次電池は、従来からあるNi−MH電池、Ni−Cd電池、H2SO4−Pb電池等の水系電解液を用いるバッテリーより、高い電圧とエネルギー密度を持っている点で有利であるため、使用されている。しかし、リチウムイオン2次電池は有機系の電解液を用いることから、引火、爆発等の安全性に関する問題を有している。 In recent years, interest in batteries, particularly secondary batteries, or batteries, has increased. The applications are wide-ranging, such as mobile phones, portable video cameras, portable computers, electric vehicles and the like. Particularly lithium ion secondary batteries, Ni-MH batteries with a conventional, Ni-Cd batteries, than a battery using an aqueous electrolyte solution such as H 2 SO 4 -Pb batteries, advantageously has a high voltage and energy density Because it is used. However, since a lithium ion secondary battery uses an organic electrolyte, it has safety problems such as ignition and explosion.

一方、電解液を用いない電池、即ちイオン導電性固体からなる電解質を用いた電池の研究が行われている。一例として、ポリエチレンオキシドに過塩素酸リチウムが溶解すること(特許文献1:特開平2−56870号公報)が挙げられる。しかし、イオン導電率が十分ではなく、更に正極と負極との接触抵抗が高いため、実用性はなかった。しかしながら、それ以来、イオン伝導性高分子物質に関する研究が盛んに行われている。   On the other hand, a battery that does not use an electrolytic solution, that is, a battery that uses an electrolyte made of an ion conductive solid has been studied. As an example, lithium perchlorate is dissolved in polyethylene oxide (Patent Document 1: Japanese Patent Laid-Open No. 2-56870). However, since the ionic conductivity is not sufficient and the contact resistance between the positive electrode and the negative electrode is high, there is no practicality. However, since then, research on ion-conducting polymer materials has been actively conducted.

有機物は、無機物に比較して、比重が軽い、成形が容易である、柔軟で薄いフィルムが容易に得られる等の利点がある。一方、高分子物質固体電解質を含めた一般的な固体電解質としての要求特性は、(1)成形性、(2)高イオン伝導性、(3)安定性、即ち電気化学的活性物質と反応しないことであり、重要度は(2)、(3)、(1)の順である。従来研究されている有機物としては、上記の経緯からポリエチレン誘導体が多く、誘電体ではポリフッ化ビニリデンやポリアクリロニトリルに添加物を加えた系で、伝導率σ=10-7〜10-5(S/cm)のものが挙げられる。これら従来の高分子物質は、有機固体電解質として、応用が期待される上記電池等の実用目的を満足できる程、上記要求特性を十分に満たしていなかった。例えばポリエチレンオキサイド誘導体には低温で結晶化するという問題があり、誘電体ではポリフッ化ビニリデンの比誘電率が9.2、ポリアクリロニトリルが8.0というように、いずれも高誘電率とは言い難く、電解質を多量に含有できないことからキャリヤーイオン数が少なく、イオン伝導性の高い固体電解質は得られていない。 Compared to inorganic materials, organic materials have advantages such as a low specific gravity, easy molding, and a flexible and thin film can be easily obtained. On the other hand, the required characteristics as a general solid electrolyte including a polymer substance solid electrolyte are (1) moldability, (2) high ionic conductivity, (3) stability, that is, it does not react with an electrochemically active substance. The importance is in the order of (2), (3), and (1). As organic substances that have been studied in the past, there are many polyethylene derivatives due to the above-mentioned circumstances, and dielectrics are systems in which additives are added to polyvinylidene fluoride or polyacrylonitrile, and conductivity σ = 10 −7 to 10 −5 (S / cm). These conventional polymer substances did not sufficiently satisfy the above required characteristics to satisfy the practical purpose of the battery and the like expected to be applied as an organic solid electrolyte. For example, polyethylene oxide derivatives have a problem of crystallization at a low temperature. For dielectrics, polyvinylidene fluoride has a relative dielectric constant of 9.2, and polyacrylonitrile has a dielectric constant of 8.0. Since a large amount of electrolyte cannot be contained, a solid electrolyte having a small number of carrier ions and high ion conductivity has not been obtained.

更に、シアノ基を有する誘電体を固体電解質として応用するものとして、特許文献2(特開平4−363869号公報)が例示される。これには、ポリビニルアルコール、多糖類及びこれらの誘導体をシアノエチル基で置換した高分子物質等が示されており、リチウムイオンを用いた系で比較的高いイオン導電性が示されている。また、特許文献3(特開平9−50824号公報)にはシアノ基を有する誘電体を用いたゲル電解質が示されており、やはりリチウムイオンを用いた系で比較的高いイオン導電性が示されている。これらシアノ基を有する誘電体は、上記した(1)を十分満足し、(2)をある程度満足するものであるが、(3)の電気化学的活性物質と反応しないという要求特性が不十分であった。これらシアノ基を有する誘電体は、骨格となる高分子物質が全て水酸基を有する物質であり、その水酸基をシアノエチル基に置換することによって得られているが、その水酸基を全てシアノエチル基に置換することは現状では難しく、一定割合の水酸基が残存してしまう。また、これらシアノ基を有する誘電体をリチウムイオン2次電池の材料として使用した場合、水酸基とリチウムイオンとのアルコラート反応に起因すると推定されるガスの発生が避けられなかった。   Further, Patent Document 2 (Japanese Patent Laid-Open No. 4-363869) is exemplified as an application of a dielectric having a cyano group as a solid electrolyte. This shows a polymer substance obtained by substituting polyvinyl alcohol, polysaccharides and derivatives thereof with a cyanoethyl group, and shows relatively high ionic conductivity in a system using lithium ions. Patent Document 3 (Japanese Patent Laid-Open No. 9-50824) discloses a gel electrolyte using a dielectric material having a cyano group, and also shows a relatively high ionic conductivity in a system using lithium ions. ing. These dielectrics having a cyano group sufficiently satisfy the above (1) and satisfy (2) to some extent, but the required properties of not reacting with the electrochemically active substance of (3) are insufficient. there were. These dielectric materials having a cyano group are obtained by substituting all the hydroxyl groups with cyanoethyl groups, which are obtained by substituting the hydroxyl groups with cyanoethyl groups. Is difficult at present, and a certain proportion of hydroxyl groups remain. Further, when these dielectric materials having a cyano group are used as a material for a lithium ion secondary battery, it is inevitable that gas is generated due to an alcoholate reaction between a hydroxyl group and lithium ions.

