JPH04170305A - Production of thin film superconductor - Google Patents

Production of thin film superconductor

Info

Publication number
JPH04170305A
JPH04170305A JP2300391A JP30039190A JPH04170305A JP H04170305 A JPH04170305 A JP H04170305A JP 2300391 A JP2300391 A JP 2300391A JP 30039190 A JP30039190 A JP 30039190A JP H04170305 A JPH04170305 A JP H04170305A
Authority
JP
Japan
Prior art keywords
thin film
metal oxide
oxide thin
ultraviolet rays
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2300391A
Other languages
Japanese (ja)
Other versions
JP3037396B2 (en
Inventor
Akira Enohara
晃 榎原
Shigemi Furubiki
古曵 重美
Kentaro Setsune
瀬恒 謙太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2300391A priority Critical patent/JP3037396B2/en
Publication of JPH04170305A publication Critical patent/JPH04170305A/en
Application granted granted Critical
Publication of JP3037396B2 publication Critical patent/JP3037396B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To improve the crystallinity, to optimize the oxidation state of superconductor and to improve superconductive characteristics by forming a metal oxide thin film, subjecting to heat treatment and further irradiating the film with UV ray or an electromagnetic wave having shorter wavelength than UV ray. CONSTITUTION:A multiple metal oxide thin film expressed by A-B-Cu-0, Bi-Sr- Ca-Cu-O or Tl-Ba-Ca-Cu-0 is heated at 800-1000 deg.C in oxygen gas for <=30min. In the formula, A is at least one element selected from Y, La and lanthanum series elements, B is at least one element selected from alkaline earth metal elements, and concns. of A, B and Cu satisfy the relation of. 0.5<=(A+B)/Cu<=2.5. Then this film is irradiated with UV ray or an electromagnetic wave having shorter wavelength than UV ray under reduced pressure or in an inert gas atmosphere. Thus, the superconductive thin film having about 90 K critical temp. is obtd.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、超伝導体の製造方法に関するものである。と
くに、薄膜超伝導体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a superconductor. In particular, it relates to a method for manufacturing thin film superconductors.

[従来の技術] Y−Ba−Cu−0系に代表される酸化物超伝導材料は
、超伝導機構の詳細は明かではないが、転移温度が液体
窒素温度以上と高く、量子干渉素子等各種エレクトロニ
クス分野への応用が期待されている。
[Prior art] Although the details of the superconducting mechanism of oxide superconducting materials represented by the Y-Ba-Cu-0 system are not clear, their transition temperature is as high as the liquid nitrogen temperature or higher, and they are used in various devices such as quantum interference devices. Application to the electronics field is expected.

これらの材料は、結晶中に含まれる酸素原子の量、すな
わち酸化状態によって絶縁体(半導体)−超伝導体の変
化を示す。良好な超伝導材料を得るには、結晶性の向上
並びに酸化状態の制御が必要である。さらに、これら材
料を実際に様々な電子素子に利用する際には、良質の薄
膜を得ることが不可欠である。超伝導体の薄膜化は、超
伝導体の素材を原子状態の極微粒子に分解してから基体
上に複合酸化物薄膜として堆積させることにより達成さ
れる。焼結体に比べ、結晶性の良い、より均質な膜を得
ることができる。
These materials exhibit a change from insulator (semiconductor) to superconductor depending on the amount of oxygen atoms contained in the crystal, that is, the oxidation state. In order to obtain a good superconducting material, it is necessary to improve the crystallinity and control the oxidation state. Furthermore, when these materials are actually used in various electronic devices, it is essential to obtain thin films of good quality. The thinning of a superconductor is achieved by decomposing the superconductor material into ultrafine particles in an atomic state and then depositing the superconductor material on a substrate as a thin composite oxide film. A more homogeneous film with good crystallinity can be obtained compared to a sintered body.

しかしながら、複合酸化物薄膜の形成過程で得られる薄
膜の結晶性やそれに取り込まれる酸素の量は良好な超伝
導特性を得るには必ずしも十分ではなく、最良の超伝導
特性を持たせるには、結晶性の向上と酸素含有量の最適
化のための処理を施す必要がある。
However, the crystallinity of the thin film obtained in the process of forming a composite oxide thin film and the amount of oxygen incorporated into it are not necessarily sufficient to obtain good superconducting properties. It is necessary to carry out treatments to improve the properties and optimize the oxygen content.

[発明が解決しようとする課題] 酸化物超伝導薄膜において、その結晶構造と酸素原子含
有量すなわち酸化状態は、超伝導特性に対して影響を与
えることが知られている。これらの結晶性と酸化状態は
、薄膜作製時の雰囲気や基板温度などによっである程度
までは制御できる。
[Problems to be Solved by the Invention] It is known that in an oxide superconducting thin film, its crystal structure and oxygen atom content, that is, its oxidation state, have an effect on superconducting properties. These crystallinities and oxidation states can be controlled to a certain extent by controlling the atmosphere and substrate temperature during thin film production.

