JPH0417215B2 - - Google Patents

Info

Publication number
JPH0417215B2
JPH0417215B2 JP58180430A JP18043083A JPH0417215B2 JP H0417215 B2 JPH0417215 B2 JP H0417215B2 JP 58180430 A JP58180430 A JP 58180430A JP 18043083 A JP18043083 A JP 18043083A JP H0417215 B2 JPH0417215 B2 JP H0417215B2
Authority
JP
Japan
Prior art keywords
film
metal
glass fiber
alloy
electroless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58180430A
Other languages
Japanese (ja)
Other versions
JPS6077151A (en
Inventor
Haruhiko Ootsuka
Koji Nomaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP58180430A priority Critical patent/JPS6077151A/en
Publication of JPS6077151A publication Critical patent/JPS6077151A/en
Publication of JPH0417215B2 publication Critical patent/JPH0417215B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Description

【発明の詳細な説明】 本発明は、電磁波シールド効果を有するFRP
製品に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an FRP with electromagnetic shielding effect.
It's about the product.

コンピユーター機器類、電子ゲーム、TVゲー
ム、電子キヤツシユ・レジスター、スイツチング
電源、ワードプロセツサー、デジタル時計、電卓
その他各種デジタル技術を応用した電子機器で
は、多数のIC、LSIが使用されており、周囲に電
磁波を放射し、この電磁波が周囲のテレビ、ラジ
オ、ステレオその他周辺機器にノイズ発生、映像
の悪化、異常信号の発生等の悪影響を与えるとい
う電磁波障害を発生させる。そのため、コンピユ
ーター機器類をはじめとするデジタル技術を応用
した電子機器類について、かかる電子機器類から
放射する電磁波をシールドするという規制が米
国、西独において行なわれはじめている。
Many ICs and LSIs are used in computer equipment, electronic games, TV games, electronic cash registers, switching power supplies, word processors, digital clocks, calculators, and other electronic devices that apply digital technology. The electromagnetic waves emit electromagnetic waves, which cause electromagnetic interference that adversely affects surrounding televisions, radios, stereos, and other peripheral equipment, such as noise, deterioration of images, and generation of abnormal signals. For this reason, regulations have begun to be implemented in the United States and West Germany to shield electromagnetic waves emitted from electronic devices that apply digital technology, such as computer equipment.

