JPH04169764A - Absorption heat pump - Google Patents

Absorption heat pump

Info

Publication number
JPH04169764A
JPH04169764A JP29756190A JP29756190A JPH04169764A JP H04169764 A JPH04169764 A JP H04169764A JP 29756190 A JP29756190 A JP 29756190A JP 29756190 A JP29756190 A JP 29756190A JP H04169764 A JPH04169764 A JP H04169764A
Authority
JP
Japan
Prior art keywords
refrigerant
liquid
absorption liquid
heat exchanger
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29756190A
Other languages
Japanese (ja)
Other versions
JP2975667B2 (en
Inventor
Masahiro Furukawa
雅裕 古川
Hidetoshi Arima
秀俊 有馬
Masashi Izumi
泉 雅士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2297561A priority Critical patent/JP2975667B2/en
Publication of JPH04169764A publication Critical patent/JPH04169764A/en
Application granted granted Critical
Publication of JP2975667B2 publication Critical patent/JP2975667B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To avoid crystalization of absorption liquid and enable a stable extraction of non-condensed gas to be attained by a method wherein an absorption liquid heat exchanger for heat exchanging an absorption liquid from an absorption liquid pump with refrigerant liquid from a refrigerant heat exchanger is provided in the midway part of a refrigerant pipe extending from a condensor to an evaporator. CONSTITUTION:An ejector 26 and a condensor 3 are connected by an extraction pipe 24. A rich liquid pipe 13 at a discharging side of an absorption liquid pump 8 and the ejector 26 are connected by a rich liquid feeding pipe 27. An absorption liquid heat exchanger 28 is installed in the midway part of the feeding pipe 27. Concentrated liquid flowing through the feeding pipe 27 and refrigerant liquid flowing out of a refrigerant heat exchanger 22A are introduced to a heat exchanger 28, and then the concentrated liquid, which has been cooled, is sent to the ejector 26. With such an arrangement, the refrigerant liquid sent from the condensor 3 to the evaporator 6 is heated at the refrigerant heat exchanger 22A, and further heated at the absorption liquid heat exchanger, and the liquid flows into the evaporator 6, so that the temperature of the evaporator 6 can be further increased and stabilized.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は供給された熱源流体より高い温度の温水を取出
す吸収ヒートポンプに関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to an absorption heat pump that extracts hot water at a higher temperature than a supplied heat source fluid.

(ロ)従来の技術 例えば特開昭60−221671号公報には、機内の濃
吸収液の一部を用いて凝縮器内の不凝縮ガスを抽気する
抽気装置を備え、かっ、機内から抽気装置へ流れる濃吸
収液によって凝縮器から流出した冷媒液を昇温する熱交
換器が凝縮器から蒸発器へ至る冷媒流路の途中に設けら
れた吸収ヒートポンプが開示されている。
(b) Conventional technology For example, Japanese Patent Application Laid-open No. 60-221671 discloses an air extraction device that extracts non-condensable gas from the condenser using a part of the concentrated absorption liquid inside the device. An absorption heat pump is disclosed in which a heat exchanger is provided in the middle of a refrigerant flow path from the condenser to the evaporator to raise the temperature of the refrigerant liquid flowing out from the condenser by the concentrated absorption liquid flowing into the evaporator.

(ハ)発明が解決しようとする課題 上記従来の技術において、例えば冬期のように冷却水の
温度が低い場合には、凝縮器から流出する冷媒液の温度
も低下する。そして、冷媒液の温度が低くなると熱交換
器の出口の濃吸収液の温度が低下し、抽気装置内でさら
に温度が低下した場合、抽気装置内で結晶が発生するお
それがあった。
(C) Problems to be Solved by the Invention In the above-mentioned conventional technology, when the temperature of the cooling water is low, for example in winter, the temperature of the refrigerant liquid flowing out from the condenser also decreases. When the temperature of the refrigerant liquid decreases, the temperature of the concentrated absorption liquid at the outlet of the heat exchanger decreases, and if the temperature further decreases in the bleeder, there is a risk that crystals will occur in the bleeder.

本発明は抽気装置での吸収液の結晶を回避し、安定して
不凝縮ガスを抽気する吸収ヒートポンプを提供すること
を目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an absorption heat pump that avoids crystallization of an absorption liquid in an extraction device and stably extracts non-condensable gas.