しかしながら、作製時の他の様々な要因(例えば、加速
されたイオンの膜表面への衝突、減圧状態に置かれるこ
とによる膜表面からの酸素の離脱など)とも影響し合う
ため、作製条件のみによる膜の結晶性の向上や酸化状態
の最適化には限界がある。そのため、従来の薄膜形成技
術では、結晶性が低かったり、酸化状態などが最適化で
きず、良好な薄膜を得ることが困難であるという課題が
あった。
However, because it interacts with various other factors during fabrication (e.g. collision of accelerated ions with the membrane surface, release of oxygen from the membrane surface due to being placed in a reduced pressure state, etc.), it depends only on the fabrication conditions. There are limits to improving the crystallinity of the film and optimizing the oxidation state. Therefore, with conventional thin film forming techniques, there have been problems in that crystallinity is low, oxidation state, etc. cannot be optimized, and it is difficult to obtain a good thin film.

本発明方法は、前記従来技術の課題を解決するため、結
晶性の向上と酸化状態の最適化を図ることができる薄膜
作製方法を提供することを目的とする。
In order to solve the problems of the prior art described above, the method of the present invention aims to provide a thin film manufacturing method that can improve crystallinity and optimize the oxidation state.

[課題を解決するための手段] 前記目的を達成するため、本発明の薄膜超伝導体の製造
方法は、基板上に金属酸化物薄膜を含む薄膜超伝導体の
製造方法であって、金属酸化物薄膜を形成した後、前記
金属酸化物薄膜に対して熱処理を施し、さらに、前記金
属酸化物薄膜表面に紫外線あるいは紫外線よりも波長の
短い電磁波を照射することを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the method for manufacturing a thin film superconductor of the present invention is a method for manufacturing a thin film superconductor including a metal oxide thin film on a substrate, the method comprising: a metal oxide thin film on a substrate; After the metal oxide thin film is formed, the metal oxide thin film is subjected to heat treatment, and the surface of the metal oxide thin film is further irradiated with ultraviolet rays or electromagnetic waves having a shorter wavelength than the ultraviolet rays.

前記本発明の構成においては、金属酸化物薄膜として、
A−B−Cu−0複合化合物を用いることが好ましい。
In the configuration of the present invention, as the metal oxide thin film,
Preferably, an AB-Cu-0 composite compound is used.

[ここで、AはY、LaおよびLa系列元素(原子番号
57.59〜60.62〜71)から選ばれる少なくと
も1種の元素、Bはアルカリ土類金属(IIa族)元素
から選ばれる少なくとも1種の元素、か1.八、B元素
とCu元素の濃度は下記式の範囲である。
[Here, A is at least one element selected from Y, La, and La series elements (atomic numbers 57.59 to 60.62 to 71), and B is at least one element selected from alkaline earth metals (group IIa) elements. 1 type of element, or 1. 8. The concentrations of B element and Cu element are within the range of the following formula.

0.5≦(A+B)/Cu≦2.5] また、前記本発明の構成においては、金属酸化物薄膜と
して、Bi−3r−Ca−Cu−O)またはT l−B
a−Ca−Cu−0複合化合物を用いることが好ましい
0.5≦(A+B)/Cu≦2.5] Furthermore, in the structure of the present invention, as the metal oxide thin film, Bi-3r-Ca-Cu-O) or Tl-B
It is preferable to use an a-Ca-Cu-0 composite compound.

また、前記本発明の構成においては、熱処理条件が、酸
素ガス中で800〜1000℃の範囲の温度に加熱する
条件であることが好ましい。
Further, in the configuration of the present invention, the heat treatment conditions are preferably such that heating is performed in oxygen gas to a temperature in the range of 800 to 1000°C.

また、前記本発明の構成においては、熱処理の時間が3
0分以内であることが好ましい。
Further, in the configuration of the present invention, the heat treatment time is 3
Preferably, the time is within 0 minutes.

さらに、前記本発明の構成においては、紫外線あるいは
紫外線よりも波長の短い電磁波の照射を、減圧下、また
は不活性ガス雰囲気中で行なうことが好ましい。
Furthermore, in the configuration of the present invention, it is preferable that the irradiation with ultraviolet rays or electromagnetic waves having a shorter wavelength than ultraviolet rays be performed under reduced pressure or in an inert gas atmosphere.

[作用] 前記した本発明の構成によれば、薄膜超伝導体を堆積後
に酸素中で熱処理を施し、しかる後に、紫外線あるいは
紫外線よりも波長の短い電磁波を照射することにより、
結晶性の向上と酸化状態の最適化を実現している。この
方法を利用することによって、従来行なわれてきた、薄
膜作製条件のみによる制御では極めて難しかった結晶性
の向上および酸化状態の最適化を可能にするものである
[Function] According to the configuration of the present invention described above, by performing heat treatment in oxygen after depositing the thin film superconductor, and then irradiating it with ultraviolet rays or electromagnetic waves having a shorter wavelength than ultraviolet rays,
Improved crystallinity and optimized oxidation state have been achieved. By using this method, it is possible to improve the crystallinity and optimize the oxidation state, which was extremely difficult to achieve by controlling only thin film manufacturing conditions, which has been conventionally performed.