また、特許文献4(特開平3−74419号公報)には、ビニルエーテル類とシアノエチルアクリレート(下記式(1))又はシアノエチルメタクリレート(下記式(2))のラジカル共重合体が例示されているが、十分な重合度のものが得られ難い。   Patent Document 4 (JP-A-3-74419) exemplifies a radical copolymer of vinyl ethers and cyanoethyl acrylate (the following formula (1)) or cyanoethyl methacrylate (the following formula (2)). It is difficult to obtain a polymer having a sufficient degree of polymerization.

特開平2−56870号公報JP-A-2-56870 特開平4−363869号公報JP-A-4-363869 特開平9−50824号公報Japanese Patent Laid-Open No. 9-50824 特開平3−74419号公報Japanese Patent Laid-Open No. 3-74419

本発明は、上記事情に鑑みなされたもので、電気化学的活性物質と反応しない高イオン伝導性の有機固体電解質及びこれを用いた2次電池を提供することを目的とするものである。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a highly ionic conductive organic solid electrolyte that does not react with an electrochemically active substance and a secondary battery using the same.

本発明者は、上記の課題を解決するために鋭意研究を重ねた結果、有機固体電解質を構成する有機物質として、水酸基を持たないシアノ基含有化合物を用いると、良好なイオン伝導性を示すと共に、電気化学的活性物質と反応しない有機固体電解質が得られることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventor showed good ion conductivity when a cyano group-containing compound having no hydroxyl group was used as an organic substance constituting the organic solid electrolyte. The inventors have found that an organic solid electrolyte that does not react with an electrochemically active substance can be obtained, and have completed the present invention.

従って、本発明は、以下の有機固体電解質及びこれを用いた2次電池を提供する。
請求項1:
下記式(1)で示されるモノマー及び/又は下記式(2)で示されるモノマーを重合又は共重合して得られる高分子物質と、無機イオン塩とを複合させてなることを特徴とする有機固体電解質。
CH2=CHCOO−(CH22−CN (1)
CH2=C(CH3)COO−(CH22−CN (2)
請求項2:
前記高分子物質における式(1)及び(2)のモル比率が、100:0〜50:50である請求項1記載の有機固体電解質。
請求項3:
前記無機イオン塩が、Li元素を含有する少なくとも1種の無機イオン塩を含むことを特徴とする請求項1又は2記載の有機固体電解質。
請求項4:
請求項1〜3のいずれか1項記載の有機固体電解質を正極及び負極の間に配置した2次電池。
Accordingly, the present invention provides the following organic solid electrolyte and a secondary battery using the same.
Claim 1:
An organic material obtained by combining a polymer material obtained by polymerizing or copolymerizing a monomer represented by the following formula (1) and / or a monomer represented by the following formula (2) with an inorganic ion salt: Solid electrolyte.
CH 2 = CHCOO- (CH 2) 2 -CN (1)
CH 2 = C (CH 3) COO- (CH 2) 2 -CN (2)
Claim 2:
2. The organic solid electrolyte according to claim 1, wherein a molar ratio of the formulas (1) and (2) in the polymer substance is 100: 0 to 50:50.
Claim 3:
The organic solid electrolyte according to claim 1 or 2, wherein the inorganic ion salt contains at least one inorganic ion salt containing Li element.
Claim 4:
The secondary battery which has arrange | positioned the organic solid electrolyte of any one of Claims 1-3 between the positive electrode and the negative electrode.

本発明の有機固体電解質は、イオン導電率が高いだけでなく、水酸基を持たない高分子物質を用いていることから、例えば2次電池に利用した際、実質的にガスの発生を伴わない2次電池を提供することができ、工業的価値が大きい。   Since the organic solid electrolyte of the present invention uses not only high ionic conductivity but also a polymer substance having no hydroxyl group, for example, when used in a secondary battery, the organic solid electrolyte is substantially free from gas generation 2. A secondary battery can be provided, and the industrial value is great.

本発明の有機固体電解質は、シアノ基を有する高分子物質を含むため、通常の高分子物質を含む有機材料に比較して、比誘電率が非常に高く、無機イオンの静電エネルギーの緩和に役立ち、電解質の解離が促進され、多量に複合することができ、高いイオン伝導率を有する有機固体電解質となり得るものである。   Since the organic solid electrolyte of the present invention contains a polymer material having a cyano group, it has a very high relative dielectric constant compared to an organic material containing a normal polymer material, and can reduce the electrostatic energy of inorganic ions. Useful, promotes dissociation of the electrolyte, can be combined in large amounts, and can be an organic solid electrolyte having high ionic conductivity.