上記した様な電子機器類から放射する電磁波を
シールドするためには、電子機器類を電磁波に対
し不透明な良電導体よりなる材料、例えば金属製
あるいは電導性の付与されたプラスチツク製の筺
体の中に収納するのが最も実用的である。中で
も、電導性の付与されたプラスチツク製の筺体は
成形の自由性、軽量性、耐蝕性、吸音性を有する
とともに、量産性にも優れている点から板金、ダ
イキヤスト等の金属製筺体に代り多様される傾向
にある。かかるプラスチツク製筺体に電導性を付
与する方法としては、プラスチツク表面に亜鉛溶
射により亜鉛膜を形成する方法、導電性塗料を塗
布して導電性被膜を形成する方法、導電性箔を貼
り付ける方法、真空蒸着、スパツタリング、イオ
ンプレーテイング、メツキ等により導電性被覆を
形成する方法、あるいはプラスチツクの中にカー
ボン繊維、金属繊維、カーボン粉末、金属粉末、
金属フレーク、金属被覆ガラス繊維、金属被覆ガ
ラス粉末を添加する方法などが挙げられる。上記
した亜鉛溶射、導電性塗料などのプラスチツク表
面へのコーテイングは、所定形状にプラスチツク
を成形し、次いでその成形表面の表面処理を行な
つた後コーテイングを行うため、量産性が低く、
時間がかかり、又人手がかかつてコスト高になる
という欠点や、コーテイングされた被膜が耐蝕
性、密着性に劣るという欠点がある。一方、導電
性の粉末、フレーク、繊維等を混入する方法は、
プラスチツク製にこれらを混入し、成形するだけ
で済むので量産性に優れ、手間、時間がかから
ず、又耐蝕性に優れているという利点を有してい
る。中でも、金属被覆繊維を用いる方法は導電性
付与と補強効果とを同時に得ることができ、又
FRPと同様な方法により成形する方法であるの
で、量産性に優れ、手間時間がかからず、均一な
導電性を持つ電磁シールド効果を持つプラスチツ
ク筺体が得られやすい。かかる金属被覆繊維のう
ち、金属被覆ガラス繊維として知られているもの
は、ガラス繊維を溶融アルミニウム浴の中に浸漬
して、ガラス繊維表面にA1膜を形成する方法で
あつた。しかしながら、この方法によるものは
A1膜が剥れやすく、又製造コストも高いという
ものであつた。
In order to shield the electromagnetic waves emitted from the above-mentioned electronic devices, it is necessary to encase the electronic devices in a case made of a material that is a good conductor and is opaque to electromagnetic waves, such as metal or conductive plastic. It is most practical to store it in Among these, electrically conductive plastic casings are widely used in place of sheet metal, die-cast, and other metal casings because of their flexibility in molding, light weight, corrosion resistance, sound absorption, and excellent mass production. There is a tendency to Methods for imparting electrical conductivity to such a plastic housing include a method of forming a zinc film on the plastic surface by zinc spraying, a method of applying a conductive paint to form a conductive film, a method of pasting a conductive foil, A method of forming a conductive coating by vacuum evaporation, sputtering, ion plating, plating, etc., or adding carbon fiber, metal fiber, carbon powder, metal powder, etc. to the plastic.
Examples include methods of adding metal flakes, metal-coated glass fibers, and metal-coated glass powder. Coating the plastic surface with the above-mentioned zinc spraying, conductive paint, etc. involves molding the plastic into a predetermined shape, then surface-treating the molded surface, and then applying the coating, making it difficult to mass-produce.
There are disadvantages that it is time consuming and labor intensive, resulting in high costs, and that the coated film has poor corrosion resistance and adhesion. On the other hand, the method of mixing conductive powder, flakes, fibers, etc.
Since it is only necessary to mix these into plastic and mold it, it has the advantage of being excellent in mass production, requiring little labor and time, and having excellent corrosion resistance. Among them, the method using metal-coated fibers can provide conductivity and reinforcing effects at the same time, and
Since it is molded using a method similar to that of FRP, it is easy to mass produce, requires less time and effort, and makes it easy to obtain a plastic casing with uniform conductivity and electromagnetic shielding effect. Among such metal-coated fibers, what is known as metal-coated glass fiber was produced by immersing the glass fiber in a molten aluminum bath to form an A1 film on the surface of the glass fiber. However, this method
The A1 film peeled off easily and the manufacturing cost was high.

本発明は、かかる欠点がなく、製造も容易でコ
ストも低く、しかも金属膜のガラス繊維への密着
性に優れて剥れにくい高品質の電磁波シールド効
果を有する金属被覆ガラス繊維を提供すること、
又電磁波シールド効果を有するFRP製品を使用
し、電磁波シールド効果を有するFRP製品の提
供を目的とする。
The present invention provides a metal-coated glass fiber that does not have such drawbacks, is easy to manufacture, is low in cost, and has a high-quality electromagnetic wave shielding effect that has excellent adhesion of the metal film to the glass fiber and is difficult to peel off.
We also use FRP products that have an electromagnetic shielding effect, and aim to provide FRP products that have an electromagnetic shielding effect.

以下、本発明を更に詳細に説明する。 The present invention will be explained in more detail below.

