JPH0417271A - Secondary battery and manufacture thereof - Google Patents

Secondary battery and manufacture thereof

Info

Publication number
JPH0417271A
JPH0417271A JP2119008A JP11900890A JPH0417271A JP H0417271 A JPH0417271 A JP H0417271A JP 2119008 A JP2119008 A JP 2119008A JP 11900890 A JP11900890 A JP 11900890A JP H0417271 A JPH0417271 A JP H0417271A
Authority
JP
Japan
Prior art keywords
electrode group
active material
electrode
wound
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2119008A
Other languages
Japanese (ja)
Inventor
Jinichi Imahashi
甚一 今橋
Tatsuo Horiba
達雄 堀場
Hiroyuki Sugimoto
博幸 杉本
Shigeoki Nishimura
西村 成興
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2119008A priority Critical patent/JPH0417271A/en
Publication of JPH0417271A publication Critical patent/JPH0417271A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To improve a utilization factor of the active material by providing a core member in the center of a battery, and fixing the peripheral part thereof to prevent relaxation of an electrode group. CONSTITUTION:A core member 3 having rigidity is located in the center of an electrode group which consists of spirally wound electrodes, and a mechanism 4 for preventing relaxation of the wound electrode group 5 is comprised in the peripheral part of the wound electrode group 5. Namely, the core member 3 prevents the relaxation of the wound electrode group 5 toward the inside, and an adhesive tape 4 comprised in the peripheral part prevents the relaxation of the wound electrode group toward the outside. Consequently, volume change of the active material 1 can be restricted, and contact between the particles in the active material layer 1 is maintained to prevent isolation and falling of the active material 1 from an electrode substrate 2. Increase of the inner resistance of the electrode can thereby be restricted to maintain a utilization factor of the active material from many sides.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は蓄電池に係り、特にニッケルーカドミウム電池
、ニッケルー鉄電池、ニッケルー亜鉛電池、ニッケルー
水素電池などのアルカリ電解液を使用するアルカリ蓄電
池、あるいは非水系の電解液を用いリチウムなどのアル
カリ金属を負極活物質とするリチウム二次電池などの二
次電池に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to storage batteries, and particularly to alkaline storage batteries using an alkaline electrolyte such as nickel-cadmium batteries, nickel-iron batteries, nickel-zinc batteries, and nickel-hydrogen batteries, or non-aqueous batteries. The present invention relates to secondary batteries such as lithium secondary batteries that use an electrolytic solution of 100% and an alkali metal such as lithium as a negative electrode active material.

従来の技術 近年のエレクトロニクスの進歩によりLSI、ICなど
の一般電気機器への適用により、高性能化、小型化とと
もにポータプル化、コードレス化が進んでいる。そのた
め、それらの電源となる電池の需要も増大している。使
用される電池の種類も多様であるが、一般に、可動部を
有し比較的消費電力の大きいものでは、二次電池が主流
となっている。二次電池の中でも、ニッケルーカドミウ
ム電池などのアルカリ電解液を使用するアルカリ蓄電池
は、軽量であること、エネルギ密度が高いこと、過充電
、過放電に耐えうろことなどの点で、従来の鉛蓄電池よ
りも優れており、そのため小型密閉型のものの需要増加
が著しい。これらの二次電池は需要増加とともに、使い
易さの点から急速充放電化、高容量化などの要求が高ま
っている。
BACKGROUND OF THE INVENTION With recent advances in electronics, application to general electrical equipment such as LSIs and ICs has led to improvements in performance, miniaturization, portability, and cordless technology. As a result, the demand for batteries that power these devices is also increasing. Although there are various types of batteries used, secondary batteries are generally the mainstream for batteries that have moving parts and consume relatively large amounts of power. Among secondary batteries, alkaline storage batteries that use an alkaline electrolyte, such as nickel-cadmium batteries, are superior to conventional lead-acid batteries in terms of weight, high energy density, and ability to withstand overcharging and overdischarging. They are superior to storage batteries, and as a result, demand for small, sealed types is increasing significantly. As demand for these secondary batteries increases, demands for rapid charging and discharging, high capacity, etc. are increasing from the viewpoint of ease of use.

−回の充電でより長い時間の放電が可能となる高容量化
のためには電極活物質の充電密度の向上、あるいは電極
活物質の利用率の向上が必要である。
In order to increase the capacity, which enables longer discharge times with one charge, it is necessary to improve the charging density of the electrode active material or the utilization rate of the electrode active material.

電極活物質の充填密度の向上のためには、活物質粉末の
高密度化、活物質層組成の最適化、あるいは電極基体構
造の改良などの検討が必要である。
In order to improve the packing density of the electrode active material, it is necessary to consider increasing the density of the active material powder, optimizing the active material layer composition, or improving the electrode substrate structure.