具体的には、下記式(1)で示されるモノマー及び/又は下記式(2)で示されるモノマーを重合又は共重合して得られ、ジメチルホルムアミドを溶媒とする20質量%濃度の20℃における粘度が30〜8000mPa・sである高分子物質である。
CH2=CHCOO−(CH22−CN (1)
CH2=C(CH3)COO−(CH22−CN (2)
Specifically, it is obtained by polymerizing or copolymerizing a monomer represented by the following formula (1) and / or a monomer represented by the following formula (2), and having a dimethylformamide as a solvent at a concentration of 20% by mass. It is a polymer substance having a viscosity of 30 to 8000 mPa · s.
CH 2 = CHCOO- (CH 2) 2 -CN (1)
CH 2 = C (CH 3) COO- (CH 2) 2 -CN (2)

上記高分子物質は、上記式(1)で示されるモノマー及び/又は上記式(2)で示されるモノマーをラジカル重合開始剤を用いて、ラジカル重合することにより製造される。
ここで、ラジカル重合開始剤としては通常用いられるものでよいが、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、2,2’−アゾビス−2−メチルブチロニトリル等のアゾ系や、ベンゾイルパーオキサイド等の過酸化物系触媒等が挙げられる。
The polymer material is produced by radical polymerization of the monomer represented by the formula (1) and / or the monomer represented by the formula (2) using a radical polymerization initiator.
Here, as the radical polymerization initiator, those usually used may be used, but 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′- Examples thereof include azo-based catalysts such as azobis-2-methylbutyronitrile and peroxide-based catalysts such as benzoyl peroxide.

本発明に係る高分子物質は、その分子構造中にシアノ基を有することが必須であることから、特にラジカル重合開始剤としてはニトリル基を有するアゾ系重合開始剤が好ましい。重合開始剤の添加量は、モノマー全量のモル数に対するモル数比として、0.005〜0.02である。重合開始剤の添加量がこれより少なすぎると、ラジカルの失活等により重合が十分進まないことがあり、多すぎると重合反応の制御が困難となる他、得られる高分子物質の重合度が非常に大きく溶剤に不溶になる等、その後の使用に供することが難しい場合がある。   Since the polymer substance according to the present invention has a cyano group in its molecular structure, an azo polymerization initiator having a nitrile group is particularly preferable as the radical polymerization initiator. The addition amount of a polymerization initiator is 0.005-0.02 as mole number ratio with respect to the mole number of monomer whole quantity. If the addition amount of the polymerization initiator is too small, the polymerization may not proceed sufficiently due to radical deactivation, etc., and if it is too large, it becomes difficult to control the polymerization reaction, and the degree of polymerization of the resulting polymer substance is high. It may be difficult to use for subsequent use, for example, it becomes very insoluble in a solvent.

また、重合反応を制御するために、ラウリルメルカプタン等の連鎖移動剤を用いることも可能である。この場合、連鎖移動剤の添加量は、重合開始剤のモル数に対するモル数比として、0.05〜1.0である。連鎖移動剤の添加量がこれより少ないと、重合開始剤の添加量によっては重合反応の制御が困難になる等の不都合を生じ、これより多いと重合反応が十分に進まない場合がある。   In order to control the polymerization reaction, it is also possible to use a chain transfer agent such as lauryl mercaptan. In this case, the addition amount of the chain transfer agent is 0.05 to 1.0 as a mole number ratio to the mole number of the polymerization initiator. If the addition amount of the chain transfer agent is less than this, there are disadvantages such as difficulty in controlling the polymerization reaction depending on the addition amount of the polymerization initiator, and if it is more than this, the polymerization reaction may not proceed sufficiently.

重合方法としては、塊状重合、溶液重合、懸濁重合、乳化重合等、通常一般的に知られている方法を用いることができる。溶液重合の場合の重合溶媒としては、アセトン、N,N’−ジメチルホルムアミド、エステル類、エーテル類等が例示されるが、モノマーを溶解することができる溶媒で、重合反応を阻害しない溶媒であれば、特に限定されない。重合反応後の精製工程を考慮すると、晶出溶剤との混和性及び水との混和性がある溶媒が好ましく、この点においてアセトン、N,N’−ジメチルホルムアミド等が好ましい。また、重合溶媒中のモノマー濃度も特に制限されないものの、重合反応を溶液重合として行う場合、重合溶媒中のモノマー濃度があまり希薄であると、重合反応が十分に進まないことがあるため、10質量%以上が好ましい。なお、重合溶媒を使用しない場合は、塊状重合となる。   As the polymerization method, generally known methods such as bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization can be used. Examples of the polymerization solvent in the case of solution polymerization include acetone, N, N′-dimethylformamide, esters, ethers, etc., but any solvent that can dissolve the monomer and does not inhibit the polymerization reaction. There is no particular limitation. Considering the purification step after the polymerization reaction, a solvent that is miscible with the crystallization solvent and miscible with water is preferable. In this respect, acetone, N, N′-dimethylformamide, and the like are preferable. In addition, although the monomer concentration in the polymerization solvent is not particularly limited, when the polymerization reaction is performed as solution polymerization, if the monomer concentration in the polymerization solvent is too dilute, the polymerization reaction may not sufficiently proceed. % Or more is preferable. When no polymerization solvent is used, bulk polymerization is performed.