本発明において、ガラス繊維表面に被覆される
導電性金属として無電解メツキ法によりガラス繊
維表面に被膜を形成できる金属または、上記方法
により上記表面に形成された金属膜上に電気メツ
キ法により被膜を形成できる金属、即ち、Ni、
Cu、Ag、Pb、Fe、Co、Pあるいはこれら金属
のうち二種以上からなる合金、例えばCu−Ni合
金、Fe−Ni合金(パーマロイ)、Fe−Co合金、
Ni−Co合金、Ni−P合金、Co−P合金などが選
ばれる。中でも無電解メツキ法により容易に膜形
成ができ、ガラス繊維表面との付着性にも優れ、
充分な化学的及び物理的耐久性を有し、かつ充分
な電磁波シールド効果が得られる電気的特性、例
えば一辺10cmの正方形の電気抵抗102〜103Ω程度
の電導性、1〜8000の透磁率を有するNi、Cu、
Fe−Ni合金などが最適である。
In the present invention, the conductive metal to be coated on the surface of the glass fiber is a metal that can form a coating on the surface of the glass fiber by electroless plating, or a metal that can be coated on the surface of the glass fiber by electroplating on the metal film formed on the surface by the above method. Metals that can be formed, namely Ni,
Cu, Ag, Pb, Fe, Co, P or alloys consisting of two or more of these metals, such as Cu-Ni alloy, Fe-Ni alloy (permalloy), Fe-Co alloy,
Ni-Co alloy, Ni-P alloy, Co-P alloy, etc. are selected. Among them, it is easy to form a film using the electroless plating method, and has excellent adhesion to the glass fiber surface.
Electrical properties that have sufficient chemical and physical durability and provide a sufficient electromagnetic shielding effect, such as electrical resistance of a square with a side of 10 cm, conductivity of about 10 2 to 10 3 Ω, and transparency of 1 to 8000 Ω. Ni, Cu, with magnetic properties
Fe-Ni alloy etc. are most suitable.

ガラス繊維表面に上記金属膜を形成するに当つ
ては、ガラス繊維表面に鋭敏化処理及び/又は活
性化処理を起こす。かかる処理としては、ガラス
繊維を水洗した後、塩化第1錫の水溶液と接触さ
せ、次いでパラジウム塩水溶液と接触させる処理
が一般的である。
In forming the metal film on the glass fiber surface, the glass fiber surface is subjected to sensitization treatment and/or activation treatment. As such a treatment, the glass fibers are generally washed with water, brought into contact with an aqueous solution of tinnous chloride, and then brought into contact with an aqueous palladium salt solution.

ガラス繊維表面に上記した様な金属膜を形成さ
せる方法としては、上記した金属の塩と還元剤
と、更に錯化剤、pH緩衝剤、pH調節剤、安定剤
あるいはその他の添加成分を必要に応じて添加し
た無電解金属メツキ溶液をガラス繊維表面にスプ
レーあるいは塗布し、又はかかるメツキ溶液中に
ガラス繊維を浸漬し、還元反応により上記金属膜
をガラス繊維表面に形成する方法、あるいは、上
記した金属の塩の水溶液に錯化剤、pH緩衝剤、
pH調節剤、その他所望の添加成分を必要に応じ
て添加した無電解金属メツキ溶液と、還元剤に安
定剤を添加した溶液とをガラス繊維の表面にほぼ
同時にスプレーしてガラス繊維表面に還元反応に
より上記金属膜を形成する方法などが採用され
る。
The method of forming the above-mentioned metal film on the surface of glass fiber requires the above-mentioned metal salt and reducing agent, as well as a complexing agent, a pH buffer, a pH adjuster, a stabilizer, or other additive components. A method of spraying or applying an electroless metal plating solution added accordingly to the surface of the glass fiber, or immersing the glass fiber in such a plating solution, and forming the above metal film on the surface of the glass fiber by a reduction reaction, or the method described above. Complexing agent, pH buffering agent,
An electroless metal plating solution containing a pH adjuster and other desired additives as necessary and a solution containing a reducing agent and a stabilizer are sprayed on the glass fiber surface almost simultaneously to cause a reduction reaction on the glass fiber surface. The method of forming the metal film described above is adopted.

本発明において無電解金属メツキ溶液に使用さ
れる金属塩としては、例えばN1膜の形成の場合
には塩化ニツケル、硫酸ニツケル、酢酸ニツケ
ル、臭化ニツケル、ヨウ化ニツケルなどの無機酸
又は有機酸の水溶性ニツケル塩、あるいはこれら
の少くとも2種以上の混合物が使用され、又Cu
膜の形成の場合には硝酸銅、硫酸銅、酢酸銅など
の無機酸又は有機酸の水溶性銅塩、あるいはこれ
らの少くとも2種以上の混合物が使用され、又
Ag膜、Fe膜、Pb膜などを形成する場合にも上記
した様な金属塩類が使用される。又、合金膜を形
成する場合には、その合金を構成する金属の上記
した金属塩を組み合わせて使用される。通常、こ
れらの塩類は水溶液として使用されるが、場合に
よつては有機溶媒あるいは有機溶媒と水とを用い
た溶液として使用することもできる。
Examples of metal salts used in the electroless metal plating solution in the present invention include inorganic or organic acids such as nickel chloride, nickel sulfate, nickel acetate, nickel bromide, and nickel iodide in the case of forming an N1 film. Water-soluble nickel salts or a mixture of at least two of these are used, and Cu
In the case of film formation, water-soluble copper salts of inorganic or organic acids, such as copper nitrate, copper sulfate, and copper acetate, or a mixture of at least two of these are used;
Metal salts such as those described above are also used when forming Ag films, Fe films, Pb films, etc. Further, when forming an alloy film, the above-mentioned metal salts of the metals constituting the alloy are used in combination. Usually, these salts are used in the form of an aqueous solution, but in some cases, they can also be used in the form of an organic solvent or a solution using an organic solvent and water.