電極活物質の利用率の向上のためには、活物質層組成、
活物質への添加物などの改良のような化学的側面からの
アプローチの他に構造面からの提案も多くなされてきた
。たとえば、電極を渦巻状の電極群に捲回して、これを
被覆固定する粘着テープを複数列とし、その粘着面積の
比率を特定範囲内とすることにより、極間距離のバラツ
キを縮小させる(特開昭60−170171号公報)。
In order to improve the utilization rate of electrode active material, active material layer composition,
In addition to chemical approaches such as improving additives to active materials, many proposals have been made from a structural perspective. For example, by winding the electrodes into a spiral electrode group, using multiple rows of adhesive tape to cover and fix the electrodes, and setting the ratio of the adhesive area within a specific range, the variation in the distance between the electrodes can be reduced (especially Publication No. 60-170171).

また、セパレータが電解液を吸収して膨潤し、負極とセ
パレータの間隙を埋めつくして接触十分にする(特開昭
57−185668号公報)。さらには、セパレータに
膨潤剤を配して、電解液を吸収保持する方法(特開昭5
6−63772号公報)、セパレータ中の電解液をコロ
イド状にする方法(特開昭57−152665号公報)
などの技術が開示されている。
Furthermore, the separator absorbs the electrolyte and swells, filling the gap between the negative electrode and the separator to ensure sufficient contact (Japanese Patent Application Laid-Open No. 185668/1983). Furthermore, a method of absorbing and retaining electrolyte by disposing a swelling agent in the separator (Japanese Patent Application Laid-Open No.
6-63772), a method for making the electrolyte in a separator into a colloid (Japanese Patent Application Laid-Open No. 152665/1982)
Technologies such as the following have been disclosed.

発明が解決しようとする課題 本発明の目的は、高容量密度化が可能な二次電池を提供
することにある。高容量密度化には正極、負極両者の高
容量密度化が必要であるが、一般には負極が金属電極で
あるため正極より容量密度が高く、正極の高容量密度化
が重要となる。本発明は、正極の高容量密度化のために
活物質用率の向上を電池構造の改良により達成すること
に関するものである。発明内容の説明の具体化のために
、以下ニッケルーカドミウム電池を例として説明する。
Problems to be Solved by the Invention An object of the present invention is to provide a secondary battery that can achieve high capacity density. In order to increase the capacity density, it is necessary to increase the capacity density of both the positive electrode and the negative electrode, but since the negative electrode is generally a metal electrode, it has a higher capacity density than the positive electrode, and therefore it is important to increase the capacity density of the positive electrode. The present invention relates to improving the active material usage rate in order to increase the capacity density of the positive electrode by improving the battery structure. In order to concretely explain the content of the invention, a nickel-cadmium battery will be explained below as an example.

これらの目的に関連する従来技術を見ると、上記した従
来の技術は、いずれも正極、負極、およびセパレータを
捲回または積層した電極間の弛緩や電極厚さの変化を抑
制し、電解液の保持や、電極基体と活物質層の間の接触
抵抗の低減に有効に働くものと思われる。しかし、テー
プ等を渦巻電極に捲回して、極間距離のバラツキを小さ
くすることは可能と考えられるが、渦巻電極の内部への
電極群の弛緩が抑制しにくいこと、テープの巻きつけの
みでは弾性の強い焼結式電極には有効であるが、ペース
ト式のような弾性の弱い電極には適していない。また、
セパレータ等に膨澗物賞層を設けているため、セパレー
タが膨潤すると正負両極間の距離が増加し、内部抵抗が
増加する。
Looking at conventional technologies related to these purposes, all of the above-mentioned conventional technologies suppress relaxation between the positive electrode, negative electrode, and electrodes in which a separator is wound or laminated, and changes in electrode thickness, and reduce the electrolytic solution. It seems to work effectively for retention and for reducing contact resistance between the electrode base and the active material layer. However, although it is possible to reduce the variation in the distance between the electrodes by wrapping tape or the like around the spiral electrode, it is difficult to suppress the loosening of the electrode group into the inside of the spiral electrode, and it is difficult to suppress the loosening of the electrode group into the inside of the spiral electrode. Although it is effective for sintered electrodes with strong elasticity, it is not suitable for electrodes with weak elasticity such as paste-type electrodes. Also,
Since the separator and the like are provided with a swelling material layer, when the separator swells, the distance between the positive and negative electrodes increases, and the internal resistance increases.

一方、二次電池の電極活物質層は、電解液を吸収して体
積が増加すること、さらには充放電反応において体積が
変化するが、ペースト式電極においてはこれらの体積変
化は焼結式電極の場合より大きくなる傾向がある。この
体積変化により、電極基体に添着されている活物質層が
、電極基体から遊離し、さらに活物質層内の活物質およ
び導電剤の粒子間の導電性が不十分になり、活物質利用
率が低下することになる。しかし、上記従来技術では、
それらについての十分な配慮がなされていなかった。
On the other hand, the electrode active material layer of a secondary battery increases in volume by absorbing electrolyte, and also changes in volume during charging and discharging reactions, but in paste-type electrodes, these volume changes are tends to be larger than in the case of Due to this volume change, the active material layer attached to the electrode base is released from the electrode base, and the conductivity between particles of the active material and conductive agent in the active material layer becomes insufficient, resulting in an increase in the active material utilization rate. will decrease. However, in the above conventional technology,
Not enough consideration was given to them.