(二〉課題を解決するための手段 本発明は上記課題を解決するために、蒸発器(6)、吸
収器(5)、発生器(2)及び凝縮器(3)を配管接続
して冷媒と吸収液との循環路を形成し、発生器(2)か
ら吸収器(5)に至り途中に吸収液ポンプ(8)を有し
た吸収液配管(濃液配管) (13)と、吸収液ポンプ
(8)から流出した吸収液を用いて機内の不凝縮ガスを
抽気する抽気装置(23)とを備え、蒸発器(6)及び
発生器(2)に熱源流体を供給し、凝縮器(3)に冷却
水を流し、吸収器(5)から熱源流体より高い温度の被
加熱流体を取出す吸収ヒートポンプにおいて、凝縮器(
3)から蒸発器(6)に至る冷媒液配管(11)に設け
られ凝縮器(3)からの冷媒液と蒸発器(6)からの熱
源流体とを熱交換する冷媒熱交換器(22A)と、吸収
液ポンプ(8)の出口側から抽気装置(23)に至る吸
収液配管(吸収液の送り配管]27)に設けられ、吸収
液ポンプ(8)からの吸収液と冷媒熱交換器(22A)
からの冷媒液とが熱交換する吸収液熱交換器(28)と
を備え、抽気装置(23)へ送られる吸収液の温度が大
幅に低下することを防止して結晶の発生を回避する吸収
ヒートポンプを提供するものである。
(2) Means for Solving the Problems In order to solve the above problems, the present invention connects an evaporator (6), an absorber (5), a generator (2), and a condenser (3) with piping to Absorption liquid piping (concentrated liquid piping) (13) that connects the generator (2) to the absorber (5) and has an absorption liquid pump (8) along the way, forming a circulation path for the absorption liquid and the absorption liquid. It is equipped with an extraction device (23) that extracts non-condensable gas inside the machine using the absorption liquid flowing out from the pump (8), supplies heat source fluid to the evaporator (6) and the generator (2), and supplies the heat source fluid to the condenser ( In an absorption heat pump, cooling water flows through the condenser (3) and a heated fluid having a higher temperature than the heat source fluid is extracted from the absorber (5).
A refrigerant heat exchanger (22A) installed in the refrigerant liquid pipe (11) leading from the condenser (3) to the evaporator (6) and exchanging heat between the refrigerant liquid from the condenser (3) and the heat source fluid from the evaporator (6). The absorption liquid from the absorption liquid pump (8) and the refrigerant heat exchanger are provided in the absorption liquid piping (absorption liquid feeding piping) 27) from the outlet side of the absorption liquid pump (8) to the extraction device (23). (22A)
The absorption liquid heat exchanger (28) is equipped with an absorption liquid heat exchanger (28) in which the refrigerant liquid from It provides heat pumps.

又、凝縮器(3〉から蒸発器(6)へ送られる冷媒液と
蒸発器(6)或いは発生器(2〉から流出した熱源流体
とを熱交換する冷媒熱交換器(22A)と、吸収液ポン
プ(8)から流出し抽気装置(23)に送られる吸収液
と冷媒熱交換器(22A)から流出した冷媒液とを熱交
換する吸収液熱交換器(28〉とを備え、抽気装置(2
3)へ送られる吸収液の温度が大幅に低下するのを防止
して、抽気装置(23〉での結晶の発生を防止する吸収
ヒートポンプを提供するものである。
Furthermore, a refrigerant heat exchanger (22A) that exchanges heat between the refrigerant liquid sent from the condenser (3) to the evaporator (6) and the heat source fluid flowing out from the evaporator (6) or the generator (2); The extraction device includes an absorption liquid heat exchanger (28) that exchanges heat between the absorption liquid flowing out from the liquid pump (8) and sent to the extraction device (23) and the refrigerant liquid flowing out from the refrigerant heat exchanger (22A). (2
3) To provide an absorption heat pump that prevents the temperature of the absorption liquid sent to the absorbent from significantly lowering and prevents the generation of crystals in the extraction device (23).

(*)作用 冷媒熱交換器(22A>で蒸発器(6)からの熱源流体
と熱交換し℃温度が上昇した冷媒液が吸収液熱交換器(
28)へ流れる。そして、吸収液熱交換器(28)で冷
媒熱交換器(22A)からの冷媒液と抽気用の吸収液と
が熱交換するので、吸収液熱交換器(28)で吸収液の
温度が大幅に低下することが防止でき、吸収液熱交換器
(28)から抽気装置(23)へ送られた吸収液が結晶
することを回避でき、抽気装置(23)を安定して運転
することが可能になる。
(*) The refrigerant liquid whose temperature has increased by exchanging heat with the heat source fluid from the evaporator (6) in the working refrigerant heat exchanger (22A>) is transferred to the absorption liquid heat exchanger (
28). Then, in the absorption liquid heat exchanger (28), the refrigerant liquid from the refrigerant heat exchanger (22A) and the absorption liquid for air extraction exchange heat, so the temperature of the absorption liquid increases significantly in the absorption liquid heat exchanger (28). It is possible to avoid crystallization of the absorption liquid sent from the absorption liquid heat exchanger (28) to the extraction device (23), and it is possible to stably operate the extraction device (23). become.

又、凝縮器(3)から流出して冷媒熱交換器(22A>
で温度が上昇した冷媒液と凝縮器(3)から流出して冷
媒熱交換器(22A)を経ずに流れて来た冷媒液と合流
させ、凝縮器(3〉の出口の冷媒液より温度が上昇した
冷媒液によって吸収液熱交換器(28〉で抽気用の吸収
液が冷却されるので、吸収液熱交換器(28)で吸収液
の温度が大幅に低下することを防止でき、抽気装置(2
3)へ送られて来た吸収液が結晶することを回避でき、
抽気装置(23)を安定して運転することが可能になる
Also, it flows out from the condenser (3) and flows into the refrigerant heat exchanger (22A>
The refrigerant liquid whose temperature has increased at The absorption liquid for air extraction is cooled in the absorption liquid heat exchanger (28) by the refrigerant liquid whose temperature has risen, so the absorption liquid heat exchanger (28) can prevent the temperature of the absorption liquid from dropping significantly, and Device (2
3) It is possible to avoid crystallization of the absorption liquid sent to
It becomes possible to operate the extraction device (23) stably.

