JPH0416935B2 - - Google Patents
Info
- Publication number
- JPH0416935B2 JPH0416935B2 JP57230107A JP23010782A JPH0416935B2 JP H0416935 B2 JPH0416935 B2 JP H0416935B2 JP 57230107 A JP57230107 A JP 57230107A JP 23010782 A JP23010782 A JP 23010782A JP H0416935 B2 JPH0416935 B2 JP H0416935B2
- Authority
- JP
- Japan
- Prior art keywords
- tube
- gas
- reaction
- growth
- susceptors
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000007789 gas Substances 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 16
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 10
- 239000012495 reaction gas Substances 0.000 claims description 9
- 230000006698 induction Effects 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 6
- 238000001947 vapour-phase growth Methods 0.000 claims description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 5
- 239000012159 carrier gas Substances 0.000 claims description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims description 5
- 239000011574 phosphorus Substances 0.000 claims description 5
- 239000000758 substrate Substances 0.000 claims description 5
- 239000011148 porous material Substances 0.000 claims description 4
- 239000004065 semiconductor Substances 0.000 description 13
- 238000011282 treatment Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- SLLGVCUQYRMELA-UHFFFAOYSA-N chlorosilicon Chemical compound Cl[Si] SLLGVCUQYRMELA-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- MROCJMGDEKINLD-UHFFFAOYSA-N dichlorosilane Chemical compound Cl[SiH2]Cl MROCJMGDEKINLD-UHFFFAOYSA-N 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02532—Silicon, silicon germanium, germanium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/24—Deposition of silicon only
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/0257—Doping during depositing
- H01L21/02573—Conductivity type
- H01L21/02576—N-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Recrystallisation Techniques (AREA)
Description
【発明の詳細な説明】
(a) 発明の技術分野
本発明は減圧気相成長法にかかり、特にエピタ
キシヤル成長に有効な方法に関する。DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a reduced pressure vapor phase growth method, and particularly to a method effective for epitaxial growth.
(b) 従来技術と問題点
半導体装置を製造する際、半導体ウエハーに半
導体層をエピタキシヤル成長する方法は基幹的な
技術として知られている。その内、高周波誘導加
熱によるエピタキシヤル成長方法は汚染が少なく
て装置が簡便であり、且つ熱容量の小さい最も優
れた方式で、広く利用されているものである。(b) Prior Art and Problems When manufacturing semiconductor devices, the method of epitaxially growing a semiconductor layer on a semiconductor wafer is known as a fundamental technology. Among these, the epitaxial growth method using high-frequency induction heating is the most excellent method since it causes less contamination, has simple equipment, and has a small heat capacity, and is widely used.
第1図はこのような高周波誘導加熱による成長
装置の一例の構造断面図を示しており、第2図は
そのAA断面を示す側断面図である。図におい
て、横型反応管1の一端より排気系で真空排気し
て管内を10Torr以下にし、その減圧気流中でエ
ピタキシヤル成長がなされる。被成長基板(半導
体ウエハー)2はカーボン製のサセプタ3の両面
に密接して保持されており、高周波誘導コイル4
によりサセプタ3が誘導加熱されて半導体ウエハ
ー2が約1000℃に加熱され、ウエハー表面で反応
ガスが分解してエピタキシヤル成長が行われる。 FIG. 1 shows a structural sectional view of an example of a growth apparatus using such high-frequency induction heating, and FIG. 2 is a side sectional view showing the AA section thereof. In the figure, one end of a horizontal reaction tube 1 is evacuated using an exhaust system to reduce the inside of the tube to 10 Torr or less, and epitaxial growth is performed in the reduced pressure air flow. A growth substrate (semiconductor wafer) 2 is held closely on both sides of a carbon susceptor 3, and a high frequency induction coil 4
The susceptor 3 is heated by induction and the semiconductor wafer 2 is heated to about 1000° C., and the reaction gas is decomposed on the wafer surface to perform epitaxial growth.
反応ガスは、例えばN型半導体層を成長する場
合にはジクロルシラン(SiHCl2)に僅かにホス
フイン(PH3)を混合したガスで、キヤリヤガス
としては水素(H2)が用いられる。このような
反応ガスおよびキヤリヤガスは管外から反応管1
と同心のガス導入管5の間に送入され、ガス導入
管5に設けた細孔から半導体ウエハーに向かつて
噴射し流入する構造である。 For example, when growing an N-type semiconductor layer, the reaction gas is dichlorosilane (SiHCl 2 ) mixed with a slight amount of phosphine (PH 3 ), and the carrier gas is hydrogen (H 2 ). Such reaction gas and carrier gas are introduced into the reaction tube 1 from outside the tube.