又、金属塩の溶液には、還元反応を容易に行な
わしめる様に、所望のpHに調整するアルカリ性
付与剤と、錯化剤としてロツシエル塩、EDTA、
クエン酸ナトリウム、グリコン酸ナトリウムなど
が、更にpH緩衝剤としてリンゴ酸、ホウ酸など
が加えられる。又還元剤としては、ホルマリン
ン、次亜リン酸ナトリウム、水素化ホウ素ナトリ
ウム、ヒドラジン、硫酸ヒドラジン、グリオキサ
ール、ジメチルアミンボラン、メチルアミンボラ
ザン、ハイドロサルフアイド、ジエチルボラザン
などの安定剤を加えたものが代表的なものとして
使用される。又、更に必要に応じて所望の添加成
分を加えることができる。
In addition, the metal salt solution contains an alkalinity-imparting agent to adjust the pH to the desired value and a complexing agent such as Rothsiel's salt, EDTA, etc. to facilitate the reduction reaction.
Sodium citrate, sodium glyconate, etc. are added, and malic acid, boric acid, etc. are added as pH buffering agents. As reducing agents, stabilizers such as formalin, sodium hypophosphite, sodium borohydride, hydrazine, hydrazine sulfate, glyoxal, dimethylamine borane, methylamine borazane, hydrosulfide, and diethyl borazane were added. are used as representative items. Furthermore, desired additional components can be added as necessary.

本発明において、ガラス繊維表面に形成される
金属膜の膜厚としては、所望の電磁波シールド性
が得られる様な膜厚が選ばれる。例えば0.1μm〜
100μmの膜厚が最適である。膜厚の調整は、無電
解金属メツキ溶液の温度、金属塩濃度、無電解メ
ツキの処理時間、回数等を調整して行なわれる。
In the present invention, the thickness of the metal film formed on the surface of the glass fiber is selected such that a desired electromagnetic shielding property can be obtained. For example 0.1 μm ~
A film thickness of 100 μm is optimal. The film thickness is adjusted by adjusting the temperature of the electroless metal plating solution, the metal salt concentration, the electroless plating treatment time, the number of times, etc.

なお、本発明において、ガラス繊維表面に形成
される金属膜は、上記金属又は合金の単層であつ
てもよいし、あるいは又2種以上の金属又は合金
を組み合わせ複数層であつてもよい。
In the present invention, the metal film formed on the surface of the glass fiber may be a single layer of the above metal or alloy, or may be a multilayer combination of two or more metals or alloys.

又、無電解メツキ法により形成された金属膜の
表面に、更にかかる金属膜を電極として電気メツ
キにより同種又は異種の金属膜又は合金膜を形成
することもできる。この様な方法により金属膜を
厚膜化し、所望の電導性、耐久性が得られる様に
調整することもできる。
Further, on the surface of the metal film formed by electroless plating, a metal film or alloy film of the same or different type can be further formed by electroplating using the metal film as an electrode. By using such a method, the thickness of the metal film can be increased and the desired conductivity and durability can be adjusted.

本発明におけるガラス繊維とは、種々のタイプ
のガラス繊維を示すものであり、例えば、クロ
ス、ロービング、チヨツプドストランド、チヨツ
プド・ストランドマツト、ヤーン、ロービング・
クロス、連続繊維マツトなどが使用できる。中で
もクロス、ロービング・クロス、チヨツブド・ス
トランドマツト、連続繊維マツト等のフイルム
状、マツト状、シート状のものはスプレー法、浸
漬法、その他各種塗布法により無電解メツキ溶液
の被覆が容易にかつ作業性よく行なうことができ
る。
The glass fiber in the present invention refers to various types of glass fiber, such as cloth, roving, chopped strand, chopped strand mat, yarn, roving, etc.
Cloth, continuous fiber mat, etc. can be used. Among them, film-like, mat-like, and sheet-like materials such as cloth, roving cloth, chopped strand mat, and continuous fiber mat can be coated with electroless plating solution easily and easily by spraying, dipping, and various other coating methods. It can be done gracefully.

本発明の金属被覆ガラスは、それ自身を所定の
形状に成形するあるいは内貼りあるいは内挿させ
ることで電磁波シールド効果を有する筺体、カバ
ーなどに使用できるが、更に好ましくは、かかる
金属被覆繊維を熱可塑性プラスチツク、あるいは
熱硬化性プラスチツクの中に混入あるいは内挿さ
せて所定の形状の筺体、板状体などに成型した
FRP製品が電磁波シールド部品として最適であ
る。かかる金属被覆繊維を用いた電磁波シールド
FRP製品は、通常のFRP製品と同様な成型方法
により成型加工することができ、その作業性も良
好であり、又製品も、強度、化学的耐久性が高く
最適である。
The metal-coated glass of the present invention can be used for housings, covers, etc. that have an electromagnetic wave shielding effect by forming it into a predetermined shape, pasting it inside, or inserting it into a predetermined shape. Mixed or inserted into plastic or thermosetting plastic and molded into a predetermined shape of casing, plate-shaped body, etc.
FRP products are ideal as electromagnetic shielding parts. Electromagnetic shielding using such metal-coated fibers
FRP products can be molded using the same molding method as regular FRP products, and the workability is good, and the products are also ideal for their high strength and chemical durability.

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

実施例 1 水洗されたロービングタイプのガラス繊維(寸
法、直径12〜13μm、2000フオール)製品のタイ
プ)を塩化第1錫水溶液(SnCl2・2H2O、1g/
水1)中に浸漬し、60秒間保持して鋭敏化処理
した後水洗し、次いで塩化パラジウム水溶液
(PdC2・nH2O、0.1g/水1)の中に浸漬し、
60秒間保持して活性化処理した後水洗した。次い
でこの処理されたガラス繊維を硫酸ニツケル
30g/1、次亜リン酸ナトリウム10g/1、酢酸
ナトリウム10g/1、クエン酸ナトリウム10g/
1よりなる組成の液温70℃の無電解Niメツキ液
の中に150秒間保持(メツキ速度80m/hr)して
上記ガラス繊維に1〜2μmの膜厚でNi被膜を形
成したのち、下記に示す液温50℃のパーマロイ電
気メツキ浴中に150秒間保持して、電流密度5A/
dm2として電気メツキを行ない、上記Ni被覆ガ
ラス繊維上に約2〜3μmの膜厚で、クロス状に織
つた場合の一辺10cmの正方形の電気抵抗0.01Ωの
パーマロイ被膜を形成した。
Example 1 Water-washed roving type glass fibers (dimensions, diameter 12-13 μm, 2000 fluor product type) were injected into an aqueous solution of stannous chloride (SnCl 2 2H 2 O, 1 g/
Immersed in water 1), held for 60 seconds for sensitization treatment, washed with water, then immersed in palladium chloride aqueous solution (PdC 2 nH 2 O, 0.1 g/water 1),
After being activated by holding for 60 seconds, it was washed with water. This treated glass fiber is then treated with nickel sulfate.
30g/1, sodium hypophosphite 10g/1, sodium acetate 10g/1, sodium citrate 10g/1
After forming a Ni film with a thickness of 1 to 2 μm on the above glass fiber by holding it in an electroless Ni plating solution with a composition of 1 at a temperature of 70°C for 150 seconds (plating speed 80 m/hr), the following process was performed. The liquid was kept in a permalloy electroplating bath at a temperature of 50°C for 150 seconds, and the current density was 5A/
Electroplating was carried out as dm 2 to form a permalloy film having a thickness of approximately 2 to 3 μm on the Ni-coated glass fibers and having a square shape of 10 cm on each side when woven in a cross-like manner and an electrical resistance of 0.01 Ω.

液組成 硫酸ニツケル 300g/ 塩化ニツケル 20g/ 硫酸第1鉄 20g/ ホウ素 30g/ 上記した様に、本発明の様に無電解メツキ法に
よりガラス繊維表面に形成された金属膜は、従来
知られている熔融A1コートのガラス繊維に比べ
膜の付着強度が高く、このガラス繊維を用いて作
成したFRP製品の曲げ強度も高く、又電磁波シ
ールド効果も同程度である。又、無電解メツキ法
又は無電解メツキ法及び電気メツキ法を利用すれ
ば、ガラス繊維表面への金属膜の被覆が容易で、
量産化が容易で、又低コスト化をはかることがで
きるという利点が発揮される。
Liquid composition Nickel sulfate 300g / Nickel chloride 20g / Ferrous sulfate 20g / Boron 30g / As mentioned above, the metal film formed on the glass fiber surface by the electroless plating method as in the present invention is conventionally known. The adhesion strength of the film is higher than that of fused A1-coated glass fiber, and the bending strength of FRP products made using this glass fiber is also high, and the electromagnetic shielding effect is on the same level. Furthermore, by using the electroless plating method, the electroless plating method, and the electroplating method, it is easy to coat the glass fiber surface with a metal film.
The advantages are that mass production is easy and costs can be reduced.

Claims (1)

【特許請求の範囲】[Claims] 1 ガラス繊維の表面に無電解メツキ金属膜を設
け、該無電解メツキ金属膜上に電解メツキ金属膜
を設けた金属被覆ガラス繊維を補強剤として含む
FRP製品であつて、該無電解メツキ法により形
成される金属膜は、Ni膜、Cu膜、Co膜、Fe膜、
Ni−Cu合金膜、Ni−P合金膜、Co−P合金膜、
Co−Ni−P合金膜、Fe−Ni合金膜、又はFe−
Co合金膜である電磁波シールド効果を有する
FRP製品。
1 An electroless plated metal film is provided on the surface of the glass fiber, and a metal-coated glass fiber is provided as a reinforcing agent, with an electrolytically plated metal film provided on the electroless plated metal film.
For FRP products, the metal films formed by the electroless plating method include Ni film, Cu film, Co film, Fe film,
Ni-Cu alloy film, Ni-P alloy film, Co-P alloy film,
Co-Ni-P alloy film, Fe-Ni alloy film, or Fe-
Co alloy film has electromagnetic shielding effect
FRP products.
JP58180430A 1983-09-30 1983-09-30 Metal-coated glass fiber, production thereof and frp product using said fiber Granted JPS6077151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58180430A JPS6077151A (en) 1983-09-30 1983-09-30 Metal-coated glass fiber, production thereof and frp product using said fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58180430A JPS6077151A (en) 1983-09-30 1983-09-30 Metal-coated glass fiber, production thereof and frp product using said fiber

Publications (2)

Publication Number Publication Date
JPS6077151A JPS6077151A (en) 1985-05-01
JPH0417215B2 true JPH0417215B2 (en) 1992-03-25

Family

ID=16083115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58180430A Granted JPS6077151A (en) 1983-09-30 1983-09-30 Metal-coated glass fiber, production thereof and frp product using said fiber

Country Status (1)

Country Link
JP (1) JPS6077151A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60210549A (en) * 1984-04-03 1985-10-23 Tokyo Fiber Glass Kk Use of chemically-plated electrically-conductive glass fiber and its production
US4738896A (en) * 1986-09-26 1988-04-19 Advanced Technology Materials, Inc. Sol gel formation of polysilicate, titania, and alumina interlayers for enhanced adhesion of metal films on substrates
JPH07216997A (en) * 1994-02-01 1995-08-15 Shirayama:Kk Bolt cap for embedded anchor
DE10149645C1 (en) * 2001-10-09 2003-01-23 Thueringisches Inst Textil Making tough electrically-conducting polymer composites for electromagnetic screening, employs metal-coated textile in polymer matrix
CN102171284A (en) * 2008-06-23 2011-08-31 帕克-汉尼芬公司 EMI shielding materials
CN108349796A (en) * 2015-11-02 2018-07-31 中央硝子株式会社 The fiber glass packing of electromagnetic wave shielding coating metal, the manufacturing method of electromagnetic wave shielding coating metal fiber glass packing and electromagnetic wave shielding resin article
CN111170654A (en) * 2020-01-14 2020-05-19 温州市鹿城印染厂 Surface modified glass fiber and preparation method and application thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5679156A (en) * 1979-11-30 1981-06-29 Koujiyundo Kagaku Kenkyusho:Kk Electrically conductive polymer with metallized glass fiber plated chemically
JPS575856A (en) * 1980-06-13 1982-01-12 Hitachi Ltd Plating method
JPS5739284A (en) * 1980-08-18 1982-03-04 Sumitomo Chemical Co Forming of metal plating on non-metal fiber
JPS5742558A (en) * 1980-07-04 1982-03-10 Baachiyu Mejiei Aarami Eepitee Method of coating fibrous glass with glassy metal
JPS57166338A (en) * 1981-04-07 1982-10-13 Asahi Glass Co Ltd Hot ray reflecting glass and its preparation
JPS5820750A (en) * 1981-07-30 1983-02-07 Shinko Electric Co Ltd Preparing apparatus for glass fiber coated with aluminum
JPS5848660A (en) * 1981-09-04 1983-03-22 Toyota Motor Corp Pretreatment for electroless plating
JPS5879842A (en) * 1981-11-04 1983-05-13 Nakamura Minoru Electroless plating of glass and ceramic

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5679156A (en) * 1979-11-30 1981-06-29 Koujiyundo Kagaku Kenkyusho:Kk Electrically conductive polymer with metallized glass fiber plated chemically
JPS575856A (en) * 1980-06-13 1982-01-12 Hitachi Ltd Plating method
JPS5742558A (en) * 1980-07-04 1982-03-10 Baachiyu Mejiei Aarami Eepitee Method of coating fibrous glass with glassy metal
JPS5739284A (en) * 1980-08-18 1982-03-04 Sumitomo Chemical Co Forming of metal plating on non-metal fiber
JPS57166338A (en) * 1981-04-07 1982-10-13 Asahi Glass Co Ltd Hot ray reflecting glass and its preparation
JPS5820750A (en) * 1981-07-30 1983-02-07 Shinko Electric Co Ltd Preparing apparatus for glass fiber coated with aluminum
JPS5848660A (en) * 1981-09-04 1983-03-22 Toyota Motor Corp Pretreatment for electroless plating
JPS5879842A (en) * 1981-11-04 1983-05-13 Nakamura Minoru Electroless plating of glass and ceramic

Also Published As

Publication number Publication date
JPS6077151A (en) 1985-05-01

Similar Documents

Publication Publication Date Title
US4590115A (en) Metallizing of plastic substrata
US3119709A (en) Material and method for electroless deposition of metal
JP2769954B2 (en) Method for electrodepositing metal plating directly on plastic substrates
US3523824A (en) Metallization of plastic materials
EP0905285B1 (en) Method for electroplating nonconductive material
US3993801A (en) Catalytic developer
JP6150822B2 (en) Method for metallizing non-conductive plastic surface
CN1268803C (en) Nickel-copper composite metal textile and preparation method thereof
JP4897165B2 (en) Method for producing metal-plated organic polymer fiber
US4770751A (en) Method for forming on a nonconductor a shielding layer against electromagnetic radiation
JPS61210183A (en) Method for providing metal film to surface of polymer
JPH0417215B2 (en)
US4751110A (en) Radiation attenuation shielding
US3674550A (en) Method of electroless deposition of a substrate and sensitizing solution therefor
US4508780A (en) Metallized polymer granules, and their use
US3321328A (en) Coating of aluminum substrates with a magnetic material
JPS59102953A (en) Electrically conductive synthetic resin composition
JPH0366272B2 (en)
US3547692A (en) Metal coating carbon substrates
US4748056A (en) Process and composition for sensitizing articles for metallization
JPS61257479A (en) Method for plating inorganic powder by electroless plating
JP4107534B2 (en) Metal-coated glass cloth and method for producing the same
JP2001295061A (en) Electroless palladium-nickel bath and plating method using the same as well as plated products obtained by the method
JPH02111883A (en) Electroless metal plating method
JPH0448697A (en) Electromagnetic shielding material and manufacture thereof