(へ)実施例 以下、本発明の一実施例を図面に基づいて詳細に説明す
る。
(F) Example Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図は本発明の第1の実施例を示し、吸収液に臭化リ
チウム(LiBr>の水溶液を用い、冷媒に水を用いた
吸収冷凍機の回路構成図である。
FIG. 1 shows a first embodiment of the present invention, and is a circuit diagram of an absorption refrigerator using an aqueous solution of lithium bromide (LiBr>) as an absorption liquid and water as a refrigerant.

第1図において、(1)は発生器(2)及び凝縮器(3
)を収納した下胴、(4)は吸収器(5)及び蒸発器(
6)を収納した上胴である。又、(7)は溶液熱交換器
、(8)は吸収液ポンプ、(9)は冷媒ポンプ、(1o
)は冷媒循環ポンプである。そして、これらの機器は冷
媒液配管(11)、冷媒液循環配管(12)、冷媒が分
離して濃度が高くなった吸収液(以下濃液という)が流
れる濃液配管(13)、冷媒を吸収して濃度が低くなっ
た吸収液(以下釉液という)が流れる補液配管(14)
により気密に接続され工いる。そして、従来のこの種の
吸収ヒートポンプ(例えば特開昭58−138961号
公報に説明されている吸収ヒートポンプ装置を参照)と
同様の冷媒と吸収液との循環路を構成している。
In Figure 1, (1) is a generator (2) and a condenser (3).
), (4) houses the absorber (5) and evaporator (
6) is the upper body that houses it. In addition, (7) is a solution heat exchanger, (8) is an absorption liquid pump, (9) is a refrigerant pump, and (1o
) is a refrigerant circulation pump. These devices include a refrigerant liquid pipe (11), a refrigerant liquid circulation pipe (12), a concentrated liquid pipe (13) through which an absorption liquid (hereinafter referred to as concentrated liquid) in which the refrigerant has been separated and whose concentration has become high flows, and a refrigerant liquid circulation pipe (12). Replenishment pipe (14) through which the absorbed liquid (hereinafter referred to as glaze liquid) whose concentration has become lower due to absorption flows
The connection is made airtight. A circulation path for refrigerant and absorption liquid similar to that of a conventional absorption heat pump of this type (for example, see the absorption heat pump device described in Japanese Patent Application Laid-open No. 58-138961) is configured.

(15)は発生器(2)の加熱器、(16)は凝縮器(
3)の冷却器、(17)は吸収器(5)の被加熱器、(
18)は蒸発器(6)の加熱器である。(19)は加熱
器(15)に接続した熱源供給配管、(20)は冷却器
(16)に接続した冷却水配管、(21)は被加熱器(
17)に接続し、温水や水蒸気などの被加熱流体を流す
被加熱流体配管(以下温水配管という)、(22)は加
熱器(18)に接続した熱源供給配管である。そして、
熱源供給配管(19) 、 (22)には排温水又は排
蒸気などの熱源流体が矢印で示したように流れる。(2
2A)は蒸発器り6)の出口側の熱源供給配管(22)
の途中に設けられた冷媒熱交換器であり、この熱交換器
(22A)によって凝縮器(3)からの冷媒液と蒸発器
(6)からの熱源流体とが熱交換し、冷媒液の温度は上
昇する。
(15) is the heater of the generator (2), (16) is the condenser (
3) is the cooler, (17) is the heated device of the absorber (5), (
18) is a heater for the evaporator (6). (19) is the heat source supply pipe connected to the heater (15), (20) is the cooling water pipe connected to the cooler (16), and (21) is the heated device (
(22) is a heat source supply pipe connected to the heater (18). and,
A heat source fluid such as waste hot water or waste steam flows through the heat source supply pipes (19) and (22) as indicated by the arrows. (2
2A) is the heat source supply pipe (22) on the outlet side of the evaporator 6)
This heat exchanger (22A) exchanges heat between the refrigerant liquid from the condenser (3) and the heat source fluid from the evaporator (6), and the temperature of the refrigerant liquid changes. will rise.

(23)は抽気管(24〉によって凝縮器(3〉の気相
部に接続された抽気装置である。この抽気装置(23)
は不凝縮ガスタンク(25)と、この不凝縮ガスタンク
の上に設けられたエゼクタ(26)とから構成されてい
る。さらに、不凝縮ガスタンク(25)は上部の不凝縮
ガスの貯留室(25A)と下部の分離室(27)とから
構成されている。そして、エゼクタ(26)と凝縮器(
3)とが上記抽気管(24)によっ℃接続されている。
(23) is an air extraction device connected to the gas phase part of the condenser (3) by an air extraction pipe (24).This air extraction device (23)
consists of a non-condensable gas tank (25) and an ejector (26) provided above the non-condensable gas tank. Further, the non-condensable gas tank (25) is composed of an upper non-condensable gas storage chamber (25A) and a lower separation chamber (27). Then, the ejector (26) and the condenser (
3) are connected by the air bleed pipe (24).

又、吸収液ポンプ(8)の吐出側の濃液配管(13)と
エゼクタ(26)とが濃液の送り配管(27)によって
接続されている。そして、送り配管(27)の途中に吸
収液熱交換器(28)が設けられ、この熱交換器(28
)によって送り配管(27)を流れて来た濃液と冷媒熱
交換器(22A)から流出した冷媒液とが熱交換し、温
度が低下した濃液がエゼクタ(26)へ送られる。(3
0)は不凝縮ガスタンク(25)の上部に接続された不
凝縮ガスの排出配管であり、(31)は開閉弁、(32
)は抽気ポンプである。そして、貯留室(25A)の不
凝縮圧力が高くなったとき、或いは定期的に開閉弁(3
1)を開き、抽気ポンプ(32)を運転し、不凝縮ガス
を外部に排出する。
Further, the concentrated liquid pipe (13) on the discharge side of the absorption liquid pump (8) and the ejector (26) are connected by a concentrated liquid feed pipe (27). An absorption liquid heat exchanger (28) is provided in the middle of the feed pipe (27), and this heat exchanger (28
), the concentrated liquid flowing through the feed pipe (27) and the refrigerant liquid flowing out from the refrigerant heat exchanger (22A) exchange heat, and the concentrated liquid whose temperature has decreased is sent to the ejector (26). (3
0) is a non-condensable gas discharge pipe connected to the upper part of the non-condensable gas tank (25), (31) is an on-off valve, and (32)
) is a bleed pump. Then, when the non-condensing pressure in the storage chamber (25A) becomes high or periodically, the on-off valve (3
1) and operate the extraction pump (32) to discharge the non-condensable gas to the outside.

上記のように構成された吸収ヒートポンプが運転されて
いるとき、例えば化学プラント、工場などの設備から蒸
発器(6)の加熱器(18)へ例えば98°Cの高温水
(熱源流体)が流れ、加熱器(18)で放熱する。そし
て、加熱器(18)で温度が低下した例えば88°Cの
高温水が加熱器(18)から冷媒熱交換器(22A>へ
流れる。冷媒熱交換器(22A)では凝縮器(3)から
送られて来た例えば35℃の冷媒液が冷媒熱交換器(2
2A)にて加熱され温度が上昇し、例えば65°Cの冷
媒液が冷媒熱交換器(22A)から流出する。又、冷媒
熱交換器(22A>にて放熱し、例えば80℃に温度が
低下した高温水が冷媒熱交換器(22A)から流出する
When the absorption heat pump configured as described above is operated, high-temperature water (heat source fluid) of, for example, 98°C flows from equipment such as a chemical plant or factory to the heater (18) of the evaporator (6). , heat is radiated by a heater (18). Then, high-temperature water of, for example, 88°C, whose temperature has been lowered in the heater (18), flows from the heater (18) to the refrigerant heat exchanger (22A). For example, the sent refrigerant liquid at 35°C is passed through the refrigerant heat exchanger (2
2A), the temperature rises, and the refrigerant liquid at, for example, 65°C flows out from the refrigerant heat exchanger (22A). Further, heat is radiated in the refrigerant heat exchanger (22A), and high-temperature water whose temperature has decreased to, for example, 80° C. flows out from the refrigerant heat exchanger (22A).

吸収液ポンプ(8)から吐出した例えば83°Cの濃液
の一部は送り配管(27)を経て吸収液熱交換器(28
)へ送られる。吸収液熱交換器(28)では、83°C
の濃液と65°Cの冷奴液とが熱交換し、温度が低下し
て例えば70℃になった濃液がエゼクタ(26)へ送ら
れる。又、例えば温度が75°Cに上昇した冷媒液が蒸
発器(6〉へ送られる。そして、エゼクタ(26)で噴
出された濃液によって凝縮器(3)の不凝縮ガスが抽気
される。ここで、不凝縮ガスタンク(25)内の温度は
ほぼ70’Cになり、飽和蒸気圧が20mllHgにな
る。そして、不凝縮ガスタンク(25)内の圧力が凝縮
器(3)内の圧力例えば411!nHgより21aHg
低くなり、抽気管(24)を経て不凝縮ガスが抽気され
る。又、凝縮器(3)を流れる冷却水の温度が低下した
場合にも、抽気装置(23)へ送られる濃液は冷媒熱交
換器(22A)で温度が上昇した冷媒液と熱交換するの
で、濃液の温度が大幅に低下することはない。
A part of the concentrated liquid at, for example, 83°C discharged from the absorption liquid pump (8) passes through the feed pipe (27) to the absorption liquid heat exchanger (28).
). In the absorption liquid heat exchanger (28), 83°C
The concentrated liquid and the chilled liquid at 65°C exchange heat, and the concentrated liquid whose temperature has decreased to, for example, 70°C is sent to the ejector (26). Further, the refrigerant liquid whose temperature has increased to, for example, 75°C is sent to the evaporator (6>).Then, the non-condensable gas in the condenser (3) is extracted by the concentrated liquid ejected by the ejector (26). Here, the temperature in the non-condensable gas tank (25) becomes approximately 70'C, and the saturated vapor pressure becomes 20 mlHg.Then, the pressure in the non-condensable gas tank (25) becomes equal to the pressure in the condenser (3), for example, 411 !21aHg than nHg
The non-condensable gas is extracted through the bleed pipe (24). Furthermore, even when the temperature of the cooling water flowing through the condenser (3) decreases, the concentrated liquid sent to the extraction device (23) exchanges heat with the refrigerant liquid whose temperature has increased in the refrigerant heat exchanger (22A). , the temperature of the concentrated liquid does not drop significantly.