The structure is such that the gas is introduced between the gas introduction pipes 5 concentric with the gas introduction pipe 5, and is injected and flows toward the semiconductor wafer through the pores provided in the gas introduction pipes 5.
かような成長装置を用いて、繰り返しエピタキ
シヤル成長すれば燐濃度(不純物濃度)が次第に
少なくなり、第3図に示す図表のように抵抗値
(ρ)が高くなつて安定した抵抗の膜質が得られ
ない。即ち、第1回の成長処理で半導体ウエハー
の抵抗値は0.5Ωcmであるが、第6回目の成長処
理では抵抗値は3Ωcmにまで上昇している。これ
は繰り返し処理すると、輻射熱によつて反応管1
およびガス導入管5の温度が上昇して一部の成長
膜がガス導入管5内壁に被着し、それが段々と積
み重ねられるが、その場合に燐がシリコンより低
温でより多く付着するから、半導体ウエハー2に
達する反応ガスは燐が次第に少なくなつてくるも
のと考えられる。 If epitaxial growth is repeated repeatedly using such a growth apparatus, the phosphorus concentration (impurity concentration) will gradually decrease, and as shown in the chart in Figure 3, the resistance value (ρ) will increase and a film quality with stable resistance will be achieved. I can't get it. That is, the resistance value of the semiconductor wafer is 0.5 Ωcm in the first growth process, but the resistance value increases to 3 Ωcm in the sixth growth process. When this process is repeated, radiant heat causes the reaction tube 1 to
As the temperature of the gas introduction tube 5 rises, some of the grown films adhere to the inner wall of the gas introduction tube 5 and are stacked up in stages. It is considered that the reaction gas reaching the semiconductor wafer 2 gradually contains less phosphorus.
そのために、一回の成長処理毎に管内を洗浄す
ると抵抗値の変動は防止されるが、たびたび真空
容器を大気に曝して洗浄すると元の状態に戻すた
め非常に長時間を要し、甚だ非能率で量産は不可
能になる。 For this reason, if the inside of the tube is cleaned after each growth process, fluctuations in the resistance value can be prevented, but if the vacuum chamber is frequently exposed to the atmosphere and cleaned, it takes a very long time to return to the original state, which is extremely harmful. Efficiency makes mass production impossible.
(c) 発明の目的
本発明はこのような量産上重要な問題点を解決
し、不純物が絶えず一定して混入して極めて再現
性の良い減圧気相成長法を提唱するものである。(c) Purpose of the Invention The present invention solves these important problems in mass production and proposes a low-pressure vapor phase growth method that allows impurities to be constantly mixed in and has extremely high reproducibility.
(d) 発明の構成
その目的は、横型反応管内に被成長基板を両面
に配した複数のサセプタを配置し、不純物となる
燐を含む反応ガスを導入して、該サセプタを誘導
加熱して基板上に被着膜を成長する減圧気相成長
法であつて、上記反応管内の同心ガス導入管に設
けた細孔から管内に反応ガスおよびキヤリアガス
を流入すると共に、塩酸ガスを同時に流入して被
着膜を成長するようにした減圧気相成長法によつ
て達成される。(d) Structure of the Invention The purpose of the invention is to arrange a plurality of susceptors with growth substrates on both sides in a horizontal reaction tube, introduce a reaction gas containing phosphorus as an impurity, and heat the susceptors by induction to grow the substrate. This is a low-pressure vapor phase growth method for growing a deposited film on the top of the reaction tube, in which the reaction gas and carrier gas are flowed into the tube through the pores provided in the concentric gas introduction tube in the reaction tube, and at the same time, hydrochloric acid gas is flowed in to coat the tube. This is achieved by a reduced pressure vapor phase growth method in which a deposited film is grown.
(e) 発明の実施例
以下、第1図、第2図に示す成長装置を用い
て、直径5インチの半導体ウエハー面に膜厚3μ
mの半導体層をエピタキシヤル成長する実施例に
よつて詳細に説明する。(e) Embodiments of the Invention Hereinafter, using the growth apparatus shown in FIGS.
This will be explained in detail using an example in which m semiconductor layers are epitaxially grown.
この装置は、例えば反応管の外径は250mm、ガ
ス導入管の内径は200mm、サセプタは厚さ5mm、
直径6インチで、サセプタ間の間隔は30mm、サセ
プタは20枚配置されるもので、二重管に設けた細
孔の直径は6mm、一周に8個、50mm間隔に設けて
ある。 In this device, for example, the outer diameter of the reaction tube is 250 mm, the inner diameter of the gas introduction tube is 200 mm, the thickness of the susceptor is 5 mm,
The diameter is 6 inches, the spacing between the susceptors is 30 mm, and 20 susceptors are arranged, and the diameter of the pores provided in the double tube is 6 mm, and 8 holes are provided in one circumference at 50 mm intervals.
このような成長装置を用い、反応管内を真空排
気して反応ガスを流入し、減圧度を1Torrに保
つ。流入ガスは、キヤリヤガスとして6/分の
H2ガス、反応ガスとして300c.c./分のSiHCl2ガス
と13c.c./分の1PPM PH3/H2ガスをそれぞれ流
入し、更にそれに加えて100c.c./分の30%塩酸
(HCl)/H2ガス(H2ガスに30%のHClガスを混
入したガス)を流入して、1000℃に加熱された半
導体ウエハー上で分解成長させる。 Using such a growth apparatus, the inside of the reaction tube is evacuated, a reaction gas is introduced, and the degree of vacuum is maintained at 1 Torr. The inflow gas is used as a carrier gas at a rate of 6/min.
H 2 gas, 300 c.c./min SiHCl 2 gas and 13 c.c./min 1 PPM PH 3 /H 2 gas as reaction gases, and in addition to that, 30% of 100 c.c./min Hydrochloric acid (HCl)/H 2 gas (H 2 gas mixed with 30% HCl gas) is introduced to decompose and grow on a semiconductor wafer heated to 1000°C.
このようにして成長処理を繰り返しおこなつて
得られたデータを第4図の図表に示している。第
3図と同じく縦軸は抵抗値(ρ)、横軸は処理回
数であるが、図表のように処理回数を繰り返して
も抵抗値の変動は殆ど起こらない。図に示してい
ないが、約20回の処理が可能であることが確認さ
れている。その理由はHClガスが管壁に付着した
燐などを溶かして塩化物として再び管内に運ぶた
めに一定した不純物濃度になるものと考察され
る。 The data obtained by repeating the growth process in this manner is shown in the diagram of FIG. As in FIG. 3, the vertical axis shows the resistance value (ρ), and the horizontal axis shows the number of treatments, but as shown in the chart, even if the number of treatments is repeated, the resistance value hardly changes. Although not shown in the figure, it has been confirmed that processing can be performed approximately 20 times. The reason for this is thought to be that HCl gas dissolves phosphorus and other substances adhering to the tube walls and transports them back into the tube as chlorides, resulting in a constant impurity concentration.
以上の実施例はシリコン層のエピタキシヤル成
長の例であるが、エピタキシヤル成長のみならず
その他の不純物を含む被着膜、例えば多結晶シリ
コン膜の形成についても同様の効果があり、本発
明を適用すれば安定した抵抗値をもつた被着膜を
形成することができる。 Although the above embodiment is an example of epitaxial growth of a silicon layer, the present invention has similar effects not only on epitaxial growth but also on the formation of a deposited film containing other impurities, such as a polycrystalline silicon film. If applied, a deposited film with a stable resistance value can be formed.
(f) 発明の効果
このように、本発明によれば高品質の被着膜の
量産が可能となり、半導体装置をはじめ電子部品
の品質向上とコストダウンに極めて寄与するもの
である。(f) Effects of the Invention As described above, the present invention makes it possible to mass produce high-quality deposited films, which greatly contributes to improving the quality and reducing costs of electronic components including semiconductor devices.
第1図は成長装置の構造断面図、第2図はその
AA断面図、第3図は従来の処理回数と抵抗値と
の関係図表、第4図は本発明の処理回数と抵抗値
との関係図表を示している。
図中、1は反応管、2は半導体ウエハー、3は
サセプタ、4は誘導コイル、5は同心ガス導入管
である。
Figure 1 is a cross-sectional view of the structure of the growth device, and Figure 2 is its
AA sectional view, FIG. 3 shows a conventional relationship diagram between the number of treatments and resistance value, and FIG. 4 shows a relationship diagram between the number of treatments and resistance value according to the present invention. In the figure, 1 is a reaction tube, 2 is a semiconductor wafer, 3 is a susceptor, 4 is an induction coil, and 5 is a concentric gas introduction tube.
Claims (1)
た複数のサセプタ3を配置し、不純物となる燐を
含む反応ガスを導入して、該サセプタ3を誘導加
熱して基板上に被着膜を成長する減圧気相成長法
であつて、 上記反応管2内の同心ガス導入管5に設けた細
孔から管内に反応ガスおよびキヤリアガスを流入
すると共に、塩酸ガスを同時に流入して被着膜を
成長するようにしたことを特徴とする減圧気相成
長法。[Claims] 1. A plurality of susceptors 3 having growth substrates 2 on both sides are arranged in a horizontal reaction tube 1, and a reaction gas containing phosphorus as an impurity is introduced to heat the susceptors 3 by induction. This is a low pressure vapor phase growth method in which a deposited film is grown on a substrate using a method in which a reaction gas and a carrier gas are introduced into the tube through a pore provided in a concentric gas introduction tube 5 in the reaction tube 2, and a hydrochloric acid gas is introduced into the tube. A reduced-pressure vapor phase growth method characterized by flowing in at the same time to grow a deposited film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23010782A JPS59125616A (en) | 1982-12-28 | 1982-12-28 | Decompression vapor growth method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23010782A JPS59125616A (en) | 1982-12-28 | 1982-12-28 | Decompression vapor growth method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59125616A JPS59125616A (en) | 1984-07-20 |
JPH0416935B2 true JPH0416935B2 (en) | 1992-03-25 |
Family
ID=16902664
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23010782A Granted JPS59125616A (en) | 1982-12-28 | 1982-12-28 | Decompression vapor growth method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59125616A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5352356A (en) * | 1976-10-25 | 1978-05-12 | Hitachi Ltd | Deposition prevention method in hot wall type reaction furnace |
-
1982
- 1982-12-28 JP JP23010782A patent/JPS59125616A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5352356A (en) * | 1976-10-25 | 1978-05-12 | Hitachi Ltd | Deposition prevention method in hot wall type reaction furnace |
Also Published As
Publication number | Publication date |
---|---|
JPS59125616A (en) | 1984-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH01162326A (en) | Manufacture of beta-silicon carbide layer | |
US3750620A (en) | Vapor deposition reactor | |
US9633840B2 (en) | Method of manufacturing silicon carbide semiconductor substrate and method of manufacturing silicon carbide semiconductor device | |
US4263087A (en) | Process for producing epitaxial layers | |
JPH051380A (en) | Silicon carbide film forming method | |
US3484311A (en) | Silicon deposition process | |
JPS6054919B2 (en) | low pressure reactor | |
EP0605725B1 (en) | Apparatus for introducing gas, and apparatus and method for epitaxial growth | |
US4661199A (en) | Method to inhibit autodoping in epitaxial layers from heavily doped substrates in CVD processing | |
CN112885709A (en) | Preparation method of silicon carbide epitaxial structure and semiconductor device | |
KR101926694B1 (en) | Silicon carbide epi wafer and method of fabricating the same | |
JP2550024B2 (en) | Low pressure CVD equipment | |
US3816166A (en) | Vapor depositing method | |
JPH0416935B2 (en) | ||
JPS5927611B2 (en) | Vapor phase growth method | |
JPH01220432A (en) | Manufacture of compound semiconductor layer | |
JPH01313927A (en) | Compound-semiconductor crystal growth method | |
JP3112796B2 (en) | Chemical vapor deposition method | |
JPS6191920A (en) | Epitaxial growth method | |
JPH01119017A (en) | Manufacture of silicon single crystal | |
JP2004186376A (en) | Apparatus and method for manufacturing silicon wafer | |
KR101976600B1 (en) | Silicon carbide epi wafer and method of fabricating the same | |
JP2000091237A (en) | Manufacture of semiconductor wafer | |
JP2022067843A (en) | Silicon carbide single crystal substrate, and production method thereof | |
JPS61156725A (en) | Vapor growth apparatus |