また、薄膜作製後のプロセスとしては、短時間の熱処理
と電磁波照射を行なうだけの、極めて簡単で短時間の処
理によってその効果を発揮できる。
In addition, the effect can be exerted through extremely simple and short-time processing that only requires short-time heat treatment and electromagnetic wave irradiation as a process after forming the thin film.

また金属酸化物薄膜として、A−B−Cu−○複合化合
物を用いるという本発明方法の好ましい構成によれば、
超伝導特性に優れた金属酸化物薄膜を得ることができる
Further, according to a preferred configuration of the method of the present invention in which an A-B-Cu-○ composite compound is used as the metal oxide thin film,
A metal oxide thin film with excellent superconducting properties can be obtained.

また金属酸化物薄膜として、Bi−Sr−Ca−Cu−
O)またはT l−Ba−Ca−Cu、−0複合化合物
を用いるという本発明方法の好ましい構成によれば、前
記同様超伝導特性に優れた金属酸化物薄膜を得ることが
できる。
In addition, as a metal oxide thin film, Bi-Sr-Ca-Cu-
According to a preferable configuration of the method of the present invention in which a composite compound of O) or Tl-Ba-Ca-Cu, -0 is used, a metal oxide thin film having excellent superconducting properties as described above can be obtained.

また熱処理条件として、酸素ガス中で800〜1000
℃の範囲の温度に加熱するという本発明方法の好ましい
構成によれば、さらに結晶性の向上および酸化状態の最
適化を図る上で有効な手段となる。
In addition, the heat treatment conditions are 800 to 1000 in oxygen gas.
According to a preferred configuration of the method of the present invention in which heating is performed to a temperature in the range of .degree. C., it becomes an effective means for further improving crystallinity and optimizing the oxidation state.

また熱処理の時間が30分以内であるという本発明方法
の好ましい構成によれば、前記同様結晶性の向上および
酸化状態の最適化を図る上で有効な手段となる。
Further, according to a preferable configuration of the method of the present invention in which the heat treatment time is 30 minutes or less, it becomes an effective means for improving crystallinity and optimizing the oxidation state as described above.

さらに、紫外線あるいは紫外線よりも波長の短い電磁波
の照射を、減圧下、または不活性ガス雰囲気中で行な゛
うという本発明の好ましい構成によれば、結晶中のとく
に銅イオンのまわりの酸素元素の欠損を生じさせ、酸化
状態を最適化することができる。
Furthermore, according to a preferred configuration of the present invention in which irradiation with ultraviolet rays or electromagnetic waves with a shorter wavelength than ultraviolet rays is performed under reduced pressure or in an inert gas atmosphere, oxygen elements, especially around copper ions in the crystal, are can be generated to optimize the oxidation state.

[実施例コ 以下本発明の一実施例についてさらに具体的に説明する
[Example 1] An example of the present invention will be described in more detail below.

前記の金属酸化物薄膜形成方法としては、例えば、高周
波マグネトロンスパッダ方−ング等を利用し、第1図に
示すように、基板11上に酸化物薄膜12を形成する。
As the method for forming the metal oxide thin film, for example, high frequency magnetron sputtering or the like is utilized to form an oxide thin film 12 on a substrate 11, as shown in FIG.

次に、この酸化物薄膜12に熱処理を行なった後、減圧
下あるいは不活性ガス中で、紫外線あるいは紫外線より
も波長の短い電磁波13を照射する。この場合、基板1
1としては、結晶性の高い4元酸化物薄膜12を形成す
るため単結晶の基板が有効であり、Mg0XLaA10
  、LaGa0  、SrTiO3等の単結晶が特に
有効である。
Next, after heat-treating this oxide thin film 12, it is irradiated with ultraviolet rays or electromagnetic waves 13 having a shorter wavelength than ultraviolet rays under reduced pressure or in an inert gas. In this case, substrate 1
1, a single crystal substrate is effective in order to form a quaternary oxide thin film 12 with high crystallinity, and Mg0XLaA10
, LaGa0, SrTiO3 and the like are particularly effective.

次に、この薄膜を酸素雰囲気中で、800℃〜1000
℃に加熱し、熱処理を行ない、さらに、紫外線あるいは
紫外線よりも波長の短い電磁波を照射する。この際、試
料は加熱する必要はない。
Next, this thin film was heated at 800°C to 1000°C in an oxygen atmosphere.
℃ to perform heat treatment, and then irradiate it with ultraviolet light or electromagnetic waves with a shorter wavelength than ultraviolet light. At this time, there is no need to heat the sample.

紫外線あるいは紫外線よりも波長の短い電磁波としては
、通常のW、Mo、Rh、Cu、Fe。
Ultraviolet rays or electromagnetic waves with wavelengths shorter than ultraviolet rays include ordinary W, Mo, Rh, Cu, and Fe.