課題を解決するための手段 本発明の特徴は上記従来技術の問題点を解決するために
、電極を渦巻状に捲回した電極群の中心部に剛性を有す
る芯体を配置し、かつ捲回電極群の弛緩を防止する機構
を捲回電極群の外周部に備えたことにある。上記芯体を
配置する位置は電極を捲回する捲回軸の占める空間であ
る。芯体の形状は円柱状、または円筒状であれば、捲回
電極群と均一に接することができるが、この目的にかな
うものであれば多角柱などの他の形状の使用も可能であ
る。芯体の寸法は現行通常の捲回技術に用いられている
捲回軸の径から大きく外れることば現実的でない。なぜ
ならば、芯体の径が大き過ぎると捲回電極群の占める体
積が少なくなり、電池の充填容量が減少するからであり
、芯体の径が小さ過ぎると捲回軸の占めていた空間に芯
体を挿入するだけでは捲回電極群と均一に接することが
でない、あるいは、従来より細い捲回軸のまわりに電極
を捲回する技術が必要になるなどの問題が生じてくるか
らである。より具体的には、芯体の径は1〜5IIII
11が適しており、2〜3.5mmがより好ましい。芯
体の長さは電極の長さだけあれば、十分である。それ以
上あっても電極群と接することがないからである。捲回
電極群外周部に備えた捲回電極群の弛緩を防止する機構
は、具体的には粘着テープなどのシート状で接着力が強
く、かつ軽量のものが望ましい。粘着テープなどの捲回
電極群の弛緩を防止する機構は、捲回電極群外周部の一
部または全部を覆っている。外周部の全部を覆うことに
よりカドミウム極の酸素吸収性が低下することが懸念さ
れるが、発明者らの実験によれば、その影響は小さいこ
とが明らかになった。従って、粘着テープなどの寸法は
幅が捲回電極群の高さと同程度であれば十分であり、長
さは捲回電極群の外周の長さ以上必要であるが、それ以
上どこまで必要であるかは、電極の捲回方法、粘着テー
プの引っ張り強度などに依存する。粘着テープの厚さは
、本発明の目的をはたしうるものであれば、より薄いも
のが好ましい。しかしながら、100〜4011mが現
実的に利用しやすい範囲である。
Means for Solving the Problems The present invention is characterized in that, in order to solve the problems of the prior art described above, a rigid core is disposed at the center of an electrode group in which electrodes are spirally wound, and A mechanism for preventing loosening of the electrode group is provided on the outer periphery of the wound electrode group. The position where the core body is arranged is the space occupied by the winding shaft around which the electrode is wound. If the shape of the core is cylindrical or cylindrical, it can be in uniform contact with the wound electrode group, but other shapes such as a polygonal prism can also be used as long as they meet this purpose. It would be impractical for the dimensions of the core to deviate significantly from the diameter of the winding shaft currently used in conventional winding techniques. This is because if the diameter of the core is too large, the volume occupied by the wound electrode group will be reduced, reducing the filling capacity of the battery.If the diameter of the core is too small, the space occupied by the winding shaft will be reduced. This is because simply inserting the core does not result in uniform contact with the wound electrode group, or problems arise such as the need for a technique to wind the electrode around a thinner winding shaft than before. . More specifically, the diameter of the core is 1 to 5III
11 is suitable, and 2 to 3.5 mm is more preferred. It is sufficient that the length of the core body is equal to the length of the electrode. This is because even if there are more than that, they will not come into contact with the electrode group. Specifically, the mechanism provided on the outer periphery of the wound electrode group to prevent loosening of the wound electrode group is desirably a sheet-like adhesive tape or the like that has strong adhesive strength and is lightweight. A mechanism for preventing loosening of the wound electrode group, such as an adhesive tape, covers part or all of the outer periphery of the wound electrode group. There is a concern that the oxygen absorption of the cadmium electrode will be reduced by covering the entire outer periphery, but experiments conducted by the inventors have revealed that this effect is small. Therefore, it is sufficient that the width of the adhesive tape is about the same as the height of the wound electrode group, and the length needs to be at least the outer circumference of the wound electrode group, but how far beyond that is necessary? It depends on the method of winding the electrode, the tensile strength of the adhesive tape, etc. The thickness of the adhesive tape is preferably as thin as possible so long as it can fulfill the purpose of the present invention. However, a range of 100 to 4011 m is a realistically usable range.

本発明になる芯体と粘着テープなどを捲回電極群に設置
する方法としては、電極群を捲回するとき同時に設置す
る方法、あるいは捲回したのち設置する方法がある。前
者は、芯体を捲回軸とし、そのまわりに電極群を捲回し
、粘着テープなどを電極群の端部に設置することにより
可能である。
Methods for installing the core body, adhesive tape, etc. according to the present invention on the wound electrode group include a method in which they are installed simultaneously when the electrode group is wound, or a method in which they are installed after winding. The former can be achieved by using the core as a winding shaft, winding the electrode group around it, and placing adhesive tape or the like at the end of the electrode group.

後者では、電極群を捲回したのち、芯体を捲回軸が占め
ていた空孔部に挿入し、粘着テープなどを捲回電極群に
巻きつけることになる。前者の方が後者よりも、作業性
、発明の効果などの点にすぐれている。
In the latter case, after the electrode group is wound, the core body is inserted into the hole occupied by the winding shaft, and adhesive tape or the like is wound around the wound electrode group. The former is superior to the latter in terms of workability and effectiveness of the invention.

本発明に使用される材料は、電解液に対して化学的に安
定であること、つまりニッケルーカドミウム電池の場合
は耐アルカリ性が要求されることになる。また、捲回電
極群に接していても、電気が流れる必要のない部分であ
るから導電性材料である必要もなく、導電性材料、誘電
性材料のいずれかの使用も可能である。具体的には、ニ
ッケル、ステンレス鋼などの金属、アルミナ、ジルコニ
アなどのセラミックス、あるいはポリ塩化ビニル、ポリ
テトラフルオロエチレン、ポリエチレン、ポリスチレン
、ポリプロピレン、ポリエステルなどの合成樹脂のいず
れも使用可能である。
The material used in the present invention is required to be chemically stable with respect to the electrolyte, that is, in the case of a nickel-cadmium battery, it is required to have alkali resistance. Further, even if it is in contact with the wound electrode group, since it is a part where electricity does not need to flow, it does not need to be made of a conductive material, and either a conductive material or a dielectric material can be used. Specifically, any of metals such as nickel and stainless steel, ceramics such as alumina and zirconia, and synthetic resins such as polyvinyl chloride, polytetrafluoroethylene, polyethylene, polystyrene, polypropylene, and polyester can be used.

作用 本発明の作用はニッケル極活物質の充放電による体積変
化の抑制に関連している。すなわちニッケル極の充放電
反応は一般に で表わされ、充電反応生成物が4.6g/cjの密度を
有するのに対し、放電反応生成物は4.1g/CIAの
密度である。そのため充放電反応の進行とともにニッケ
ル極活物質層の体積は変化することになる。また、−度
光放電した活物質は未充電状態のNi (OH) zと
は同一のものではなく、結晶中に水や電解質を含んでお
り、更に過充電生成物であるγ−Ni00H(密度3.
8g/c+J)が蓄積することもある。そのため、ニッ
ケル極の充放電による体積増加は不可避であり、これを
いかに少ない範囲に抑制するかが現実的課題である。
Function The function of the present invention is related to the suppression of volume change due to charging and discharging of the nickel electrode active material. That is, the charging and discharging reaction of a nickel electrode is generally expressed by: The charging reaction product has a density of 4.6 g/cj, while the discharging reaction product has a density of 4.1 g/CIA. Therefore, the volume of the nickel electrode active material layer changes as the charge/discharge reaction progresses. In addition, the active material that has been photodischarged is not the same as uncharged Ni (OH) z, but contains water and electrolyte in its crystals, and also contains γ-Ni00H (density), which is an overcharged product. 3.
8g/c+J) may accumulate. Therefore, an increase in volume due to charging and discharging of the nickel electrode is inevitable, and a practical issue is how to suppress this to a small range.

本発明における芯体は捲回電極群の内側への弛緩を防止
する機能を有す。また捲回電極群の外周部に備えた粘着
テープなどは捲回電極群の外側への弛緩を防止する。そ
の結果、活物質層の体積変化を抑制することが可能とな
り、活物質層内の粒子間の接触を維持し、活物質層の電
極基体からの遊離、脱落を防止することになる。このこ
とは、ニッケル極の内部抵抗の増加を抑制し、活物質利
用率を多角維持することができるようになる。また、活
物質層の脱落防止により、電池の寿命特性も改善される
The core body in the present invention has a function of preventing the wound electrode group from relaxing inward. Further, an adhesive tape or the like provided on the outer periphery of the wound electrode group prevents the wound electrode group from loosening outward. As a result, it becomes possible to suppress a change in the volume of the active material layer, maintain contact between particles in the active material layer, and prevent the active material layer from separating or falling off from the electrode base. This suppresses an increase in the internal resistance of the nickel electrode and makes it possible to maintain a wide range of active material utilization. Furthermore, by preventing the active material layer from falling off, the life characteristics of the battery are also improved.

活物質の体積占有率が高まっているペースト式ニッケル
極においては本発明の効果はとりわけ顕著である。それ
は、ペースト式ニッケル極では電極基体による活物質の
体積増加の抑制機能が小さいからであり、本発明はこの
機能を補完していることになる。
The effects of the present invention are particularly remarkable in paste-type nickel electrodes in which the volume occupancy of the active material is increasing. This is because in a paste-type nickel electrode, the function of suppressing the volume increase of the active material by the electrode base is small, and the present invention complements this function.

上記の説明はニッケルーカドミウム電池に関するもので
あるが、本発明は充放電により活物質の体積変化を繰り
返すことが不可避である他の二次電池、たとえばニッケ
ルー亜鉛電池、ニッケルー鉄電池、ニッケルー水素電池
、リチウム二次電池などにも適用可能である。
Although the above description relates to a nickel-cadmium battery, the present invention is applicable to other secondary batteries in which repeated volume changes of the active material due to charging and discharging are unavoidable, such as nickel-zinc batteries, nickel-iron batteries, and nickel-hydrogen batteries. , lithium secondary batteries, etc.

実施例 実施例(1) 本発明になる円筒型電池を作製し、その電池性能を測定
した。供試ニッケル極は以下の材料及び調製により作活
物質として水酸化ニッケル80wt%導電材としてニッ
ケル繊維10wt%、活物質の活性剤として金属コバル
ト5wt%、結着剤であるPTFEを5wt%をライカ
イ機に添加し混合した。
Examples Example (1) A cylindrical battery according to the present invention was produced and its battery performance was measured. The test nickel electrode was made with the following materials and preparation: 80 wt% nickel hydroxide as an active material, 10 wt% nickel fiber as a conductive material, 5 wt% metal cobalt as an activator for the active material, and 5 wt% PTFE as a binder. Added to the machine and mixed.

その混合物の中へ水分として20−t%になるように水
を添加した。PTFEはPTFEディスバージョン(ダ
イキン工業、ポリフロンデイスパージョンD−1)を用
いた。得られたペースト状の混線物を電極基体である6
0メツシユのニッケル金網の両面に添着させた。それを
80℃で乾燥させプレスにより圧着しニッケル極を得た
。このニッケル極の活物質充填容量密度は、655mA
h/cdが得られた。そのニッケル極の断面模式図を第
4図に示す。図中に示すように活物質層1と電極基体2
との三層構造になっており、電極基体の両側に活物質層
がある構成である。その電極の厚みは0゜6mmで電極
基板は0.2mmを用いた。この電極基体はプレート状
で可とう性があり捲回電極に適している。
Water was added to the mixture to give a moisture content of 20-t%. PTFE dispersion (Daikin Industries, Polyflon Dispersion D-1) was used. The resulting paste-like crosstalk material is used as an electrode substrate 6
It was attached to both sides of a 0-mesh nickel wire mesh. It was dried at 80°C and bonded using a press to obtain a nickel electrode. The active material filling capacity density of this nickel electrode is 655 mA
h/cd was obtained. A schematic cross-sectional view of the nickel electrode is shown in FIG. As shown in the figure, an active material layer 1 and an electrode base 2
It has a three-layer structure with active material layers on both sides of the electrode base. The thickness of the electrode was 0.6 mm, and the electrode substrate was 0.2 mm. This electrode base is plate-shaped and flexible, and is suitable for a wound electrode.

供試カドミウム極は、以下のようにして作製した。酸化
カドミウム85−t%及び導電材としてNi粉末10−
t%、結着剤としてPTFE5wt%をライカイ機中に
添加し混練した。PTFEはPTFEはディスバージョ
ン(ダイキン工業、ポリフロンデイスパージョンD−1
)を用いた。そのペーストを40メツシユ金網に添着さ
せた。その後、140℃で乾燥させて測定用電極を得た
。それらを用いて作製した円筒形電池の断面模式図を第
1図に示す。芯体3は、捲回電池5の中心に充填した。
The sample cadmium electrode was produced as follows. Cadmium oxide 85-t% and Ni powder 10-t% as conductive material
t% and 5wt% of PTFE as a binder were added into a Laikai machine and kneaded. PTFE is PTFE dispersion (Daikin Industries, Polyflon Dispersion D-1
) was used. The paste was attached to a 40-mesh wire mesh. Thereafter, it was dried at 140°C to obtain a measurement electrode. A schematic cross-sectional view of a cylindrical battery produced using these is shown in FIG. The core 3 was filled in the center of the wound battery 5.

芯体は、PTFE製で直径3+s+s、長さ40mn+
の円柱形のものを用いた。また捲回電極群の弛緩を防止
するために、捲回電極群の外周部に粘着テープ4を設置
した。それを、電池サイズAA型の電池ケース6に充填
した。粘着テープは、ポリプロピレンの幅40mm、厚
さ0.1 mmのものを用いた。
The core is made of PTFE and has a diameter of 3+s+s and a length of 40mm+.
A cylindrical one was used. Further, in order to prevent the wound electrode group from loosening, adhesive tape 4 was placed around the outer periphery of the wound electrode group. It was filled into a battery case 6 of battery size AA type. The adhesive tape used was made of polypropylene and had a width of 40 mm and a thickness of 0.1 mm.

比較のために芯体をのぞいた比較例1の電池を作製した
。上記の電池に300 g/Itの水酸化カリウムと1
5g/j!の水酸化リチウム−水和物を含む電解液を注
入して25℃で充放電させた。充電率は0.ICで15
h充電した後、放電率0.2 Cで放電し、電池電圧1
.Ovを終止電圧として、放電容量を求めた。得られた
結果を第2図に示す。図において本発明になる電池の活
物質利用率は、1サイクル目が85%、第2サイクル9
0%、第3サイクル以降93%であり、安定した電池性
能を示した。それに対して比較例1の電池8は1サイク
ル目から利用率が低(,85%程度の利用率であった。
For comparison, a battery of Comparative Example 1 was prepared with the core removed. To the above battery, 300 g/It of potassium hydroxide and 1
5g/j! An electrolytic solution containing lithium hydroxide hydrate was injected into the battery, and the battery was charged and discharged at 25°C. The charging rate is 0. 15 by IC
After charging for h, discharge at a discharge rate of 0.2 C, and the battery voltage becomes 1
.. The discharge capacity was determined using Ov as the final voltage. The results obtained are shown in FIG. In the figure, the active material utilization rate of the battery according to the present invention is 85% in the first cycle and 9% in the second cycle.
0%, and 93% after the third cycle, indicating stable battery performance. On the other hand, the battery 8 of Comparative Example 1 had a low utilization rate (about 85% utilization rate) from the first cycle.

従って、本発明になる電池は、比較例1のような従来型
の電池よりも高放電容量の電池であることが明らかとな
った。
Therefore, it became clear that the battery according to the present invention has a higher discharge capacity than a conventional battery such as Comparative Example 1.

実施例(2) 作成した円筒形電池の断面模式図を第3図に示す。芯体
9は、外径3III11、内径1.5 mm、長さ40
manの円筒状アクリル樹脂管を使用した。外周部にポ
リプロピレンの幅40mm、厚さ0.05mmを設けた
。電池サイズはAA型とした。それ以外のNi極及びC
d極の条件は、実施例1と同一条件で作成した電極を用
いて電池とした。その結果を第5図に示す。図中に示す
ように本発明の電池の活物質利用率10は96%程度で
安定する。
Example (2) A schematic cross-sectional view of the produced cylindrical battery is shown in FIG. The core body 9 has an outer diameter of 3III11, an inner diameter of 1.5 mm, and a length of 40 mm.
A man made cylindrical acrylic resin tube was used. A piece of polypropylene with a width of 40 mm and a thickness of 0.05 mm was provided on the outer periphery. The battery size was AA type. Other Ni poles and C
A battery was prepared using an electrode prepared under the same conditions as in Example 1 for the d-electrode. The results are shown in FIG. As shown in the figure, the active material utilization rate 10 of the battery of the present invention is stable at about 96%.

実施例(3) 円柱状の芯体を、電極群の捲回軸心として用い、電極群
を捲回した後、電極群より長くはみだしている部分の芯
体を切断した。その電極群を電池ケ−ス内に充填して円
筒形電池を作製した。電池サイズはAA型とした。芯体
は外径3■、長さ40mmの円柱状のポリ塩化ビニルを
用いた。電極群の外周部にポリプロピレンの幅40曽■
、厚さ0.07IIII11を設けた。それ以外のNi
極及びCd極の条件は、実施例1と同一条件で作成した
電極を用いて電池とした。その結果を第6図に示す。図
中に示すように本発明の電池の活物質利用率11は97
%程度で安定する。
Example (3) A cylindrical core was used as the winding axis of the electrode group, and after the electrode group was wound, the portion of the core protruding longer than the electrode group was cut. A cylindrical battery was produced by filling the electrode group into a battery case. The battery size was AA type. A cylindrical polyvinyl chloride core with an outer diameter of 3 mm and a length of 40 mm was used. The width of polypropylene is 40 mm around the outer periphery of the electrode group.
, and a thickness of 0.07III11. Other Ni
A battery was prepared using electrodes prepared under the same conditions as in Example 1 for the electrode and Cd electrode. The results are shown in FIG. As shown in the figure, the active material utilization rate 11 of the battery of the present invention is 97
It stabilizes at about %.

実施例(4) 粘着テープをセパレータの端部に接着させ、その両側に
正極及び負極を介在させ、電極群を捲回するときに同時
に粘着テープを電極群の外周部にポリプロピレンの輻4
0n+m、厚さ0.05mn+を設けた。電池サイズは
AA型とした。芯体は、外径3mm、内径2.0mm、
長さ40+wmの円筒状ステンレス鋼管を使用した。そ
れ以外のNi極及びCd極の条件は、実施例1と同一条
件で作成した電極を用いて電池とした。その結果を第7
図に示す。図中に示すように本発明の電池の活物質利用
率12は95%程度で安定する。
Example (4) Adhesive tape is adhered to the end of the separator, a positive electrode and a negative electrode are interposed on both sides, and when winding the electrode group, the adhesive tape is simultaneously applied to the outer periphery of the electrode group.
0n+m and thickness 0.05mm+. The battery size was AA type. The core has an outer diameter of 3 mm, an inner diameter of 2.0 mm,
A cylindrical stainless steel tube with a length of 40+wm was used. A battery was made using electrodes prepared under the same conditions as in Example 1, except for the Ni electrode and Cd electrode. The results are shown in the 7th section.
As shown in the figure. As shown in the figure, the active material utilization rate 12 of the battery of the present invention is stable at about 95%.

発明の効果 本発明によれば、電池の中心部に芯体を設け、その外周
部を固定することによって電極群の弛緩を防止すること
により、電池群の密着性を損うことがなくなるので、正
極及び負極の活物質と電極基体間及び活物質粒子間、活
物質と導電剤間の接触抵抗を小さくすることができるの
で、電極基体の導電ネットワーク及び導電剤の導電ネッ
トワークを有効に利用することにより、充放電効率が向
上し、電池性能向上が図れる。上記の実施例において示
されたように、本発明は高容量ペースト式電極を用いる
二次電池においてその効果が示され、とりわけ金網、エ
キスバンドメタル、穿孔板などの平面状電極基体の両面
に活物質層を形成した三層構造電極では顕著である。
Effects of the Invention According to the present invention, the core body is provided in the center of the battery and the outer periphery thereof is fixed to prevent the electrode group from loosening, so that the adhesion of the battery group is not impaired. Since the contact resistance between the active material of the positive electrode and negative electrode and the electrode base, between the active material particles, and between the active material and the conductive agent can be reduced, the conductive network of the electrode base and the conductive network of the conductive agent can be effectively utilized. This improves charge/discharge efficiency and improves battery performance. As shown in the above examples, the present invention is effective in secondary batteries using high capacity paste electrodes, and is particularly effective on both sides of planar electrode substrates such as wire mesh, expanded metal, perforated plates, etc. This is noticeable in a three-layer structure electrode in which a material layer is formed.

本発明は、ニッケルーカドミウム電池に限らず、ニッケ
ルー亜鉛、ニッケルー鉄、ニッケルー水素などの充放電
により活物質の体積変化が繰り返して生じることの不可
避な構成となっている他の二次電池に対しても有効であ
る。
The present invention is applicable not only to nickel-cadmium batteries, but also to other secondary batteries, such as nickel-zinc, nickel-iron, and nickel-hydrogen, in which the volume of the active material inevitably changes repeatedly due to charging and discharging. It is also effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第3図は本発明になる円筒型電池の断面模式図
、第2図は本発明と従来技術との活物質利用率の比較特
性図、第4図は三層構造電極の模式図、第5.6.7図
は本発明になる活物質利用率のサイクル特性図である。 1・・・活物質層、2・・・電極基体、3・・・芯体、
4・・・粘着テープ、5・・・渦巻電極、6・・・電池
ケース、7・・・本発明、9・・・芯体、10,11.
12・・・本発明。 第1図 第2図 代理人 弁理士   若 林 邦 彦 サイクル数 第3図 第4図 2藺西基体 活IplJ@利用率C%) 第7図 サイタル数 活砦質ネ1」量率(z)
Figures 1 and 3 are cross-sectional schematic diagrams of a cylindrical battery according to the present invention, Figure 2 is a comparative characteristic diagram of the active material utilization rate of the present invention and the conventional technology, and Figure 4 is a schematic diagram of a three-layer structure electrode. 5.6.7 are cycle characteristic diagrams of the active material utilization rate according to the present invention. DESCRIPTION OF SYMBOLS 1... Active material layer, 2... Electrode base, 3... Core body,
4... Adhesive tape, 5... Spiral electrode, 6... Battery case, 7... Present invention, 9... Core body, 10, 11.
12...This invention. Fig. 1 Fig. 2 Agent Patent Attorney Kunihiko Wakabayashi Number of cycles Fig. 3 Fig. 4 Fig. 2 Aishi base activity IplJ@Utilization rate C%) Fig. 7 Quantity rate (z)

Claims (1)

【特許請求の範囲】 1、活物質と導電材および結着剤などから成る正極と、
カドミウム、鉄、亜鉛、水素、リチウムなどを活物質と
する負極と、電解液を保持したセパレータから成る二次
電池であって、該正極、セパレータ、負極を捲回してな
る捲回電極群よりなる電池において、該捲回電極群の中
心部に剛性を有する芯体を配置し、かつ捲回電極群の弛
緩を防止する機構を捲回電極群の外周部に備えたことを
特徴とする二次電池。 2、剛性を有する芯体が、円柱状または円筒状である請
求項第1項に記載の二次電池。 3、捲回電極群の弛緩を防止する機構が粘着テープであ
って、かつ捲回電極群の周囲に配置されている請求項第
1項又は第2項に記載の二次電池。 4、捲回電極群の弛緩を防止する機構が捲回電極群の外
周部のすくなくとも一部分を覆っている請求項第1〜4
項のうちのいずれか1項に記載の二次電池。 5、剛性を有する芯体を軸として、正極、セパレータ、
および負極からなる捲回電極群を形成し、かつ該電極群
の捲回時に粘着テープを捲回電極群の周囲に接着する請
求項第1〜4項のうちのいずれか1項に記載の二次電池
の製法。
[Claims] 1. A positive electrode comprising an active material, a conductive material, a binder, etc.;
A secondary battery consisting of a negative electrode containing cadmium, iron, zinc, hydrogen, lithium, etc. as an active material and a separator holding an electrolyte, and comprising a wound electrode group formed by winding the positive electrode, separator, and negative electrode. A secondary battery, characterized in that a rigid core is disposed at the center of the wound electrode group, and a mechanism for preventing loosening of the wound electrode group is provided on the outer periphery of the wound electrode group. battery. 2. The secondary battery according to claim 1, wherein the rigid core has a columnar or cylindrical shape. 3. The secondary battery according to claim 1 or 2, wherein the mechanism for preventing loosening of the wound electrode group is an adhesive tape and is arranged around the wound electrode group. 4. Claims 1 to 4, wherein the mechanism for preventing loosening of the wound electrode group covers at least a part of the outer periphery of the wound electrode group.
The secondary battery according to any one of the items. 5.A positive electrode, a separator,
and a negative electrode, and an adhesive tape is adhered around the wound electrode group when the electrode group is wound. Manufacturing method for secondary batteries.
JP2119008A 1990-05-09 1990-05-09 Secondary battery and manufacture thereof Pending JPH0417271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2119008A JPH0417271A (en) 1990-05-09 1990-05-09 Secondary battery and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2119008A JPH0417271A (en) 1990-05-09 1990-05-09 Secondary battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0417271A true JPH0417271A (en) 1992-01-22

Family

ID=14750711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2119008A Pending JPH0417271A (en) 1990-05-09 1990-05-09 Secondary battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0417271A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06168711A (en) * 1992-11-27 1994-06-14 Toshiba Battery Co Ltd Nonaqueous electrolyte battery
JP2015118917A (en) * 2013-11-15 2015-06-25 株式会社Gsユアサ Electricity storage element and electricity storage element module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06168711A (en) * 1992-11-27 1994-06-14 Toshiba Battery Co Ltd Nonaqueous electrolyte battery
JP2015118917A (en) * 2013-11-15 2015-06-25 株式会社Gsユアサ Electricity storage element and electricity storage element module

Similar Documents

Publication Publication Date Title
JP3351261B2 (en) Nickel positive electrode and nickel-metal hydride storage battery using it
JP7383501B2 (en) Power storage device and power storage module
WO2017090219A1 (en) Cylindrical battery
JP2017183193A (en) Nickel-metal hydride storage battery
EP0301647A1 (en) Electrochemical cell
US6309775B1 (en) Prismatic electrochemical cell
EP0957526A1 (en) Lithium secondary cell, charger, and device for information terminal
JP3287367B2 (en) Sealed nickel zinc battery
EP0336102A2 (en) Secondary battery
JPH0417271A (en) Secondary battery and manufacture thereof
JPH0438106B2 (en)
JP4836351B2 (en) Electrode plate for alkaline storage battery and alkaline storage battery using the same
US5955216A (en) Sealed alkaline storage battery
KR100943751B1 (en) Nickel-metal hydride secondary battery
JP2004303678A (en) Energy storage element and combined energy storage element
JP3118716B2 (en) Sealed nickel-zinc battery
JP2966697B2 (en) Alkaline secondary battery
JPH05159779A (en) Nickel hydroxide electrode and alkaline secondary battery with this electrode serving as positive pole
JPH06223868A (en) Sealed alkaline storage battery
CN102088082A (en) Winding battery pole pack, preparation method of winding battery pole pack and battery comprising winding battery pole pack
JP3706166B2 (en) Manufacturing method of nickel metal hydride secondary battery
JP3393974B2 (en) Alkaline storage battery
JPH044574A (en) Secondary battery
JP3225608B2 (en) Nickel hydroxide positive electrode plate for alkaline battery and method for producing the same
JPS63264863A (en) Sealed nickel-cadmium storage battery and its manufacture