式(1)のシアノエチルアクリレートの単独重合物は、比誘電率が高く軟化温度が低い傾向を示すが、式(2)のシアノエチルメタクリレートの単独重合物は、シアノエチルアクリレートの単独重合物に比較して、比誘電率が低く軟化温度が高い傾向を示す。比誘電率に関しては、モノマーとして、シアノエチルアクリレートとシアノエチルメタクリレートを比較した場合、双極子基であるシアノエチル基の分子内含量はシアノエチルアクリレートの方がシアノエチルメタクリレートより高いことによる。一方、軟化温度に関しては、アクリレート単独重合物とメタクリレート単独重合物を比較した場合、一般にメタクリレート単独重合物の方が高いことは周知の事実であり、シアノエチル系モノマーの重合物であっても同様である。   Although the homopolymer of cyanoethyl acrylate of formula (1) tends to have a high relative dielectric constant and a low softening temperature, the homopolymer of cyanoethyl methacrylate of formula (2) is less than the homopolymer of cyanoethyl acrylate. The dielectric constant tends to be low and the softening temperature tends to be high. Regarding the relative dielectric constant, when cyanoethyl acrylate and cyanoethyl methacrylate are compared as monomers, the content of cyanoethyl groups that are dipole groups is higher in cyanoethyl acrylate than in cyanoethyl methacrylate. On the other hand, regarding the softening temperature, when comparing acrylate homopolymers and methacrylate homopolymers, it is a well-known fact that methacrylate homopolymers are generally higher, and the same applies to polymers of cyanoethyl monomers. is there.

本発明の高分子物質がイオン導電性固体電解質として機能するのは双極子基であるシアノエチル基によると考えられることから、比誘電率が高い方がイオン導電率が高くなると考えられる。また、軟化温度が高すぎると駆動中における固体電解質層の柔軟性が劣り安定した性能を示さないことがあることから、上記高分子物質における式(1)と(2)のモル比率は100:0〜50:50、好ましくは90:10〜50:50が好ましい。式(2)のモル比率がこれより多いと、軟化温度が高くなり比誘電率が低下する場合がある。   Since it is considered that the polymer substance of the present invention functions as an ion conductive solid electrolyte by a cyanoethyl group which is a dipole group, it is considered that the higher the relative dielectric constant, the higher the ionic conductivity. In addition, if the softening temperature is too high, the solid electrolyte layer during driving is inferior in flexibility and may not show stable performance. Therefore, the molar ratio of the formulas (1) and (2) in the polymer material is 100: 0-50: 50, preferably 90: 10-50: 50 is preferred. When the molar ratio of the formula (2) is larger than this, the softening temperature may be increased and the relative dielectric constant may be lowered.

本発明の有機固体電解質は、上記高分子物質の他に無機イオン塩を複合させることにより得られる。この無機イオン塩には、イオン導電性金属塩として通常の電気化学素子に用いるものであれば特に制限はないが、Li、Na、K、Cs、Ag、Cu及びMgのうちの少なくとも1種の元素を含むものである。具体的にはLiClO4、LiI、LiSCN、LiBF4、LiAsF5、LiCF3SO3、LiPF4、NaI、NaSCN、NaBr、NaPF5、KI、KSCN、KPF5、KAsF5、CsSCN、CsPF5、AgNO3、CuC12Mg(ClO42、Rb41.75Cl3.25、Li(CF3SO22N、Li(C25SO22N、Li(CF3SO22C、Li(C25SO23C等が挙げられ、これらはその1種又は2種以上の組み合わせで使用される。 The organic solid electrolyte of the present invention can be obtained by combining an inorganic ion salt in addition to the above polymer substance. The inorganic ion salt is not particularly limited as long as it is used for an ordinary electrochemical element as an ion conductive metal salt, but at least one of Li, Na, K, Cs, Ag, Cu and Mg. Contains elements. Specifically, LiClO 4 , LiI, LiSCN, LiBF 4 , LiAsF 5 , LiCF 3 SO 3 , LiPF 4 , NaI, NaSCN, NaBr, NaPF 5 , KI, KSCN, KPF 5 , KAsF 5 , CsSCN, CsPF 5 , AgNO 3 , CuC 12 Mg (ClO 4 ) 2 , Rb 4 I 1.75 Cl 3.25 , Li (CF 3 SO 2 ) 2 N, Li (C 2 F 5 SO 2 ) 2 N, Li (CF 3 SO 2 ) 2 C, li (C 2 F 5 SO 2 ) 3 C and the like, which are used alone or in combination of two or more thereof.

また、無機イオン塩の添加量は、高分子物質の質量に対して0.01〜50質量%、特に0.1〜30質量%が好ましい。無機イオン塩の添加量がこれよりも少ない場合はイオン濃度が低すぎて実用上の導電性が得られなく、多すぎると高分子物質中にイオンが溶解できず析出する場合がある。   Moreover, the addition amount of the inorganic ion salt is preferably 0.01 to 50% by mass, particularly preferably 0.1 to 30% by mass with respect to the mass of the polymer substance. When the addition amount of the inorganic ion salt is less than this, the ion concentration is too low to obtain practical conductivity, and when it is too much, ions may not be dissolved in the polymer substance and may be precipitated.

本発明の高分子物質の少なくとも一種と無機イオン塩との複合方法は特に制限はなく、例えば本発明の重合体及び共重合体の少なくとも一種と無機イオン塩とを必要に応じてアセトン等の溶媒に溶解して均一混合し、製膜して乾燥する方法、本発明に示す重合体及び共重合体の少なくとも一種と無機イオンとを常温又は加熱下に機械的に混練する方法等任意に選択することができる。また、溶液法で製膜する場合、減圧下で加熱して固体電解質膜を得ることができるが、一般的なリチウムイオン2次電池に使用される液体電解液、例えばエチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ−ブチロラクトン等の非水系電解液に溶解して行うこともできる。この際、減圧下で加熱して乾固した固体電解質膜を得ることもできるが、適切な任意の量の溶媒を残留させることにより、本発明の高分子物質に対するイオン導電性金属塩の溶解量を増加させたり、高分子物質中に溶解した金属イオンの移動性を向上させることもできる。   There are no particular restrictions on the method of combining at least one polymer substance of the present invention with an inorganic ion salt. For example, at least one of the polymer and copolymer of the present invention and an inorganic ion salt may be combined with a solvent such as acetone as necessary. A method of dissolving and dissolving uniformly in a film, forming a film and drying, a method of mechanically kneading at least one of the polymer and copolymer shown in the present invention and inorganic ions at room temperature or under heating is arbitrarily selected. be able to. In addition, when a film is formed by a solution method, a solid electrolyte membrane can be obtained by heating under reduced pressure. However, liquid electrolytes used for general lithium ion secondary batteries such as ethylene carbonate, propylene carbonate, dimethyl It can also be carried out by dissolving in a non-aqueous electrolyte such as carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyrolactone. At this time, it is possible to obtain a solid electrolyte membrane dried by heating under reduced pressure, but by leaving an appropriate arbitrary amount of solvent, the dissolved amount of the ion conductive metal salt in the polymer substance of the present invention And the mobility of metal ions dissolved in the polymer substance can be improved.

更に、乾燥して得られた固体電解質膜に後から上記の非水系電解液の適切な量を加えて含浸させることによっても、同様の効果を得ることができる。また、ポリエステル等一般的な高分子物質の体積固有抵抗値が1015(Ω・cm)以上と高いことが知られていることから、比較的比誘電率が高いポリフッ化ビニリデンでさえも1014(Ω・cm)程度であるのに対し、本発明の高分子物質の体積固有抵抗値は1012(Ω・cm)程度と低く、正極及び負極の構成材料として使用した場合、その接触抵抗を低減する効果が期待される。 Further, the same effect can be obtained by adding an appropriate amount of the above non-aqueous electrolyte later and impregnating the solid electrolyte membrane obtained by drying. Further, since it is known that the volume resistivity of a general polymer substance such as polyester is as high as 10 15 (Ω · cm) or more, even polyvinylidene fluoride having a relatively high relative dielectric constant is 10 14. Whereas it is about (Ω · cm), the volume resistivity of the polymer substance of the present invention is as low as about 10 12 (Ω · cm). A reduction effect is expected.

次に、本発明の2次電池について説明する。
本発明の2次電池は、上記有機固体電解質を正極及び負極の間に配置することによって形成される。
Next, the secondary battery of the present invention will be described.
The secondary battery of the present invention is formed by arranging the organic solid electrolyte between a positive electrode and a negative electrode.

正極に使用される正極活物質としては、CuO、Cu2O、Ag2O、CuS、CuSO2、TiS、SiO2、SnO、V25、V613、VOx、Nb25、Bi23,CrO3、Cr23、MoO3、MoS2、WO3、SeO2、MnO2、Mn24、Fe23、FeO、Fe34、Ni23、NiO、CoO2等の金属化合物や、ポリピロール、ポリアセン等の導電性高分子物質も例示されるが、これらに限定されるものではない。 As the positive electrode active material used for the positive electrode, CuO, Cu 2 O, Ag 2 O, CuS, CuSO 2 , TiS, SiO 2 , SnO, V 2 O 5 , V 6 O 13 , VO x , Nb 2 O 5 Bi 2 O 3 , CrO 3 , Cr 2 O 3 , MoO 3 , MoS 2 , WO 3 , SeO 2 , MnO 2 , Mn 2 O 4 , Fe 2 O 3 , FeO, Fe 3 O 4 , Ni 2 O 3 Examples thereof include, but are not limited to, metal compounds such as NiO and CoO 2 and conductive polymer substances such as polypyrrole and polyacene.

負極に使用される負極活物質としては、アルカリ金属、アルカリ合金、上記正極活物質で示した化合物及び炭素材料を挙げることができる。アルカリ金属及びアルカリ合金としては、Li、Li−Al、Li−Mg、Li−Al−Ni等のLi系が特に好ましい。更に、正極及び負極を作製する場合、結着剤や導電剤等を添加することが一般的であり、その使用される物質等は特に限定されない。   Examples of the negative electrode active material used for the negative electrode include alkali metals, alkali alloys, compounds shown as the positive electrode active material, and carbon materials. As the alkali metal and the alkali alloy, Li series such as Li, Li—Al, Li—Mg, Li—Al—Ni is particularly preferable. Furthermore, when producing a positive electrode and a negative electrode, it is common to add a binder, a conductive agent, and the like, and the materials used are not particularly limited.

以下、本発明の具体的実施態様を実施例及び比較例に基づいて更に詳細に説明する。   Hereinafter, specific embodiments of the present invention will be described in more detail based on examples and comparative examples.

[実施例1]
冷却管及び撹拌機を持つ3つ口フラスコ(500ml)を窒素置換した後、通常の減圧蒸留法で蒸留した2−シアノエチルアクリレートモノマーを70g加えた。次いで重合溶媒として脱水処理を行ったアセトンを163g、モノマーに対するモル数比が0.01となるようラジカル開始剤として2,2’−アゾビスイソブチロニトリルを加え、更に連鎖移動剤として0.001モルのラウリルメルカプタンを加えた。窒素導入管を接続し、反応温度60℃で反応時間300分の条件で反応を行った。終了後、室温まで冷却し、過剰量のメタノールへ反応液を析出させ、更に析出物をアセトンに溶解し、過剰量のメタノールで析出することを数回繰り返した後、精製された析出物を乾燥し、ジメチルホルムアミドを溶媒とする20質量%の20℃における粘度が305mPa・s、40℃/1kHzの比誘電率が約18、軟化温度が約30℃のポリ(2−シアノエチルアクリレート)を約63g得た。
[Example 1]
A three-necked flask (500 ml) having a condenser and a stirrer was purged with nitrogen, and 70 g of 2-cyanoethyl acrylate monomer distilled by a normal vacuum distillation method was added. Next, 163 g of acetone subjected to dehydration treatment as a polymerization solvent, 2,2′-azobisisobutyronitrile as a radical initiator were added so that the molar ratio with respect to the monomer was 0.01, and further 0.20 as a chain transfer agent. 001 mole of lauryl mercaptan was added. A nitrogen introduction tube was connected, and the reaction was performed at a reaction temperature of 60 ° C. under a reaction time of 300 minutes. After completion, the mixture is cooled to room temperature, the reaction solution is precipitated in an excess amount of methanol, and the precipitate is dissolved in acetone and precipitated with an excess amount of methanol several times, and then the purified precipitate is dried. And about 63 g of poly (2-cyanoethyl acrylate) having a viscosity of 20% by mass using dimethylformamide as a solvent, a viscosity at 20 ° C. of 305 mPa · s, a relative dielectric constant of 40 ° C./1 kHz of about 18, and a softening temperature of about 30 ° C. Obtained.

得られたポリ(2−シアノエチルアクリレート)2gを10gのアセトンに溶解し、これに0.8gのLiClO4を溶解した3gのアセトンを加えて均一に混合した。この溶液をテフロン(登録商標)製の板上に流延し、試料を室温で24時間静置して過剰の溶媒を除去した後、60℃/24時間減圧乾燥して、厚さ約50μmのイオン導電性固体電解質膜を得た。得られた膜は透明でLiClO4を均一に混合していた。 The obtained poly (2-cyanoethyl acrylate) 2 g was dissolved in 10g of acetone and uniformly mixed with it to a 3g of acetone was dissolved LiClO 4 in 0.8 g. This solution was cast on a Teflon (registered trademark) plate, and the sample was allowed to stand at room temperature for 24 hours to remove excess solvent, and then dried under reduced pressure at 60 ° C./24 hours to obtain a thickness of about 50 μm. An ion conductive solid electrolyte membrane was obtained. The obtained film was transparent and LiClO 4 was uniformly mixed.

この膜を直径10mm円盤状に切り出し、両面にステンレス極板を挟んで電極を形成し、周波数5Hz〜5MHzの交流インピーダンス測定装置マルチフリクエンシーLCRメーターモデル4192A(横河ヒューレットパッカード社製)を用いて、複素インピーダンス表示をコンピューター処理してイオン伝導度を算出した。その結果、25℃で1.1×10-3(S/cm)の値を得た。 This film is cut into a disk shape with a diameter of 10 mm, electrodes are formed by sandwiching a stainless steel plate on both sides, and using an AC impedance measuring device multifrequency LCR meter model 4192A (manufactured by Yokogawa Hewlett Packard) with a frequency of 5 Hz to 5 MHz. Ion conductivity was calculated by computer processing of the complex impedance display. As a result, a value of 1.1 × 10 −3 (S / cm) was obtained at 25 ° C.

正極は、LiCoO2とケッチェンブラックの質量比率が90:1になるよう混合したものと、ポリ(2−シアノエチルアクリレート)2gを10gのアセトンに溶解した液とを、質量比1:2で混合した。この混合物をアルミニウムからなる正極集電板上にキャストし、窒素雰囲気下、加熱乾燥して作製した。負極は、リチウム金属をステンレス集電板に圧着して作製した。 For the positive electrode, a mixture of LiCoO 2 and Ketjen Black in a mass ratio of 90: 1 and a solution of 2 g of poly (2-cyanoethyl acrylate) dissolved in 10 g of acetone are mixed at a mass ratio of 1: 2. did. This mixture was cast on a positive electrode current collector plate made of aluminum, and prepared by heating and drying in a nitrogen atmosphere. The negative electrode was prepared by pressure bonding lithium metal to a stainless current collector.

得られたイオン導電性固体電解質膜を作製した正極及び負極で挟み込み、イオン導電性固体電解質膜の厚みが25μmになるように窒素雰囲気下、80℃で加熱圧着した。   The obtained ion conductive solid electrolyte membrane was sandwiched between the prepared positive electrode and negative electrode, and heat-pressed at 80 ° C. in a nitrogen atmosphere so that the thickness of the ion conductive solid electrolyte membrane was 25 μm.

上記の手順で作製した2次電池をステンレス製の耐圧容器に入れ、窒素置換した後、常圧の状態で封印した。次に、0.1mA/cm2の電流を用いて電池電圧が4.2Vになるまで充電し、電圧が2.75Vになるまで0.1mA/cm2の電流で放電することを300回繰り返したところ、容器中の内圧の上昇は認められなかった。 The secondary battery produced by the above procedure was placed in a stainless steel pressure vessel, purged with nitrogen, and then sealed at normal pressure. Then, until the battery voltage reached 4.2V with a current of 0.1 mA / cm 2, repeated 300 times that the voltage discharge at 0.1 mA / cm 2 current until 2.75V As a result, no increase in the internal pressure in the container was observed.

[実施例2]
2−シアノエチルアクリレートモノマーと2−シアノエチルメタアクリレートモノマーをモル比率が1:1になるようにして合計で73.92gとした以外は、実施例1と同様の操作を行い、ジメチルホルムアミドを溶媒とする20質量%の20℃における粘度が355mPa・s、40℃/1kHzの比誘電率が約15、軟化温度が約50℃の共重合体を約66g得た。
[Example 2]
The same operation as in Example 1 was carried out except that 2-cyanoethyl acrylate monomer and 2-cyanoethyl methacrylate monomer were adjusted to a molar ratio of 1: 1 so that the total amount was 73.92 g, and dimethylformamide was used as a solvent. About 66 g of a 20 mass% copolymer having a viscosity at 20 ° C. of 355 mPa · s, a relative dielectric constant of 40 ° C./1 kHz of about 15, and a softening temperature of about 50 ° C. was obtained.

得られた共重合体を用いる以外は実施例1と同様に行い、25℃で0.9×10-3(S/cm)のイオン伝導度値を得た。また、実施例1と同様に電池を入れた耐圧容器内の内圧上昇は認められなかった。 Except using the obtained copolymer, it carried out similarly to Example 1, and obtained the ion conductivity value of 0.9x10 < -3 > (S / cm) at 25 degreeC. Further, as in Example 1, no increase in internal pressure was observed in the pressure vessel containing the battery.

[比較例1]
イオン導電性高分子物質として、シアノエチルポリビニルアルコール(信越化学工業株式会社製 CR−V)を用いた以外は実施例1と同様にして評価を行った。使用したシアノエチルポリビニルアルコールは、40℃/1kHzの比誘電率が約23、軟化温度が約30℃であり、分子内に約20モル%の水酸基を有するものである。
[Comparative Example 1]
Evaluation was performed in the same manner as in Example 1 except that cyanoethyl polyvinyl alcohol (CR-V manufactured by Shin-Etsu Chemical Co., Ltd.) was used as the ion conductive polymer substance. The cyanoethyl polyvinyl alcohol used has a relative dielectric constant of about 23 ° C. at 40 ° C./1 kHz, a softening temperature of about 30 ° C., and has about 20 mol% of hydroxyl groups in the molecule.

イオン伝導率値は、25℃で8×10-5(S/cm)と低く、実施例1と同様に電池を入れた耐圧容器内の圧力は約5%の上昇が認められた。 The ionic conductivity value was as low as 8 × 10 −5 (S / cm) at 25 ° C., and as in Example 1, the pressure in the pressure vessel containing the battery was found to increase by about 5%.

Claims (4)

下記式(1)で示されるモノマー及び/又は下記式(2)で示されるモノマーを重合又は共重合して得られる高分子物質と、無機イオン塩とを複合させてなることを特徴とする有機固体電解質。
CH2=CHCOO−(CH22−CN (1)
CH2=C(CH3)COO−(CH22−CN (2)
An organic material obtained by combining a polymer material obtained by polymerizing or copolymerizing a monomer represented by the following formula (1) and / or a monomer represented by the following formula (2) with an inorganic ion salt: Solid electrolyte.
CH 2 = CHCOO- (CH 2) 2 -CN (1)
CH 2 = C (CH 3) COO- (CH 2) 2 -CN (2)
前記高分子物質における式(1)及び(2)のモル比率が、100:0〜50:50である請求項1記載の有機固体電解質。   2. The organic solid electrolyte according to claim 1, wherein a molar ratio of the formulas (1) and (2) in the polymer substance is 100: 0 to 50:50. 前記無機イオン塩が、Li元素を含有する少なくとも1種の無機イオン塩を含むことを特徴とする請求項1又は2記載の有機固体電解質。   The organic solid electrolyte according to claim 1 or 2, wherein the inorganic ion salt contains at least one inorganic ion salt containing Li element. 請求項1〜3のいずれか1項記載の有機固体電解質を正極及び負極の間に配置した2次電池。   The secondary battery which has arrange | positioned the organic solid electrolyte of any one of Claims 1-3 between the positive electrode and the negative electrode.
JP2007151262A 2006-06-12 2007-06-07 Organic solid electrolyte and secondary battery using the same Active JP4985959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007151262A JP4985959B2 (en) 2006-06-12 2007-06-07 Organic solid electrolyte and secondary battery using the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2006161883 2006-06-12
JP2006161883 2006-06-12
JP2007142959 2007-05-30
JP2007142959 2007-05-30
JP2007151262A JP4985959B2 (en) 2006-06-12 2007-06-07 Organic solid electrolyte and secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2009009703A true JP2009009703A (en) 2009-01-15
JP4985959B2 JP4985959B2 (en) 2012-07-25

Family

ID=40324604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007151262A Active JP4985959B2 (en) 2006-06-12 2007-06-07 Organic solid electrolyte and secondary battery using the same

Country Status (1)

Country Link
JP (1) JP4985959B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016129238A (en) * 2012-07-20 2016-07-14 旭化成株式会社 Coating liquid for forming semiconductor film, semiconductor film, and solar cell
WO2017098851A1 (en) * 2015-12-07 2017-06-15 ソニー株式会社 Secondary battery, battery pack, electric vehicle, power storage system, electric tool, and electronic appliance
US9929428B2 (en) 2011-05-11 2018-03-27 Seiko Epson Corporation Polymer solid electrolyte, method of production thereof, and lithium ion secondary battery
WO2020055122A1 (en) * 2018-09-10 2020-03-19 주식회사 엘지화학 Thermosetting electrolyte composition for lithium secondary battery, gel polymer electrolyte prepared therefrom, and lithium secondary battery comprising same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04173856A (en) * 1990-11-06 1992-06-22 Nok Corp Solid polymer electrolyte
JPH1095811A (en) * 1997-07-08 1998-04-14 Sunstar Eng Inc Ionically conductive polymer material
JP2000294284A (en) * 1999-04-07 2000-10-20 Mitsubishi Chemicals Corp High polymer gel electrolyte and lithium secondary battery using it
JP2000311715A (en) * 1999-04-26 2000-11-07 Mitsubishi Chemicals Corp Lithium secondary battery
JP2001115005A (en) * 1999-10-20 2001-04-24 Nippon Zeon Co Ltd Rubber composition for roll and rubber roll comprising the same
JP2003317540A (en) * 2002-04-22 2003-11-07 Nippon Kayaku Co Ltd Resin composition for polymer solid electrolyte, polymer solid electrolyte and polymer cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04173856A (en) * 1990-11-06 1992-06-22 Nok Corp Solid polymer electrolyte
JPH1095811A (en) * 1997-07-08 1998-04-14 Sunstar Eng Inc Ionically conductive polymer material
JP2000294284A (en) * 1999-04-07 2000-10-20 Mitsubishi Chemicals Corp High polymer gel electrolyte and lithium secondary battery using it
JP2000311715A (en) * 1999-04-26 2000-11-07 Mitsubishi Chemicals Corp Lithium secondary battery
JP2001115005A (en) * 1999-10-20 2001-04-24 Nippon Zeon Co Ltd Rubber composition for roll and rubber roll comprising the same
JP2003317540A (en) * 2002-04-22 2003-11-07 Nippon Kayaku Co Ltd Resin composition for polymer solid electrolyte, polymer solid electrolyte and polymer cell

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9929428B2 (en) 2011-05-11 2018-03-27 Seiko Epson Corporation Polymer solid electrolyte, method of production thereof, and lithium ion secondary battery
JP2016129238A (en) * 2012-07-20 2016-07-14 旭化成株式会社 Coating liquid for forming semiconductor film, semiconductor film, and solar cell
US10535788B2 (en) 2012-07-20 2020-01-14 Asahi Kasei Kabushiki Kaisha Semiconductor film and semiconductor element
US10944018B2 (en) 2012-07-20 2021-03-09 Asahi Kasei Kabushiki Kaisha Semiconductor film and semiconductor element
WO2017098851A1 (en) * 2015-12-07 2017-06-15 ソニー株式会社 Secondary battery, battery pack, electric vehicle, power storage system, electric tool, and electronic appliance
JPWO2017098851A1 (en) * 2015-12-07 2018-08-30 株式会社村田製作所 Secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
US10811723B2 (en) 2015-12-07 2020-10-20 Murata Manufacturing Inc. Secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
WO2020055122A1 (en) * 2018-09-10 2020-03-19 주식회사 엘지화학 Thermosetting electrolyte composition for lithium secondary battery, gel polymer electrolyte prepared therefrom, and lithium secondary battery comprising same
CN112074982A (en) * 2018-09-10 2020-12-11 株式会社Lg化学 Thermosetting electrolyte composition for lithium secondary battery, gel polymer electrolyte prepared from the thermosetting electrolyte composition, and lithium secondary battery comprising the electrolyte
CN112074982B (en) * 2018-09-10 2023-10-13 株式会社Lg新能源 Thermosetting electrolyte composition, gel polymer electrolyte prepared from the same, and lithium secondary battery including the electrolyte
US11848416B2 (en) 2018-09-10 2023-12-19 Lg Energy Solution, Ltd. Thermosetting electrolyte composition for lithium secondary battery, gel polymer electrolyte prepared therefrom, and lithium secondary battery including the electrolyte

Also Published As

Publication number Publication date
JP4985959B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
TWI452746B (en) Organic solid electrolyte and the use of its battery
JP4741140B2 (en) POLYMER ELECTROLYTE, BATTERY CELL CONTAINING POLYMER ELECTROLYTE, AND METHOD FOR PRODUCING POLYMER ELECTROLYTE
KR102303831B1 (en) Polymer, electrolyte comprising the polymer, and lithium secondary battery comprising the electrolyte
KR101100539B1 (en) Novel polymer electrolyte and electrochemical device
JP2000285929A (en) Solid electrolyte battery
KR101458468B1 (en) Gel polymer electrolyte containing new copolymers and lithium-polymer secondary battery using the same
US6677084B1 (en) Solid crosslinked-polymer electrolyte and use thereof
JP2011129400A (en) Secondary battery having ionic liquid and method of manufacturing the same
JP5076884B2 (en) Secondary battery electrode and secondary battery employing the electrode
JP4985959B2 (en) Organic solid electrolyte and secondary battery using the same
JP4781547B2 (en) Polymer gel electrolyte and battery
JP2006219561A (en) Polymer electrolyte, electrolyte film using the same and electrochemical element
JP4214691B2 (en) Electrode material, method for producing the electrode material, battery electrode using the electrode material, and battery using the electrode
JP4017091B2 (en) Polymerizable compound, polymer solid electrolyte using the same, and use thereof
JPH1180296A (en) Gel form polymer electrolyte
JPH07272759A (en) High polymer solid electrolytic battery
WO2019178972A1 (en) Polymer electrolyte for lithium ion battery and polymer battery
JP3843505B2 (en) Polymer electrolyte and battery
US12100805B2 (en) Polymer electrolyte for lithium ion battery and polymer battery
JPH0737419A (en) Polymer electrolyte
JP3115165B2 (en) Lithium secondary battery
JP2000228218A (en) Lithium battery having high polymer electrolyte
JP2005056857A (en) Polymeric compound, polymer solid electrolyte using the same and its application
JP2004134293A (en) Electrode material, method of manufacturing electrode, electrode, and battery
JP5600559B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120404

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120417

R150 Certificate of patent or registration of utility model

Ref document number: 4985959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3