Co、Cr、At、Mg、ZrなどのX線管またはH,
He、Neなどの紫外線源あるいは水銀ランプからの輻
射光、または放射性元素からγ崩壊によって放射される
γ線などをも同様の効果を発揮する。この電磁波を超伝
導薄膜に照射することにより照射処理はおこなわれる。
X-ray tube such as Co, Cr, At, Mg, Zr or H,
Radiant light from an ultraviolet source such as He or Ne or a mercury lamp, or gamma rays emitted by gamma decay from a radioactive element, etc., can also exhibit similar effects. The irradiation process is performed by irradiating the superconducting thin film with this electromagnetic wave.

以下具体的実施例について説明する。Specific examples will be described below.

実施例1 第1図にモデル的に示す(100)面MgO単結晶を基
板11として用い、高周波プレナーマグネトロンスパッ
タにより、焼結したBi、Sr。
Example 1 Bi and Sr were sintered by high-frequency planar magnetron sputtering using a (100)-plane MgO single crystal as a model shown in FIG. 1 as the substrate 11.

Ca、Cuの各元素を含む酸化物からなるターゲットを
、Arと02の混合ガス雰囲気でスパッタリング蒸着し
て、上記基板上にC軸配向性のあるBi  Sr  C
aCu2O□薄膜として付着させ2ま た。この薄膜の結晶構造は、単位結晶格子中にCu−0
面が2面含まれているいわゆる低温層と呼ばれる構造で
ある。
A target made of an oxide containing the elements Ca and Cu was sputter-deposited in a mixed gas atmosphere of Ar and 02 to deposit BiSrC with C-axis orientation on the substrate.
aCu2O□ was deposited as a thin film. The crystal structure of this thin film is Cu-0 in the unit crystal lattice.
It has a structure called a low-temperature layer that includes two surfaces.

この場合、ガス圧力は0.5Pa、スパッタリング電力
150W、 スパッタリング時間10分、薄膜の膜厚1
10nm、基板温度580℃であった。
In this case, the gas pressure was 0.5 Pa, the sputtering power was 150 W, the sputtering time was 10 minutes, and the thickness of the thin film was 1
The thickness was 10 nm, and the substrate temperature was 580°C.

このようにして得られた薄膜は超伝導性を示し、その超
伝導転移温度のうち、ゼロ抵抗温度は60に1オンセッ
ト温度は70にであった。
The thin film thus obtained exhibited superconductivity, and among its superconducting transition temperatures, the zero resistance temperature was 60 and the onset temperature was 70.

次に、この薄膜を1気圧酸素中で920℃で20分間熱
処理を行なった。この処理では、薄膜を直径5cmの石
英管中に置き、酸素ガスを単位時間あたりの流量100
m1/minで流しながら、周囲より電気ヒータで加熱
した。温度変化率は、温度上昇時は2000℃/h、下
降時は自然冷却(900℃付近で約−2000℃/h)
とした。
Next, this thin film was heat-treated at 920° C. for 20 minutes in 1 atm oxygen. In this treatment, the thin film is placed in a quartz tube with a diameter of 5 cm, and oxygen gas is supplied at a flow rate of 100 per unit time.
It was heated from the surrounding area with an electric heater while flowing at a rate of m1/min. The temperature change rate is 2000℃/h when the temperature rises, and natural cooling when the temperature decreases (approximately -2000℃/h at around 900℃)
And so.

さらに、この熱処理を施した薄膜を真空中(1Q−2P
a以下)に置いて、室温で30分間紫外線照射を行なっ
た。紫外線光源には低圧水銀ランプ(最大強度発光波長
:250nm)を用いた。試料面での紫外線強度は約3
mW/cnf)であった。
Furthermore, the thin film subjected to this heat treatment was placed in a vacuum (1Q-2P
a) and irradiated with ultraviolet rays for 30 minutes at room temperature. A low-pressure mercury lamp (maximum intensity emission wavelength: 250 nm) was used as the ultraviolet light source. The UV intensity at the sample surface is approximately 3
mW/cnf).

第2図に薄膜形成直後(a)、および熱処理と紫外線照
射を行なった後(b)での薄膜の抵抗率の温度変化を示
す。
FIG. 2 shows the temperature change in resistivity of the thin film immediately after its formation (a) and after heat treatment and ultraviolet irradiation (b).

第2図かられかるように、形成直後はオンセット温度は
70に程度であったものが、処理の後には20に程上昇
して約90Kに上昇していることがわかる。しかしなが
ら、形成直後の薄膜に、熱処理のみを、または電磁波照
射処理のみを行なっただけでは、超伝導特性は処理前よ
りもむしろ劣化することを確認している。
As can be seen from FIG. 2, the onset temperature was about 70K immediately after formation, but rose to about 20K, or about 90K, after treatment. However, it has been confirmed that if a thin film is subjected to only heat treatment or electromagnetic wave irradiation treatment immediately after formation, the superconducting properties deteriorate rather than before the treatment.

したがって、第2図に示すような超伝導特性の向上の原
因は、薄膜形成過程では、薄膜へのイオンの衝突や膜堆
積量に伴う諸条件の変化(例えば、膜の輻射熱吸収量の
変化に伴い実効的な基板温度が変化)等のために、結晶
性が不完全であったが、熱処理によって結晶性を回復さ
せ、さらに、後の紫外線照射によって酸化状態の最適化
が施されたものと考えられる。
Therefore, the reason for the improvement in superconducting properties as shown in Figure 2 is that during the thin film formation process, the impact of ions on the thin film and changes in various conditions associated with the amount of film deposited (for example, changes in the amount of radiant heat absorbed by the film) The crystallinity was incomplete due to changes in the effective substrate temperature, etc., but the crystallinity was restored by heat treatment, and the oxidation state was further optimized by subsequent ultraviolet irradiation. Conceivable.

本発明者らは、結晶性向上のための工程である熱処理で
は、最適な温度及び処理時間があることを見い出した。
The present inventors have discovered that there is an optimal temperature and treatment time for heat treatment, which is a process for improving crystallinity.

温度は高すぎると膜材料の再結晶化が進むと同時に膜内
の原子が一部蒸発することなどによって、膜の表面状態
が劣化し、むしろ超伝導特性か悪化することがある。ま
た、温度か低いと結晶性改善の効果がなくなる傾向とな
る。
If the temperature is too high, recrystallization of the film material progresses and at the same time some of the atoms within the film evaporate, resulting in deterioration of the surface condition of the film and, in fact, deterioration of its superconducting properties. Furthermore, if the temperature is low, the effect of improving crystallinity tends to disappear.

処理温度としては800℃〜1000℃が有効な範囲で
、とりわけ950℃付近が特に有効である。また、熱処
理は酸化性の雰囲気で行なう必要があり、特に酸素中で
行なうことが最も適当である。処理時間についても、長
すぎると、膜材料の極度の再結晶化と原子の蒸発の影響
か現れ、むしろ超伝導特性向上には逆効果となることか
ら、30分以下の処理時間が有効であることを見い出し
た。
The treatment temperature is within an effective range of 800°C to 1000°C, with temperatures around 950°C being particularly effective. Further, the heat treatment needs to be carried out in an oxidizing atmosphere, and in particular, it is most suitable to carry out the heat treatment in an oxygen atmosphere. Regarding the processing time, if the processing time is too long, the effects of extreme recrystallization of the film material and evaporation of atoms will appear, which will actually have the opposite effect on improving the superconducting properties, so a processing time of 30 minutes or less is effective. I discovered that.

この熱処理過程のみだけでは、結晶性は改善されるが、
酸化物薄膜の酸化状態が不確定となる。
This heat treatment process alone improves crystallinity, but
The oxidation state of the oxide thin film becomes uncertain.

金属酸化物超伝導体は、適度の酸素欠損か超伝導特性に
重要な役割を果たすことが知られている。
Metal oxide superconductors are known to have moderate oxygen vacancies, which play an important role in their superconducting properties.

このことは、超伝導体の酸化状態、言い替えれば、酸素
量が多すぎても少なすぎても超伝導特性の劣化の原因に
なることを意味している。
This means that the oxidation state of the superconductor, in other words, either too much or too little oxygen can cause deterioration of the superconducting properties.

したがって、熱処理過程の後に、酸化状態を最適の値に
制御できればさらに超伝導特性を向上させることが可能
である。本発明者らは、紫外線あるいは紫外線よりも波
長の短い電磁波を金属酸化物超伝導体に照射すれば、結
晶中の特に銅イオンのまわりの酸素サイトに効率よく酸
素欠損が生じることを既に確認している。
Therefore, if the oxidation state can be controlled to an optimal value after the heat treatment process, it is possible to further improve the superconducting properties. The present inventors have already confirmed that when a metal oxide superconductor is irradiated with ultraviolet rays or electromagnetic waves with a shorter wavelength than ultraviolet rays, oxygen vacancies are efficiently generated in the oxygen sites in the crystal, especially around copper ions. ing.

そこで、本発明の薄膜超伝導体の製造方法では、この手
法を適用し、非常に制御性良い酸素欠損量、つまり、酸
化状態の最適化を実現している。また、紫外線あるいは
紫外線よりも波長の短い電磁波の照射によって、結晶性
もさらに幾分改善される効果もあり、この手法の適用は
極めて有効である。
Therefore, in the method for producing a thin film superconductor of the present invention, this technique is applied to achieve optimization of the amount of oxygen vacancies, that is, the oxidation state, with very good controllability. Furthermore, irradiation with ultraviolet rays or electromagnetic waves with a shorter wavelength than ultraviolet rays has the effect of further improving crystallinity to some extent, making the application of this method extremely effective.

このような酸化状態の最適化の方法としては、適当な雰
囲気中で加熱したり、還元性のイオン(例えば水素イオ
ン)を照射することなどによっても実現できる。しかし
、本発明の紫外線よりも波長の短い電磁波の照射では、
試料を加熱する必要がなく、また、照射時間によって精
度良く酸化状態を制御でき、さらに、結晶性を劣化させ
ることかないなど非常に有効な方法である。
Optimization of the oxidation state can also be achieved by heating in an appropriate atmosphere or by irradiating reducing ions (for example, hydrogen ions). However, in the irradiation of electromagnetic waves with a shorter wavelength than the ultraviolet rays of the present invention,
It is a very effective method, as it does not require heating the sample, the oxidation state can be controlled with high precision by adjusting the irradiation time, and it does not cause deterioration of crystallinity.

前記実施例では、紫外線あるいは紫外線よりも波長の短
い電磁波の照射を真空中で行なったか、特に真空中に限
定されるものではなく、1気圧以下の減圧下あるいはA
r、He等の不活性なガス中でも同様の効果があること
を確認している。
In the above examples, the irradiation with ultraviolet rays or electromagnetic waves with a shorter wavelength than ultraviolet rays was carried out in a vacuum, or the irradiation was not limited to a vacuum, but under a reduced pressure of 1 atmosphere or less, or
It has been confirmed that similar effects can be obtained even in inert gases such as r and He.

また、金属酸化物薄膜12には、Bi−Sr−Ca−C
u−0の他に、A−B−Cu−0,または、T l−B
a−Ca−Cu−0複合化合物を、熱蒸着たとえば電子
ビーム蒸着、レーザビーム蒸着等の物理的気相成長法で
基板上に付着させたものを利用しても、本発明の有効性
が発揮されることを確認している。これら金属酸化物超
伝導体は組成式がまだ明確には決定されていないが、A
−B−Cu−0に関しては酸素欠損ペロブス力イト(A
、B) 3Cua 07−xといわれており、コノ種の
材料に関して、本発明者らは、AはY、La。
In addition, the metal oxide thin film 12 includes Bi-Sr-Ca-C
In addition to u-0, A-B-Cu-0 or T l-B
The effectiveness of the present invention can also be achieved by using a composite compound of a-Ca-Cu-0 deposited on a substrate by a physical vapor deposition method such as thermal evaporation, e.g., electron beam evaporation or laser beam evaporation. We have confirmed that this will be done. Although the compositional formula of these metal oxide superconductors has not yet been clearly determined,
-B-Cu-0, oxygen-deficient perovskite (A
, B) 3Cua 07-x, and regarding the Kono type material, the present inventors have determined that A is Y and La.

およびLa系列元素(原子番号57.59〜60.62
〜71)の内少なくとも1種、BはBa、Srなどll
a族元素の内少なくとも1種、かつ作製された薄膜の元
素比率が、 0.5≦(A+B)/Cu≦2.5 の範囲にあれば、臨界温度に多少の差があっても超伝導
現象が見いだされることを確認した。
and La series elements (atomic number 57.59-60.62
~71), B is Ba, Sr, etc.
If the element ratio of at least one group A element and the produced thin film is within the range of 0.5≦(A+B)/Cu≦2.5, superconductivity will occur even if there is a slight difference in critical temperature. It was confirmed that the phenomenon was observed.

また、B i−3r−Ca−Cu−0,T I −Ba
−Ca−Cu−0超伝導体は、臨界温度が100Kを越
えるものもでき、実用上極めて有用であるが、含まれる
元素数も多く、優れた超伝導膜形成は比較的困難であっ
た。本発明者らは、作製条件などを厳密に制御すれば、
これら材料についても再現性よく薄膜化できることを確
認した。薄膜形成法は物理的気相成長法に限定されたも
のではなく、化学的気相成長法例えば常圧あるいは減圧
化学的気相成長法、プラズマ化学的気相成長法、光化学
的気相成長法も、成分元素の比を合致させれば、有効で
あることを確認した。
Also, B i-3r-Ca-Cu-0, T I-Ba
-Ca-Cu-0 superconductors can have critical temperatures exceeding 100 K and are extremely useful in practice, but they contain a large number of elements, making it relatively difficult to form excellent superconducting films. The present inventors believe that if the manufacturing conditions are strictly controlled,
We confirmed that these materials can also be made into thin films with good reproducibility. Thin film formation methods are not limited to physical vapor deposition, but include chemical vapor deposition, such as atmospheric or reduced pressure chemical vapor deposition, plasma chemical vapor deposition, and photochemical vapor deposition. It was also confirmed that it is effective if the ratio of the component elements is matched.

この種の金属酸化物薄膜の超伝導性の発現機構や、構成
元素の違いによる超伝導特性の変化の詳細は明かではな
い。しかしながら、結晶性の向上と酸化状態の制御が超
伝導特性に大きな影響を及ぼすことは従来の研究での一
致した見解である。
The mechanism by which this type of metal oxide thin film develops superconductivity and the details of changes in superconducting properties due to differences in constituent elements are not clear. However, there is a consensus in previous studies that improving crystallinity and controlling the oxidation state have a significant impact on superconducting properties.

本発明は、薄膜超伝導体形成の結晶性向上処理と酸化状
態の最適化の工程を確立するものである。
The present invention establishes a process for improving crystallinity and optimizing the oxidation state for forming a thin film superconductor.

以上説明した通り本発明の実施例によれば、酸化物高温
超伝導体を用いる素子の信頼性、長期安定性を確保する
プロセスが提供され、工業上極めて大きな価値を有する
ものである。用いられる超伝導体は、従来の焼結体に比
べ、均質かつ薄膜単結晶化されているが故に、本発明に
より非常に高精度の超伝導素子が実現できる。効率的か
つ簡便な結晶性向上および酸化状態最適化過程を見いだ
しているところに大きな特色がある。
As explained above, according to the embodiments of the present invention, a process for ensuring the reliability and long-term stability of an element using an oxide high temperature superconductor is provided, which has extremely great industrial value. Since the superconductor used is more homogeneous and thin-film single crystal than conventional sintered bodies, the present invention can realize a superconducting element with extremely high precision. The major feature of this work is that it has found an efficient and simple process for improving crystallinity and optimizing the oxidation state.

[発明の効果] 以上説明した通り本発明によれば、薄膜超伝導体を堆積
後に酸素中で熱処理を施し、しかる後に、紫外線あるい
は紫外線よりも波長の短い電磁波を照射することにより
、結晶性の向上と酸化状態の最適化を実現することがで
きる。
[Effects of the Invention] As explained above, according to the present invention, a thin film superconductor is heat-treated in oxygen after being deposited, and then crystalline is improvement and optimization of oxidation state can be achieved.

また金属酸化物薄膜として、A−B−Cu−0複合化合
物、B i−Sr−Ca−Cu−0,またはT l−B
a−Ca−Cu−0複合化合物を用いるという本発明方
法の好ましい構成によれば、さらに超伝導特性に優れた
金属酸化物薄膜を得ることができる。
Further, as a metal oxide thin film, A-B-Cu-0 composite compound, B i-Sr-Ca-Cu-0, or T l-B
According to a preferred configuration of the method of the present invention in which the a-Ca-Cu-0 composite compound is used, a metal oxide thin film with even better superconducting properties can be obtained.

また熱処理条件として、酸素ガス中で800〜1000
℃の範囲の温度に加熱するという本発明方法の好ましい
構成によれば、さらに結晶性の向上および酸化状態の最
適化を図る上で有効な手段となる。
In addition, the heat treatment conditions are 800 to 1000 in oxygen gas.
According to a preferred configuration of the method of the present invention in which heating is performed to a temperature in the range of .degree. C., it becomes an effective means for further improving crystallinity and optimizing the oxidation state.

また熱処理の時間が30分以内であるという本発明方法
の好ましい構成によれば、前記同様結晶性の向上および
酸化状態の最適化を図る上で有効な手段となる。
Further, according to a preferable configuration of the method of the present invention in which the heat treatment time is 30 minutes or less, it becomes an effective means for improving crystallinity and optimizing the oxidation state as described above.

さらに、紫外線あるいは紫外線よりも波長の短い電磁波
の照射を、減圧下、または不活性ガス雰囲気中で行なう
という本発明の好ましい構成によれば、結晶中のとくに
銅イオンのまわりの酸素元素の欠損を生じさせ、酸化状
態を最適化することができる。
Furthermore, according to a preferred configuration of the present invention in which the irradiation with ultraviolet rays or electromagnetic waves with a shorter wavelength than ultraviolet rays is performed under reduced pressure or in an inert gas atmosphere, the loss of oxygen elements in the crystal, especially around copper ions, can be eliminated. can be generated and the oxidation state can be optimized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の薄膜超伝導体の製造方法を
表す工程図、第2図(a)は薄膜超伝導体の基板上への
堆積直後の抵抗率の温度変化曲線を示す図、第2図(b
)は熱処理、及び紫外線または紫外線よりも波長の短い
電磁波照射後の抵抗率の温度変化曲線を表した図である
。 11・・・基板、12・・・金属酸化物薄膜、13・・
・紫外線または紫外線よりも波長の短い電磁波。
FIG. 1 is a process diagram showing a method for manufacturing a thin film superconductor according to an embodiment of the present invention, and FIG. 2(a) shows a temperature change curve of resistivity immediately after the thin film superconductor is deposited on a substrate. Figure, Figure 2 (b
) is a diagram showing a temperature change curve of resistivity after heat treatment and irradiation with ultraviolet rays or electromagnetic waves having a shorter wavelength than ultraviolet rays. 11... Substrate, 12... Metal oxide thin film, 13...
- Ultraviolet light or electromagnetic waves with a shorter wavelength than ultraviolet light.