上記実施例によれば、吸収液熱交換器(28)に流れて
来た抽気用の濃液は、冷媒熱交換器(22A )で熱源
流体によって加熱きれて温度が上昇した冷媒液によって
冷却される。このため、例えば季節の変化などに伴い、
冷却水の温度が低下して、凝縮器(3)から流出する冷
媒液の温度が低下した場合も、抽気装置(23)へ送ら
れる濃液の温度が大幅に低下することを防止でき、抽気
装置(23)内での濃液の結晶を回避することができる
。又、吸収液熱交換器(28)で温度が低下した吸収液
が抽気装置(23)へ送られるので、濃液による不凝縮
ガスの吸収能力が上昇して抽気能力を向上きせることが
できる。
According to the above embodiment, the concentrated liquid for extraction flowing into the absorption liquid heat exchanger (28) is cooled by the refrigerant liquid whose temperature has risen due to heating by the heat source fluid in the refrigerant heat exchanger (22A). Ru. For this reason, for example, due to seasonal changes,
Even if the temperature of the cooling water decreases and the temperature of the refrigerant liquid flowing out from the condenser (3) decreases, the temperature of the concentrated liquid sent to the extraction device (23) can be prevented from dropping significantly, and the extraction Crystallization of the concentrated liquid in the device (23) can be avoided. Furthermore, since the absorption liquid whose temperature has been lowered in the absorption liquid heat exchanger (28) is sent to the extraction device (23), the ability of the concentrated liquid to absorb non-condensable gas is increased and the extraction capacity can be improved.

又、凝縮器(3)から蒸発器(6)へ送られる冷媒液は
、冷媒熱交換器(22A)で温度が上昇し、さらに吸収
液熱交換器(28)で温度が上昇して蒸発器(6)へ流
入するので、蒸発器(6)の温度をひらに高くすること
ができるとともに、蒸発器(6)の温度を安定きせるこ
とができ、この結果、吸収器(5)の温度を安定許せ、
吸収器(5)から取出きれる温水の温度を安定させるこ
とができる。
In addition, the temperature of the refrigerant liquid sent from the condenser (3) to the evaporator (6) increases in the refrigerant heat exchanger (22A), and further increases in temperature in the absorption liquid heat exchanger (28), and then passes through the evaporator. (6), the temperature of the evaporator (6) can be raised to an extremely high temperature, and the temperature of the evaporator (6) can be stabilized. As a result, the temperature of the absorber (5) can be increased. Forgive me for stability,
The temperature of hot water taken out from the absorber (5) can be stabilized.

又、第1図に破線で示したように発生器(2)の出口側
の熱源供給配管(19)に冷媒熱交換器(22A)を設
け、冷媒液を熱源流体で加熱した場合にも、上記実施例
と同様の作用効果を得ることができる9又、蒸発器(6
)からの熱源流体と発生器(2)から熱源流体とを合流
許せ、合流した後の熱源流体で凝縮器(3)からの冷媒
液を加熱した場合にも同様の作用効果を得ることができ
る。
Furthermore, as shown by the broken line in FIG. 1, when a refrigerant heat exchanger (22A) is provided in the heat source supply pipe (19) on the outlet side of the generator (2) and the refrigerant liquid is heated with the heat source fluid, A nine-pronged evaporator (6
) and the heat source fluid from the generator (2) are allowed to merge, and the same effect can be obtained when the combined heat source fluid heats the refrigerant liquid from the condenser (3). .

第2図は本発明の第2の実施例を示す吸収ヒートポンプ
の回路構成図であり、第2図において、第1図と同じ構
成のものには、同様の図番を付し、その詳細な説明は省
略する。
FIG. 2 is a circuit configuration diagram of an absorption heat pump showing a second embodiment of the present invention. In FIG. 2, the same components as in FIG. Explanation will be omitted.

第2図において、冷媒熱交換器(22A)の出口側の冷
媒液配管(11)に側路管(IIA)が接続され、この
側路管(IIA)の途中に吸収液熱交換器(28)が設
けられている。又、(40)は冷媒液配管(11)に設
けられた流量調節弁である。そして、吸収冷凍機の運転
時には、冷媒熱交換器(22A>で温度が上昇した冷媒
液の一部を吸収液熱交換器(28)へ流している。そし
て、流量調節弁(40)の開度を例えば吸収液熱交換器
(28)から流出した濃液の温度に基づいて調節し、吸
収液熱交換器(28)に流れる冷媒液の量を調節する。
In FIG. 2, a side pipe (IIA) is connected to the refrigerant liquid pipe (11) on the outlet side of the refrigerant heat exchanger (22A), and an absorption liquid heat exchanger (28 ) is provided. Further, (40) is a flow rate control valve provided in the refrigerant liquid pipe (11). When the absorption refrigerator is in operation, a part of the refrigerant liquid whose temperature has increased in the refrigerant heat exchanger (22A) is flowed to the absorption liquid heat exchanger (28). The temperature is adjusted, for example, based on the temperature of the concentrated liquid flowing out from the absorption liquid heat exchanger (28), and the amount of refrigerant liquid flowing into the absorption liquid heat exchanger (28) is adjusted.

このため、抽気装置(23)へ送られる濃液の温度を一
層安定させることができ(抽気装置(23)での結晶を
回避することができる。
Therefore, the temperature of the concentrated liquid sent to the bleeder (23) can be further stabilized (crystallization in the bleeder (23) can be avoided).

さらに、第3図は本発明の第3の実施例を示す吸収ヒー
トポンプの回路構成図であり、第3図において、第1図
と同じ構成のものには、同様の図番を付し、その詳細な
説明は省略する。
Furthermore, FIG. 3 is a circuit configuration diagram of an absorption heat pump showing a third embodiment of the present invention. In FIG. 3, the same components as in FIG. Detailed explanation will be omitted.

第3図において、(41)は冷媒熱交換器(22A)を
側路する側路管であり、この側路管(41)に吸収液熱
交換器(28)が設けられている。又、(42〉は冷媒
熱交換器(22A)の出口側の冷媒液配管(11)と吸
収液熱交換器(28)の入口側の側路管(41)とを接
続する連絡管、(43)及び(44)はそれぞれ冷媒液
配管(11)及び側路管(41)に設けられた流量調節
弁である。そして、吸収ヒートポンプの運転時、冷媒液
が実線矢印で示したように流れ、側路管(41)を流量
調節弁(44)を経て流れて来た35°Cの冷媒液と、
連絡管(42)を流れて来た例えば65°Cの冷媒液と
が混合し、上記第1の実施例及び第2の実施例より低い
約50℃の冷媒液が吸収液熱交換器(28)に流れる。
In FIG. 3, (41) is a bypass pipe that bypasses the refrigerant heat exchanger (22A), and the absorption liquid heat exchanger (28) is provided in this bypass pipe (41). Further, (42> is a connecting pipe that connects the refrigerant liquid pipe (11) on the outlet side of the refrigerant heat exchanger (22A) and the side pipe (41) on the inlet side of the absorption liquid heat exchanger (28), ( 43) and (44) are flow control valves provided in the refrigerant liquid pipe (11) and the side pipe (41), respectively.When the absorption heat pump is operating, the refrigerant liquid flows as shown by the solid line arrow. , 35°C refrigerant liquid flowing through the side pipe (41) via the flow rate control valve (44),
The refrigerant liquid flowing through the communication pipe (42) at, for example, 65°C is mixed, and the refrigerant liquid at about 50°C, which is lower than that in the first and second embodiments, is transferred to the absorption liquid heat exchanger (28). ).

ここで、流量調節弁(44〉の開度は例えば夏期で冷却
水の温度が高く凝縮器(3)からの冷媒液の温度が高い
ときには大きく、冬期で冷却水の温度が低く、凝縮器(
3)からの冷媒液の温度が低いときには手さく調節され
る。
Here, the opening degree of the flow rate control valve (44) is large when the temperature of the cooling water is high in the summer and the temperature of the refrigerant liquid from the condenser (3) is high, and it is large in the winter when the temperature of the cooling water is low and the temperature of the refrigerant liquid from the condenser (3) is high.
When the temperature of the refrigerant liquid from 3) is low, it is manually adjusted.

上記第3の実施例において、冷媒熱交換器(22A)を
通った冷媒液と側路管(41)を流れて来た冷媒液とが
混合し、約50℃の冷媒液が吸収液熱交換器(28)へ
流れる。このため、吸収液熱交換器(28)から流出す
る濃液の温度はさらに低下し、抽気装置(23)の抽気
能力をさらに向上きせることができる。
In the third embodiment described above, the refrigerant liquid that has passed through the refrigerant heat exchanger (22A) and the refrigerant liquid that has flowed through the side pipe (41) are mixed, and the refrigerant liquid at about 50° C. undergoes heat exchange with the absorption liquid. Flows into the vessel (28). Therefore, the temperature of the concentrated liquid flowing out from the absorption liquid heat exchanger (28) is further reduced, and the extraction capacity of the extraction device (23) can be further improved.

(ト)発明の効果 本発明は以上のように構成された吸収ヒートポンプであ
り、凝縮器から蒸発器に至る冷媒配管に設けられ凝縮器
からの冷媒液と蒸発器からの熱源流体とを熱交換する冷
媒熱交換器と、吸収液ポンプから抽気装置に至る吸収液
配管に設けられ吸収液ポンプから構成される装置に送ら
れる吸収液と冷媒熱交換器から流出した冷媒液とを熱交
換する吸収液熱交換器とを備え、冷媒熱交換器で冷媒液
の温度を上昇し、この冷媒液によって吸収液熱交換器で
吸収液を冷却し、温度を低下させて抽気装置へ送るので
、冷却水の温度が低下したときにも、抽気装置へ送られ
る吸収液の温度が大幅に低下することを防止し、吸収液
の温度を安定させることができ、この結果、抽気装置で
の吸収液の結晶を回避し、抽気装置を安定して運転する
ことができる。又、吸収液ポンプから吐出され、吸収液
熱交換器で温度が低下した吸収液が抽気装置へ送られる
ので、抽気装置の抽気能力を向上させることができる。
(G) Effects of the Invention The present invention is an absorption heat pump configured as described above, which is installed in the refrigerant pipe leading from the condenser to the evaporator and exchanges heat between the refrigerant liquid from the condenser and the heat source fluid from the evaporator. A refrigerant heat exchanger that exchanges heat between the absorption liquid sent to the device, which is installed in the absorption liquid piping leading from the absorption liquid pump to the extraction device, and the refrigerant liquid flowing out from the refrigerant heat exchanger. The temperature of the refrigerant liquid is raised by the refrigerant heat exchanger, and the absorption liquid is cooled by this refrigerant liquid by the absorption liquid heat exchanger, and the temperature is lowered and sent to the extraction device, so that the cooling water is Even when the temperature of the absorption liquid decreases, the temperature of the absorption liquid sent to the extraction device can be prevented from dropping significantly, and the temperature of the absorption liquid can be stabilized. As a result, the crystallization of the absorption liquid in the extraction device can be prevented. This allows stable operation of the extraction device. Further, since the absorption liquid discharged from the absorption liquid pump and whose temperature has been lowered by the absorption liquid heat exchanger is sent to the extraction device, the extraction capacity of the extraction device can be improved.

又、凝縮器から蒸発器へ送られる冷媒液と蒸発器或いは
発生器から流出した熱源流体とを熱交換する冷媒熱交換
器と、吸収液ポンプから流出して抽気装置に送られる吸
収液と冷媒熱交換器からの冷媒液とを熱交換する吸収液
熱交換器とを備え、冷媒熱交換器で蒸発器或いは発生器
からの熱源流体によって冷媒液を加熱して温度を上昇し
、この冷媒液によって吸収液熱交換器で吸収液を冷却し
て抽気装置へ送るので、抽気装置へ流れる吸収液の温度
が大幅に低下することを防止でき、抽気装置での吸収液
の結晶を回避し、抽気装置を安定して運転することがで
きる。
In addition, there is a refrigerant heat exchanger that exchanges heat between the refrigerant liquid sent from the condenser to the evaporator and the heat source fluid flowing out from the evaporator or generator, and the absorption liquid and refrigerant flowing out from the absorption liquid pump and sent to the extraction device. An absorption liquid heat exchanger that exchanges heat with the refrigerant liquid from the heat exchanger, the refrigerant heat exchanger heats the refrigerant liquid with the heat source fluid from the evaporator or generator to raise the temperature, Since the absorption liquid is cooled in the absorption liquid heat exchanger and sent to the extraction device, it is possible to prevent the temperature of the absorption liquid flowing to the extraction device from dropping significantly, to avoid crystallization of the absorption liquid in the extraction device, and to The device can be operated stably.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示す吸収ヒートポンプ
の回路構成図、第2図は本発明の第2の実施例を示す吸
収ヒートポンプの回路構成図、第3図は本発明の第3の
実施例を示す吸収ヒートポンプの回路構成図である。 (2)・・・発生器、 (3)・・・凝縮器、 (5)
・・・吸収器、 (6)・・・蒸発器、 (8)・・・
吸収液ポンプ、 (11)・・・冷媒液配管、 〈13
〉・・・濃液配管、 (19) 、 (22)・・・熱
源供給配管、 (22A)・・・冷媒熱交換器、(23
)・・・抽気装置、 (27)・・・濃液の送り配管、
 (28)・・・吸収液熱交換器。
FIG. 1 is a circuit diagram of an absorption heat pump according to a first embodiment of the present invention, FIG. 2 is a circuit diagram of an absorption heat pump according to a second embodiment of the present invention, and FIG. 3 is a circuit diagram of an absorption heat pump according to a second embodiment of the present invention. FIG. 3 is a circuit configuration diagram of an absorption heat pump showing a third embodiment. (2)...generator, (3)...condenser, (5)
...Absorber, (6)...Evaporator, (8)...
Absorption liquid pump, (11)... Refrigerant liquid piping, <13
〉... Concentrated liquid piping, (19), (22)... Heat source supply piping, (22A)... Refrigerant heat exchanger, (23
)...Air extraction device, (27)...Concentrated liquid feed piping,
(28)...Absorption liquid heat exchanger.

Claims (1)

【特許請求の範囲】 1、蒸発器、吸収器、発生器及び凝縮器を配管接続して
冷媒と吸収液との循環路を形成し、発生器から吸収器に
至り、途中に吸収液ポンプを有した吸収液配管と、吸収
液ポンプから流出した吸収液を用いて機内の不凝縮ガス
を抽気する抽気装置とを備え、蒸発器及び発生器に熱源
流体を供給し、凝縮器に冷却水を流し、吸収器から熱源
流体より高い温度の被加熱流体を取出す吸収ヒートポン
プにおいて、凝縮器から蒸発器に至る冷媒配管の途中に
設けられ、凝縮器からの冷媒液と蒸発器からの熱源流体
とを熱交換する冷媒熱交換器と、吸収液ポンプの出口側
から抽気装置に至る吸収液配管の途中に設けられ、吸収
液ポンプからの吸収液と上記冷媒熱交換器からの冷媒液
とを熱交換する吸収液熱交換器とを備えたことを特徴と
する吸収ヒートポンプ。 2、蒸発器、吸収器、発生器及び凝縮器を配管接続して
冷媒と吸収液との循環路を形成し、発生器に接続された
吸収液ポンプから流出した吸収液を用いて機内の不凝縮
ガスを抽気する抽気装置を備え、蒸発器及び発生器に熱
源流体を供給し、凝縮器に冷却水を流し、吸収器から熱
源流体より高い温度の温水を取出す吸収ヒートポンプに
おいて、凝縮器から蒸発器へ送られる冷媒液と蒸発器或
いは発生器から流出した熱源流体とを熱交換する冷媒熱
交換器と、吸収液ポンプから流出して抽気装置に送られ
る吸収液と上記冷媒熱交換器から流出した冷媒液とを熱
交換する吸収液熱交換器とを備えたことを特徴とする吸
収ヒートポンプ。
[Claims] 1. The evaporator, absorber, generator, and condenser are connected via piping to form a circulation path for the refrigerant and absorption liquid, and from the generator to the absorber, an absorption liquid pump is installed in the middle. The system is equipped with an absorption liquid piping system that uses the absorption liquid that flows out from the absorption liquid pump, and an extraction device that extracts non-condensable gas from inside the machine using the absorption liquid that flows out from the absorption liquid pump. In an absorption heat pump that extracts a heated fluid at a higher temperature than the heat source fluid from the absorber, it is installed in the middle of the refrigerant piping from the condenser to the evaporator, and connects the refrigerant liquid from the condenser and the heat source fluid from the evaporator. A refrigerant heat exchanger that exchanges heat is installed in the middle of the absorption liquid piping from the outlet side of the absorption liquid pump to the extraction device, and it exchanges heat between the absorption liquid from the absorption liquid pump and the refrigerant liquid from the refrigerant heat exchanger. An absorption heat pump characterized by being equipped with an absorption liquid heat exchanger. 2. Connect the evaporator, absorber, generator, and condenser with piping to form a circulation path for the refrigerant and absorption liquid, and use the absorption liquid flowing out from the absorption liquid pump connected to the generator to clean the inside of the machine. In an absorption heat pump that is equipped with an extraction device that extracts condensed gas, supplies heat source fluid to the evaporator and generator, flows cooling water to the condenser, and extracts hot water at a higher temperature than the heat source fluid from the absorber. A refrigerant heat exchanger that exchanges heat between the refrigerant liquid sent to the evaporator and the heat source fluid flowing out from the evaporator or generator, and the absorption liquid flowing out from the absorption liquid pump and sent to the extraction device and the refrigerant heat exchanger flowing out from the refrigerant heat exchanger. An absorption heat pump characterized by comprising an absorption liquid heat exchanger for exchanging heat with a refrigerant liquid.
JP2297561A 1990-11-02 1990-11-02 Absorption heat pump Expired - Fee Related JP2975667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2297561A JP2975667B2 (en) 1990-11-02 1990-11-02 Absorption heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2297561A JP2975667B2 (en) 1990-11-02 1990-11-02 Absorption heat pump

Publications (2)

Publication Number Publication Date
JPH04169764A true JPH04169764A (en) 1992-06-17
JP2975667B2 JP2975667B2 (en) 1999-11-10

Family

ID=17848142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2297561A Expired - Fee Related JP2975667B2 (en) 1990-11-02 1990-11-02 Absorption heat pump

Country Status (1)

Country Link
JP (1) JP2975667B2 (en)

Also Published As

Publication number Publication date
JP2975667B2 (en) 1999-11-10

Similar Documents

Publication Publication Date Title
JP4885467B2 (en) Absorption heat pump
JPS5886357A (en) Air-conditioning method utilizing solar heat and its device
JPH01217165A (en) Absorption heat pump device
JP3920619B2 (en) Absorption chiller / heater and control method thereof
JPH04169764A (en) Absorption heat pump
JP3381094B2 (en) Absorption type heating and cooling water heater
JPS5812507B2 (en) Hybrid type absorption heat pump
JPH0445363A (en) Absorption refrigerating and heating hot water supply machine
JP3240343B2 (en) Steam-fired absorption chiller / heater and its control method
JPH07849Y2 (en) Air-cooled absorption chiller / heater
JP2787182B2 (en) Single / double absorption chiller / heater
JP3754206B2 (en) Single double-effect absorption chiller / heater
JP3434279B2 (en) Absorption refrigerator and how to start it
JP3735745B2 (en) Cooling operation control method for absorption air conditioner
JP2865305B2 (en) Absorption refrigerator
JP2538423B2 (en) Single-double-effect absorption refrigerator
JPH01222171A (en) Absorption heat pump system
JP2003269815A (en) Exhaust heat recovery type absorption refrigerator
JPH0443264A (en) Absorption type heat source device
JPH04313652A (en) Absorption refrigerating machine
CN116379634A (en) Closed absorption heat pump system and operation method
JPH0615939B2 (en) Absorption heat pump device
JPH0354378Y2 (en)
JPH01281375A (en) Absorption heat pump
JPH01310272A (en) Absorption type air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees