JPH0417361B2 - - Google Patents

Info

Publication number
JPH0417361B2
JPH0417361B2 JP20147483A JP20147483A JPH0417361B2 JP H0417361 B2 JPH0417361 B2 JP H0417361B2 JP 20147483 A JP20147483 A JP 20147483A JP 20147483 A JP20147483 A JP 20147483A JP H0417361 B2 JPH0417361 B2 JP H0417361B2
Authority
JP
Japan
Prior art keywords
chip area
patterns
pattern
reticle
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20147483A
Other languages
Japanese (ja)
Other versions
JPS6093305A (en
Inventor
Atsushi Myahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58201474A priority Critical patent/JPS6093305A/en
Publication of JPS6093305A publication Critical patent/JPS6093305A/en
Publication of JPH0417361B2 publication Critical patent/JPH0417361B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明はフオトマスクの自動検査方法に係り、
特に繰り返しパターンが配設された領域が広い面
積を占めるメモリ素子等のチツプ領域パターンが
一基板上に複数個整列配設されてなるギヤング・
レチクル(マルチ・レチクル)のパターンを自動
的に検査する方法に関する。
[Detailed Description of the Invention] (a) Technical Field of the Invention The present invention relates to an automatic inspection method for photomasks,
In particular, large-sized chips, such as memory devices, in which multiple repeating patterns occupy a large area, are arranged in multiple chip areas on one substrate.
The present invention relates to a method for automatically inspecting a reticle (multi-reticle) pattern.

(b) 技術の背景 同種のチツプ領域パターンが一基板上に多数個
整列配設されてなるフオトマスクは、レチクル上
に実寸法の5〜10倍の大きさに形成されたチツプ
領域パターンの像をステツプアンドリピート法を
用いてマスク基板上に実寸法に縮小投影すること
によつて形成される。
(b) Background of the technology A photomask, which is composed of a large number of chip area patterns of the same type arranged on one substrate, produces an image of the chip area pattern formed on the reticle at a size 5 to 10 times the actual size. It is formed by reducing and projecting onto a mask substrate to the actual size using a step-and-repeat method.

従来このレチクルは1枚のレチクル基板に1個
のチツプ領域パターンが形成された構造であつた
が、最近では1枚のレチクル基板に複数個の同種
チツプ領域パターンを整列形成してなるギヤン
グ・レチクルを用い、ステツプ露光の回数を減少
せしめることによりフオトマスクの製造効率の向
上が図られている。
Conventionally, this reticle had a structure in which one chip area pattern was formed on one reticle substrate, but recently, a gigantic reticle has a structure in which multiple chip area patterns of the same type are formed in alignment on one reticle substrate. The production efficiency of photomasks has been improved by reducing the number of step exposures.

このようなギヤング・レチクルに於ても通常の
レチクル同様、該レチクルに欠陥があつた際に
は、フオトマスクに形成されるチツプ領域パター
ンに規則的に欠陥を生じ、その品質が極度に低下
する。従つて該ギヤング・レチクルのパターン検
査は極めて重要である。
Similar to a normal reticle, when a defect occurs in such a gigantic reticle, defects occur regularly in the chip area pattern formed on the photomask, and its quality is extremely degraded. Therefore, pattern inspection of the Guyang reticle is extremely important.

(c) 従来技術と問題点 該ギヤング・レチクルのパターンを自動的に検
査する際には、通常フオトマスクで行われるのと
同様な比較検査方法が用いられる。この比較検査
方法は、マスク基板上を例えば隣接する2個のチ
ツプ領域パターンの対応する同じ場所を同時に視
野におさめる一対の撮像手段で走査し、各々の撮
像手段より得られる映像信号を比較して、チツプ
領域パターンの相違の有無を検出する方法であ
る。
(c) Prior Art and Problems When automatically inspecting the Gu Young reticle pattern, a comparative inspection method similar to that commonly used for photomasks is used. This comparative inspection method scans the mask substrate with a pair of imaging means that simultaneously capture the same corresponding locations of two adjacent chip area patterns in the field of view, and compares the video signals obtained from each imaging means. This is a method of detecting the presence or absence of a difference in chip area patterns.

第1図は上記ギヤング・レチクルの検査に用い
られる自動マスク検査装置の主な機能構成の一例
を模式的に示したブロツク図で、図中1は検査し
ようとするギヤング・レチクル、C1,C2は該ギ
ヤング・レチクル上に配設されているチツプ領域
パターン、2はX−Y方向に摺動自在なX−Yス
テージ(視野の走査に用いる)、3a,3bは一
対の照明装置、4a,4bは一対の顕微鏡、5
a,5bはそれぞれの顕微鏡の光学像を電気信号
に変換する一対の光電変換素子、6a,6bはそ
れぞれの映像電気信号を2値化する一対の信号2
値化部、7a,7bはそれぞれの2値化映像信号
により画面メモリを形成する一対の画面メモリ形
成部、8a,8bはそれぞれの画面メモリ情報を
確認する一対の画面メモリ認識部、9はそれぞれ
の画面メモリ認識部から送入された画面メモリ情
報を比較するメモリパターン形状比較部、10は
上記比較部に於て二つの画面メモリ情報が一致し
ない時に信号を出力する不良信号出力部、11は
前記不良信号によつてON−OFFする検査情報出
力ゲート、12は前記比較部に於て二つの画面メ
モリ情報が一致しない時その座標位置が書込まれ
る欠陥座標メモリ、13はステージ駆動部であ
る。
FIG. 1 is a block diagram schematically showing an example of the main functional configuration of an automatic mask inspection device used for inspecting the above-mentioned Guyang reticle. In the figure, 1 indicates the Guyang reticle to be inspected, C 1 , C 2 is a chip area pattern arranged on the gigantic reticle; 2 is an X-Y stage (used for scanning the field of view) that is slidable in the X-Y directions; 3a and 3b are a pair of illumination devices; 4a , 4b is a pair of microscopes, 5
a and 5b are a pair of photoelectric conversion elements that convert the optical images of the respective microscopes into electrical signals, and 6a and 6b are a pair of signals 2 that binarize the respective video electrical signals.
digitization units, 7a and 7b are a pair of screen memory forming units that form screen memories based on their respective binary video signals; 8a and 8b are a pair of screen memory recognition units that confirm the respective screen memory information; 9 is a pair of screen memory recognition units, respectively; 10 is a memory pattern shape comparison section that compares the screen memory information sent from the screen memory recognition section of , a defect signal output section 11 outputs a signal when two pieces of screen memory information do not match in the comparison section; 12 is a defect coordinate memory into which the coordinate position is written when the two screen memory information do not match in the comparing section; 13 is a stage drive section; and 13 is a stage drive section. .

従来ギヤング・レチクルは、上記のような自動
マスク検査装置により、通常のフオト・、マスク
と同様第2図に示すようにギヤング・レチクルG
上を、該レチクル上に配設されているチツプ領域
パターンC1,C2,C3,C4,C5,C6及びC7,C8
C9のピツチ間隔に等しい光軸間隔dを持つた1
対の顕微鏡の視野A及びBによつてX方向を主走
査方向として全面にわたつて走査し、スライスさ
れた各時点で視野A及びB内にとらえられる隣接
する2個のチツプ領域パターンの対応する同じ場
所の光学像を電気信号に変換し二値化して比較
し、差異が検出されなかつた場合該ギヤング・レ
チクルは良品と判定されていた。(図中破線は走
査線を表わし、m1は走査方向を示す矢印である) しかし上記従来方法に於ては、該ギヤング・レ
チクルにチツプ領域パターンを描画する際に共通
して起る障害(パターン情報の欠陥、描画装置の
欠陥等)によつて、各チツプ領域パターンに共通
してあらわれる同種の異常欠陥については検出が
不可能であり、そのためこの種の異常欠陥を有す
るギヤング・レチクルが良品と判断されてフオト
マスクの製造に用いられ、フオトマスクの品質を
低下させるという問題があつた。
Conventionally, the Guyang reticle is inspected by the automatic mask inspection device as described above.
The upper part shows chip area patterns C 1 , C 2 , C 3 , C 4 , C 5 , C 6 and C 7 , C 8 , which are arranged on the reticle.
Since the optical axis spacing d is equal to the pitch spacing of C 9 ,
The field of view A and B of the pair of microscopes are scanned over the entire surface with the X direction as the main scanning direction, and the corresponding two adjacent chip area patterns captured in the field of view A and B at each sliced time point are The optical images of the same location were converted into electrical signals, binarized, and compared, and if no difference was detected, the Guyang reticle was determined to be good. (The broken line in the figure represents a scanning line, and m 1 is an arrow indicating the scanning direction.) However, in the above conventional method, there is a problem that commonly occurs when drawing a chip area pattern on the gigantic reticle ( It is impossible to detect abnormal defects of the same type that commonly appear in each chip area pattern due to defects in pattern information, defects in writing equipment, etc. Therefore, gigang reticles with these types of abnormal defects are considered non-defective. It was determined that this was the case and was used in the manufacture of photomasks, resulting in a problem of deteriorating the quality of the photomasks.

(d) 発明の目的 本発明は上記問題点に鑑みなされたものであ
り、特に半導体メモリ素子の製造に用いられるギ
ヤング・レチクルのようにチツプ領域パターンが
主として繰り返しパターンで占められるギヤン
グ・レチクルの検査精度を向上せしめる自動マス
ク検査方法を提供することを目的としている。
(d) Purpose of the Invention The present invention has been made in view of the above-mentioned problems, and is particularly applicable to the inspection of gigang reticles in which the chip area pattern is mainly occupied by repetitive patterns, such as gigang reticles used in the manufacture of semiconductor memory devices. The objective is to provide an automatic mask inspection method that improves accuracy.

(e) 発明の構成 即ち本発明は、繰り返しパターンを含んだ同種
のチツプ領域パターンが複数個整列配設されてな
るフオトマスクを自動的に検査するに際して、 2個のチツプ領域パターンの対応する同じ場所
を同時に視野におさめる1対の撮像手段により全
チツプ領域パターン上を順次走査し、各々の撮像
手段により得られる映像信号を比較して前記2個
のチツプ領域パターン形状の違いを検出する第1
の検査工程と、該第1の検査工程に於いて前記パ
ターン形状の違いが検出されなかつたフオトマス
クについて、1個のチツプ領域パターン内の2個
の繰り返しパターンの対応する同じ場所を同時に
視野におさめる1対の撮像手段により、該チツプ
領域パターン内に於ける繰り返しパターン配設領
域上を順次走査し、各々の撮像手段により得られ
る映像信号を比較して、前記1個のチツプ領域パ
ターン形状の異常を検出する第2の検査工程とを
含むことを特徴とする。
(e) Structure of the Invention In other words, the present invention provides a method for automatically inspecting a photomask in which a plurality of chip area patterns of the same type including repeating patterns are arranged in a row, in the same corresponding location of two chip area patterns. A first step in which the entire chip area pattern is sequentially scanned by a pair of imaging means that simultaneously bring the chip area into the field of view, and the image signals obtained by each imaging means are compared to detect a difference in the shapes of the two chip area patterns.
For the photomask in which no difference in pattern shape was detected in the inspection process and the first inspection process, the same corresponding locations of two repeating patterns in one chip area pattern are simultaneously brought into view. A pair of imaging means sequentially scans the repeating pattern area within the chip area pattern, and the video signals obtained by each imaging means are compared to identify any abnormalities in the shape of the one chip area pattern. and a second inspection step for detecting.

(f) 発明の実施例 以下本発明の方法を実施例について、図を用い
て説明する。
(f) Examples of the invention The method of the present invention will be described below with reference to the drawings.

第3図は本発明のマスク検査方法が適用される
ギヤング・レチクルの一例を示す模式上面図で、
第4図イ乃至ロは本発明の方法に於ける一実施例
の工程を示す模式平面図である。
FIG. 3 is a schematic top view showing an example of a Guyang reticle to which the mask inspection method of the present invention is applied.
FIGS. 4A to 4B are schematic plan views showing the steps of an embodiment of the method of the present invention.

本発明のマスク検査方法は、半導体メモリ素子
を製造する際等に用いられるギヤング・レチクル
のように、同種のセル・パターン(ユニツト・パ
ターン)が多数個繰り返し配設されている繰り返
しパターン領域が大部分を占めるようなチツプ領
域パターンが複数個、一マスク基板(ガラス基
板)上に整列配設されてなるギヤング・レチクル
に適用される。第3図はその一例を模式的に示し
た平面図で、図中Gはギヤング・レチクル基板、
C1〜C9はチツプ領域パターン、R1〜R9は繰り返
しパターン領域、P1〜P9は例えば周辺回路等の
繰り返し性のない素子パターンが配設された領域
を表わしている。
The mask inspection method of the present invention has a large repeating pattern area in which many cell patterns (unit patterns) of the same type are repeatedly arranged, such as a gigantic reticle used in manufacturing semiconductor memory devices. This method is applied to a gigantic reticle in which a plurality of chip area patterns occupying a large area are aligned and arranged on one mask substrate (glass substrate). Fig. 3 is a plan view schematically showing an example of this, and G in the figure is a gigantic reticle substrate;
C 1 to C 9 are chip area patterns, R 1 to R 9 are repeating pattern areas, and P 1 to P 9 are areas in which non-repetitive element patterns such as peripheral circuits are arranged.

又本発明の方法に用いるマスクの自動検査装置
は第1図に示したような従来と同様の比較検査装
置である。
The automatic mask inspection apparatus used in the method of the present invention is a comparative inspection apparatus similar to the conventional one as shown in FIG.

本発明の方法に於ては上記第3図に示したよう
なギヤング・レチクルの検査に際して、第4図イ
に示すように、先ず従来の検査方法と同様に、該
ギヤング・レチクル基板G上に配設されているチ
ツプ領域パターンC1〜C9のX方向の配設ピツチ
間隔に等しい光軸間隔d1に調節され、隣接する領
域パターンの対応する同じ場所を視野におさめる
1対の顕微鏡の視野A及びBによつてX方向を主
走査方向として該ギヤング・レチクルG上を全面
にわたつて破線で示したように走査し(m1はレ
チクル面走査方向矢印し)、スライスされた各時
点で視野A及びB内にとらえられる隣接する2個
のチツプ領域パターンの対応する同じ場所の映像
を電気信号に変換し、該映像電気信号を2値化し
て画面メモリに書込むと同時に比較しその差異を
検出し、差があつた場合、その座標位置が欠陥座
標メモリに記録される。そして全面の走査が完了
し全面にわたつて不一致の場所が検出されなかつ
たギヤング・レチクルはひとまず良品と判定さ
れ、不一致の場所が検出されたものについては不
良と判定される。以上が第1の検査である。
In the method of the present invention, when inspecting a gigang reticle as shown in FIG. 3 above, as shown in FIG. A pair of microscopes is adjusted to have an optical axis interval d 1 equal to the arrangement pitch interval in the X direction of the chip area patterns C 1 to C 9 arranged, and the same corresponding locations of the adjacent area patterns are included in the field of view. Using fields of view A and B, scan the entire surface of the Guyang reticle G with the X direction as the main scanning direction (m 1 is an arrow in the reticle surface scanning direction), and scan each sliced time point. Converts images of the corresponding same locations of two adjacent chip area patterns captured in fields of view A and B into electrical signals, converts the image electrical signals into binarized values, writes them into screen memory, and simultaneously compares them. If a difference is detected, its coordinate position is recorded in the defect coordinate memory. A Guyang reticle whose entire surface has been scanned and no mismatched location is detected is determined to be a good product for the time being, and a reticle where a mismatched location is detected is determined to be defective. The above is the first test.

次いで本発明の方法に於ては、上記第1の検査
で良品と判定されたギヤング・レチクルについ
て、下記のような第2の検査を行う。即ち上記ギ
ヤング・レチクルの1個のチツプ領域パターン、
例えばC1について、第4図ロに示すように該チ
ツプ領域パターンC1の繰り返しパターン領域R1
全面を、繰り返しパターンUの配設ピツチの整数
倍の光軸間隔d2を有し、例えば異なる繰り返しパ
ターンUD及びUEの対応する同じ場所を視野にお
さめる一対の顕微鏡の視野D及びEによつて、例
えば矢印m2で示す顕微鏡の配列軸に対して直角
な方向(図ではY方向)を主走査方法とした破線
で示すような経路で順次走査し、スライスされた
各時点で視野D及びE内にとらえられる2個の繰
り返しパターンの対応する同じ場所の映像信号を
2値化して順次比較し、該繰り返しパターン領域
R1全域にわたつて単位パターン(繰り返しパタ
ーン)間に差異が検出されなかつた場合、該ギヤ
ング・レチクルG上に配設されている総てのチツ
プ領域パターンC1〜C9が内蔵する繰り返しパタ
ーン領域R1〜R9に異常欠陥はないものと判定す
る。このような判定ができるのは、ギヤング・レ
チクルにパターンの異常欠陥を生ずる理由が、パ
ターン描画に際しての情報の欠陥及び描画装置の
欠陥に主として起因し、従つて同種の異常欠陥が
各々チツプ領域パターンに共通して生ずる特性を
持つことによる。
Next, in the method of the present invention, the Guyang reticle determined to be good in the first test is subjected to a second test as described below. That is, one chip area pattern of the Guyang reticle,
For example, regarding C 1 , as shown in FIG .
The entire surface is placed in the fields of view D and E of a pair of microscopes, which have an optical axis distance d 2 that is an integral multiple of the arrangement pitch of the repeating pattern U , and which, for example, cover the same corresponding locations of different repeating patterns U D and U E. Therefore, for example, by using the main scanning method in the direction perpendicular to the array axis of the microscope (the Y direction in the figure) as indicated by the arrow m2 , the field of view D is scanned at each sliced time point. The video signals at the same locations corresponding to the two repeating patterns captured within E and E are binarized and sequentially compared, and
If no difference is detected between the unit patterns (repetitive patterns) over the entire area R1 , the repeated patterns included in all chip area patterns C1 to C9 arranged on the gigantic reticle G are It is determined that there is no abnormal defect in the regions R1 to R9 . This determination is possible because the reason for abnormal pattern defects in gigantic reticles is mainly due to defects in information and defects in the drawing device during pattern drawing, and therefore, the same type of abnormal defects are caused by the respective chip area patterns. By having characteristics that occur in common.

本発明の方法に於ては、上記第1の検査によつ
て該ギヤング・レチクルに配設されている各チツ
プ領域パターン間に差異のないことを確認し、更
に第2の検査によつてチツプ領域パターンの中で
大部分の面積を占める繰り返しパターン領域に異
常欠陥がないことを確認したうえで該ギヤング・
レチクルを良品と判定する。
In the method of the present invention, it is confirmed by the first inspection that there is no difference between the respective chip area patterns arranged on the gigantic reticle, and further, by the second inspection, the chip area patterns are After confirming that there are no abnormal defects in the repeating pattern area that occupies most of the area in the area pattern,
Determine the reticle as good.

なお上記第2の検査工程に於て顕微鏡の主走査
方向は上記実施例の方向に限らず、繰り返しパタ
ーン領域形状により走査時間が短時間で済む方向
に定められる。
Note that in the second inspection step, the main scanning direction of the microscope is not limited to the direction of the above embodiment, but is determined in a direction in which the scanning time can be shortened depending on the shape of the repeated pattern region.

(g) 発明の効果 以上説明したように本発明の自動マスク検査方
法に於ては、繰り返しパターンが配設された領域
がチツプ領域の大部分を示める半導体メモリ素子
等の製造に用いられるギヤング・レチクルの良否
の判定が、チツプ領域パターン同士の比較検査結
果に繰り返しパターン同士の比較検査結果を加味
してなされる。
(g) Effects of the Invention As explained above, the automatic mask inspection method of the present invention can be used in the manufacture of semiconductor memory devices, etc. in which the area where the repeated pattern is provided represents most of the chip area. The quality of the gigantic reticle is determined by taking into account the comparison inspection results between repeated patterns and the comparison inspection results between chip area patterns.

従つて本発明によれば上記ギヤング・レチクル
の検査精度が向上し、半導体メモリ素子等の製造
歩留まりが向上する。
Therefore, according to the present invention, the inspection accuracy of the Guyang reticle is improved, and the manufacturing yield of semiconductor memory devices and the like is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は自動マスク検査装置の主な機能構成の
一例を模式的に表わすブロツク図、第2図はマス
クの自動検査方法を模式的に示す工程平面図、第
3図はギヤング・レチクルの一例を示す模式平面
図で、第4図イ乃至ロは本発明のギヤング・レチ
クルの自動検査方法に於ける一実施例の模式工程
平面図である。 図中、Gはギヤング・レチクル、C1〜C9はチ
ツプ領域パターン、R1〜R9は繰り返しパターン
領域、A,B及びD,Eはそれぞれ1対の顕微鏡
の視野、U,UD,UEは単位繰り返しパターン、
d1,d2は顕微鏡の光軸間隔、m1,m2は走査方向
矢印を示す。
Figure 1 is a block diagram schematically showing an example of the main functional configuration of an automatic mask inspection device, Figure 2 is a process plan diagram schematically showing an automatic mask inspection method, and Figure 3 is an example of a gigantic reticle. FIGS. 4A to 4B are schematic plan views showing one embodiment of the automatic inspection method for a gigantic reticle according to the present invention. In the figure, G is a gigantic reticle, C 1 to C 9 are chip area patterns, R 1 to R 9 are repeating pattern areas, A, B, D, and E are fields of view of a pair of microscopes, respectively, and U, U D , U E is a unit repeating pattern,
d 1 and d 2 are the distances between the optical axes of the microscope, and m 1 and m 2 are the scanning direction arrows.

Claims (1)

【特許請求の範囲】 1 繰り返しパターンを含んだ同種のチツプ領域
パターンが複数個整列配設されてなるフオトマス
クを自動的に検査するに際して、 2個のチツプ領域パターンの対応する同じ場所
を同時に視野におさめる1対の撮像手段により全
チツプ領域パターン上を順次走査し、各々の撮像
手段により得られる映像信号を比較して前記2個
のチツプ領域パターン形状の違いを検出する第1
の検査工程と、 該第1の検査工程に於いて前記パターン形状の
違いが検出されなかつたフオトマスクについて、
1個のチツプ領域パターン内の2個の繰り返しパ
ターンの対応する同じ場所を同時に視野におさめ
る1対の撮像手段により、該チツプ領域パターン
内に於ける繰り返しパターン配設領域上を順次走
査し、各々の撮像手段により得られる映像信号を
比較して、前記1個のチツプ領域パターン形状の
異常を検出する第2の検査工程とを含むことを特
徴とするマスク検査方法。
[Claims] 1. When automatically inspecting a photomask in which a plurality of chip area patterns of the same type including repeating patterns are arranged in an array, the same corresponding locations of two chip area patterns are simultaneously viewed. A first step that sequentially scans all the chip area patterns using a pair of image pickup means, and compares the video signals obtained by each image pickup means to detect a difference in the shapes of the two chip area patterns.
and the photomask in which no difference in pattern shape was detected in the first inspection step,
A pair of imaging means that simultaneously view the same corresponding locations of two repeating patterns within one chip area pattern sequentially scan the repeating pattern arrangement area within the chip area pattern, and a second inspection step of comparing video signals obtained by the imaging means to detect an abnormality in the shape of the one chip region pattern.
JP58201474A 1983-10-27 1983-10-27 Method for mask examination Granted JPS6093305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58201474A JPS6093305A (en) 1983-10-27 1983-10-27 Method for mask examination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58201474A JPS6093305A (en) 1983-10-27 1983-10-27 Method for mask examination

Publications (2)

Publication Number Publication Date
JPS6093305A JPS6093305A (en) 1985-05-25
JPH0417361B2 true JPH0417361B2 (en) 1992-03-25

Family

ID=16441676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58201474A Granted JPS6093305A (en) 1983-10-27 1983-10-27 Method for mask examination

Country Status (1)

Country Link
JP (1) JPS6093305A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103630547B (en) * 2013-11-26 2016-02-03 明基材料有限公司 There is flaw detection method and the pick-up unit thereof of the optical thin film of periodic structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54111774A (en) * 1978-02-22 1979-09-01 Hitachi Ltd Inspection method of mask and its unit
JPS5574409A (en) * 1978-11-30 1980-06-05 Fujitsu Ltd Defect inspection system of repetitive pattern
JPS5734402A (en) * 1980-08-11 1982-02-24 Hitachi Ltd Inspecting method for defect in circuit pattern
JPS5796206A (en) * 1980-12-08 1982-06-15 Fujitsu Ltd Graphic inspection
JPS57130423A (en) * 1981-02-06 1982-08-12 Hitachi Ltd Apparatus for pattern inspection
JPS57187606A (en) * 1981-05-11 1982-11-18 Leitz Ernst Gmbh Method and device for automatically discovering error of flat figure
JPS58100438A (en) * 1981-12-11 1983-06-15 Hitachi Ltd Method and device for inspecting pattern

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54111774A (en) * 1978-02-22 1979-09-01 Hitachi Ltd Inspection method of mask and its unit
JPS5574409A (en) * 1978-11-30 1980-06-05 Fujitsu Ltd Defect inspection system of repetitive pattern
JPS5734402A (en) * 1980-08-11 1982-02-24 Hitachi Ltd Inspecting method for defect in circuit pattern
JPS5796206A (en) * 1980-12-08 1982-06-15 Fujitsu Ltd Graphic inspection
JPS57130423A (en) * 1981-02-06 1982-08-12 Hitachi Ltd Apparatus for pattern inspection
JPS57187606A (en) * 1981-05-11 1982-11-18 Leitz Ernst Gmbh Method and device for automatically discovering error of flat figure
JPS58100438A (en) * 1981-12-11 1983-06-15 Hitachi Ltd Method and device for inspecting pattern

Also Published As

Publication number Publication date
JPS6093305A (en) 1985-05-25

Similar Documents

Publication Publication Date Title
JP3566470B2 (en) Pattern inspection method and apparatus
US6865288B1 (en) Pattern inspection method and apparatus
JPH0456972B2 (en)
JPH0750664B2 (en) Reticle inspection method
KR960013357B1 (en) Image data inspecting method and apparatus
JP3409670B2 (en) Appearance inspection method and apparatus
US6477265B1 (en) System to position defect location on production wafers
US6973208B2 (en) Method and apparatus for inspection by pattern comparison
JPH0417361B2 (en)
JPH034895B2 (en)
JPH0727708A (en) Inspecting method for defect in wafer
JP3684707B2 (en) Reticle pattern inspection method
JP3201396B2 (en) Method for manufacturing semiconductor device
JP5075306B2 (en) Wafer defect inspection apparatus and wafer defect inspection method
JP2002342757A (en) Method and device for comparing and inspecting pattern
JP2982413B2 (en) Common defect inspection method
JPH0145735B2 (en)
JPH11118727A (en) Apparatus for inspecting surface defect
JPS6061604A (en) Pattern inspecting apparatus
JPH0561578B2 (en)
JP2532110B2 (en) Electron beam exposure method
JP4164636B2 (en) Pattern inspection method
JPS6239816B2 (en)
JPS6252849B2 (en)
JPH048780B2 (en)