Claims (1)

【特許請求の範囲】 (1)基板上に金属酸化物薄膜を含む薄膜超伝導体の製
造方法であって、金属酸化物薄膜を形成した後、前記金
属酸化物薄膜に対して熱処理を施し、さらに、前記金属
酸化物薄膜表面に紫外線あるいは紫外線よりも波長の短
い電磁波を照射することを特徴とする薄膜超伝導体の製
造方法。 (2)金属酸化物薄膜として、A−B−Cu−O複合化
合物を用いる請求項1記載の薄膜超伝導体の製造方法。 [ここで、AはY、LaおよびLa系列元素(原子番号
57、59〜60、62〜71)から選ばれる少なくと
も1種の元素、Bはアルカリ土類金属(IIa族)元素か
ら選ばれる少なくとも1種の元素、かつA、B元素とC
u元素の濃度は下記式の範囲である。 0.5≦(A+B)/Cu≦2.5] (3)金属酸化物薄膜として、Bi−Sr−Ca−Cu
−O)またはTl−Ba−Ca−Cu−O複合化合物を
用いる請求項1記載の薄膜超伝導体の製造方法。 (4)熱処理条件が、酸素ガス中で800〜1000℃
の範囲の温度に加熱する条件である請求項1記載の薄膜
超伝導体の製造方法。 (5)熱処理の時間が、30分以内である請求項1記載
の薄膜超伝導体の製造方法。 (6)紫外線あるいは紫外線よりも波長の短い電磁波の
照射を、減圧下、または不活性ガス雰囲気中で行なう請
求項1記載の薄膜超伝導体の製造方法。
[Scope of Claims] (1) A method for manufacturing a thin film superconductor including a metal oxide thin film on a substrate, which comprises forming a metal oxide thin film and then subjecting the metal oxide thin film to heat treatment, The method for producing a thin film superconductor further comprises irradiating the surface of the metal oxide thin film with ultraviolet rays or electromagnetic waves having a shorter wavelength than ultraviolet rays. (2) The method for producing a thin film superconductor according to claim 1, wherein an AB-Cu-O composite compound is used as the metal oxide thin film. [Here, A is at least one element selected from Y, La, and La series elements (atomic numbers 57, 59-60, 62-71), and B is at least one element selected from alkaline earth metals (group IIa) elements. One type of element, and A, B elements, and C
The concentration of the u element is within the range of the following formula. 0.5≦(A+B)/Cu≦2.5] (3) As the metal oxide thin film, Bi-Sr-Ca-Cu
-O) or a Tl-Ba-Ca-Cu-O composite compound. (4) Heat treatment conditions are 800-1000℃ in oxygen gas
2. The method for producing a thin film superconductor according to claim 1, wherein the heating is performed to a temperature in the range of . (5) The method for producing a thin film superconductor according to claim 1, wherein the heat treatment time is 30 minutes or less. (6) The method for producing a thin film superconductor according to claim 1, wherein the irradiation with ultraviolet rays or electromagnetic waves having a shorter wavelength than ultraviolet rays is performed under reduced pressure or in an inert gas atmosphere.
JP2300391A 1990-11-05 1990-11-05 Manufacturing method of thin film superconductor Expired - Fee Related JP3037396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2300391A JP3037396B2 (en) 1990-11-05 1990-11-05 Manufacturing method of thin film superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2300391A JP3037396B2 (en) 1990-11-05 1990-11-05 Manufacturing method of thin film superconductor

Publications (2)

Publication Number Publication Date
JPH04170305A true JPH04170305A (en) 1992-06-18
JP3037396B2 JP3037396B2 (en) 2000-04-24

Family

ID=17884220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2300391A Expired - Fee Related JP3037396B2 (en) 1990-11-05 1990-11-05 Manufacturing method of thin film superconductor

Country Status (1)

Country Link
JP (1) JP3037396B2 (en)

Also Published As

Publication number Publication date
JP3037396B2 (en) 2000-04-24

Similar Documents

Publication Publication Date Title
US5096882A (en) Process for controlling oxygen content of superconductive oxide, superconductive device and process for production thereof
JP2923372B2 (en) Manufacturing method of oxide superconductor film
JPH01157579A (en) Manufacture of superconductor and superconductive circuit
JPH0474714A (en) Tl superconductor material
JP3188358B2 (en) Method for producing oxide superconductor thin film
JP3037396B2 (en) Manufacturing method of thin film superconductor
JPS63297203A (en) Production of superconductive material
JP2713343B2 (en) Superconducting circuit fabrication method
EP0617473B1 (en) Method of fabricating an oxide superconductor
JPH06291375A (en) Manufacture of thin film superconductor and its manufacture
JP2001244511A (en) Method of manufacturing josephson device having ramp edge structure and film-forming device
JP2822623B2 (en) Method of forming electrodes on superconductor
JP2742418B2 (en) Method for producing oxide superconducting thin film
JPH04171874A (en) Josephson device and manufacture thereof
JPH04171872A (en) Josephson device and manufacture thereof
JP2776004B2 (en) Method of manufacturing Josephson device
JPH01307283A (en) Manufacture of superconductive thin-film
JPH05194095A (en) Production of thin-film electric conductor
JPH05170448A (en) Production of thin ceramic film
JPH05194097A (en) Production of thin-film electric conductor
JPS63299019A (en) Manufacture of thin film superconductive material
JPH02311313A (en) Production of thin film superconductor
JPH01246132A (en) Production of thin film superconductor
JPH07133189A (en) Production of oxide thin film
JPH05171414A (en) Superconducting thin film and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees