JPH04169024A - Relay and its element - Google Patents

Relay and its element

Info

Publication number
JPH04169024A
JPH04169024A JP29469590A JP29469590A JPH04169024A JP H04169024 A JPH04169024 A JP H04169024A JP 29469590 A JP29469590 A JP 29469590A JP 29469590 A JP29469590 A JP 29469590A JP H04169024 A JPH04169024 A JP H04169024A
Authority
JP
Japan
Prior art keywords
resistance change
relay
magnetoresistive element
current
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29469590A
Other languages
Japanese (ja)
Inventor
Shigemi Kurashima
茂美 倉島
Shinkichi Shimizu
信吉 清水
Michiko Endou
みち子 遠藤
Shigeo Tanji
丹治 成生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP29469590A priority Critical patent/JPH04169024A/en
Publication of JPH04169024A publication Critical patent/JPH04169024A/en
Pending legal-status Critical Current

Links

Landscapes

  • Relay Circuits (AREA)

Abstract

PURPOSE:To intend smaller size, lower consumption power and longer life by providing a control coil into which a control current is supplied from an external terminal, a resistance change detecting means which detects resistance change in a magnetic resistance element to output resistance change signals and an electronic switch which receives the resistance change signals to perform open-close control of a preset circuit. CONSTITUTION:It consists of a magnetic resistance element 1, a control coil 2, a current supply section 3, a resistance change detecting means 4, and an electronic switch 5. When a control current flows into the control coil 2 from the outside, a resistance change is caused in the magnetic resistance element 1 by magnetic resistance effect between a magnetic field generated by the control current and a current flowing into the magnetic resistance element 1. This resistance change is detected by the resistance change detecting means 4 and output in the form of magnetic resistance change signals, so that the electronic switch 5 receives the magnetic resistance change signals to perform open-close control of a preset circuit. It is thus possible to intend smaller size, lower demand and longer life.

Description

【発明の詳細な説明】 C概要] 継電器及び継電器用素子に関し。[Detailed description of the invention] C Overview] Regarding relays and relay elements.

小型化、低消費電力化及び長寿命化を目的とし。Aimed at miniaturization, lower power consumption, and longer life.

継電器は1作動のための電流を供給される磁気抵抗素子
と2該磁気抵抗素子に巻回され外部端子から制御電流を
供給される制御コイルと、前記磁気抵抗素子の抵抗変化
を検知して抵抗変化信号を出力する抵抗変化検知手段と
、前記抵抗変化信号を受けて所定回路の開閉制御を行う
電子スイッチとを備えるように構成し、また 継電器用素子は、磁気抵抗素子と、該磁気抵抗素子に巻
回され制御電流端子に接続される制御コイルとを備える
ように構成する。
The relay includes: (1) a magnetic resistance element supplied with current for operation; (2) a control coil wound around the magnetic resistance element and supplied with a control current from an external terminal; It is configured to include a resistance change detection means for outputting a change signal, and an electronic switch that receives the resistance change signal and controls opening and closing of a predetermined circuit, and the relay element includes a magnetoresistive element and a magnetoresistive element. and a control coil wound around the control current terminal and connected to the control current terminal.

[産業上の利用分野コ 本発明は、継電器及び継電器に用いられる継電器用素子
に関し、更に詳しくは、入力及び出力間が絶縁される継
電器として新しい形式の継電器及びそれに用いられる継
電器用素子に関する。
[Industrial Application Field] The present invention relates to a relay and a relay element used in the relay, and more particularly to a new type of relay as a relay whose input and output are insulated, and a relay element used therein.

人力及び出力間が相互に絶縁される形式の従来の継電器
としては、励磁コイルとこの励磁コイルの電磁力によっ
て吸引される機械的接点とにより構成される。いわゆる
電磁継電器が用いられる。
A conventional relay of the type in which the human power and the output are mutually insulated is composed of an excitation coil and a mechanical contact attracted by the electromagnetic force of the excitation coil. A so-called electromagnetic relay is used.

一般に継電器では、小型且つ低消費電力という特性と長
寿命とが特に要請されている。
Generally, relays are particularly required to have characteristics of small size, low power consumption, and long life.

[従来の技術] 図9にこの形式の従来の継電器90を示す。同図におい
て、励磁コイル91は鉄心92上に巻回されており、フ
ィル端子93を介して励磁コイル91に制御電流が通電
されると鉄心92の磁力によって、一方の接点94を支
持する鉄片95が吸引されて接点94が閉成される。ま
た、制御電流が遮断されるとスプリング90を介して鉄
片が原位置に戻され、接点94が開成される。
[Prior Art] FIG. 9 shows a conventional relay 90 of this type. In the figure, an excitation coil 91 is wound on an iron core 92, and when a control current is applied to the excitation coil 91 via a fill terminal 93, the magnetic force of the iron core 92 causes an iron piece 95 to support one contact 94. is attracted and the contact 94 is closed. Further, when the control current is cut off, the iron piece is returned to its original position via the spring 90, and the contact 94 is opened.

[発明が解決しようとする課題] 従来の継電器90の場合、鉄心上に巻回される励磁コイ
ル91の電磁力を介して機械的接点94を吸引する構造
上、一般に外形が大きくなるばかりか大きな励磁電流が
必要なため、消費電力も大きい。
[Problems to be Solved by the Invention] In the case of the conventional relay 90, because of the structure in which the mechanical contact 94 is attracted through the electromagnetic force of the excitation coil 91 wound on the iron core, not only the external size is generally large but also the structure is large. Since an excitation current is required, power consumption is also large.

また、接点94は機械的に作動する接点であるので、誘
導性の負荷の開閉の場合には特に、アーク電流による接
点の消耗が問題となり、接点部分の清掃等のメンテナン
スを要すると共に寿命上の問題がある。更に、入力信号
への応答感度、及び開閉速度に制限があるという問題も
ある。
In addition, since the contact 94 is a mechanically operated contact, wear of the contact due to arc current becomes a problem, especially when switching an inductive load, requiring maintenance such as cleaning of the contact and shortening the service life. There's a problem. Furthermore, there are also problems in that there are limits to response sensitivity to input signals and opening/closing speed.

また、別の形式の継電器である半導体を用いた継電器で
は、入・出力間の絶縁ができないため特定の回路に用途
が制限される。
Another type of relay, a relay using semiconductors, cannot provide insulation between input and output, so its use is limited to specific circuits.

本発明は、上述の問題点を解消すること、特に入力及び
出力が相互に絶縁される形式の継電器として、新しい形
式の継電器及びそのための継電器用素子を提供し、もっ
て小型化及び低消費電力化が可能であると共に1機械的
接点を使用しないため寿命の長い継電器を提供すること
を目的とする。
The present invention aims to solve the above-mentioned problems, and provides a new type of relay and a relay element therefor, particularly as a type of relay in which the input and output are mutually insulated, thereby reducing the size and power consumption. It is an object of the present invention to provide a relay that is capable of a long service life and has a long life because it does not use a single mechanical contact.

また本発明は、応答感度及び開閉速度の高い継電器を提
供することをも目的とする。
Another object of the present invention is to provide a relay with high response sensitivity and high switching speed.

[課題を達成するための手段] 図1は本発明の原理図である。同図において。[Means to achieve the task] FIG. 1 is a diagram showing the principle of the present invention. In the same figure.

1は磁気抵抗素子、2は制御コイル、3は電流供給部、
4は抵抗変化検出手段、5は電子スイッチである。また
、1及び2で継電器用素子lOを構成する。
1 is a magnetoresistive element, 2 is a control coil, 3 is a current supply unit,
4 is a resistance change detection means, and 5 is an electronic switch. Further, 1 and 2 constitute a relay element IO.

前記目的を達成するために本発明の継電器では1作動の
ための電流を供給される磁気抵抗素子(1)と。
In order to achieve the above object, the relay of the present invention includes a magnetoresistive element (1) supplied with a current for one operation.

該磁気抵抗素子(1)に巻回され外部端子から制御電流
を供給される制御コイル(2)と。
a control coil (2) wound around the magnetoresistive element (1) and supplied with a control current from an external terminal;

前記磁気抵抗素子(1)の抵抗変化を検知して抵抗変化
信号を出力する抵抗変化検知手段(4)と。
a resistance change detection means (4) for detecting a resistance change of the magnetoresistive element (1) and outputting a resistance change signal;

前記抵抗変化信号を受けて所定回路の開閉制御を行う電
子スイッチ(5)と を備えるように構成し、磁気抵抗素子への電流供給は、
電流供給部(3)から行われる。
It is configured to include an electronic switch (5) that receives the resistance change signal and controls opening and closing of a predetermined circuit, and current supply to the magnetoresistive element is
The current is supplied from the current supply section (3).

また1本発明の継電器用素子では、磁気抵抗素子(1〉
と、該磁気抵抗素子(1)に巻回され制御電流端子(2
1)に接続される制御コイル(2)とを備えるように構
成する。
Furthermore, in the relay element of the present invention, a magnetoresistive element (1)
and a control current terminal (2) wound around the magnetoresistive element (1).
1) and a control coil (2) connected to the control coil (2).

本発明の継電器は、磁気抵抗素子1としてバーバーポー
ル形磁気抵抗素子を使用すれば、正負二方向の制御電流
の通電によって二種類の開閉信号を出力することができ
るため、特に好適である。
The relay of the present invention is particularly suitable if a barber pole magnetoresistive element is used as the magnetoresistive element 1, since two types of switching signals can be output by applying control current in two directions, positive and negative.

また、磁気抵抗素子1は、好ましくは筒状(ボビン状)
にモールドされ、これにより制御コイル2の巻回を容易
にすることができ、更にその制御コイルの上から全体が
モールドで一体化されて好適な継電器用素子10が提供
される。
Moreover, the magnetoresistive element 1 is preferably cylindrical (bobbin-shaped).
This facilitates winding of the control coil 2, and furthermore, the entire control coil is integrally molded from above to provide a suitable relay element 10.

磁気抵抗素子lに対して永久磁石によってバイアス磁界
を与えることで制御電流に対する感度を調節すれば1種
々の異なる電流値の制御電流を供給する特定の制御回路
に対して継電器を適合させることができる。
By adjusting the sensitivity to the control current by applying a bias magnetic field to the magnetoresistive element l using a permanent magnet, it is possible to adapt the relay to a specific control circuit that supplies control currents of various current values. .

本発明で用いられる磁気抵抗素子及び抵抗変化検知手段
に代えてホール素子及び電圧変化検知手段を採用するこ
とも考えられるが、ホール効果を利用する場合には、ホ
ール効果は磁気抵抗効果に比べて磁気検出における感度
が小さいので2本発明の磁気抵抗効果の利用に比べて磁
界変化の検出が困難である。
It is also possible to adopt a Hall element and voltage change detection means in place of the magnetoresistive element and resistance change detection means used in the present invention, but when using the Hall effect, the Hall effect is more effective than the magnetoresistive effect. Since the sensitivity in magnetic detection is low, it is difficult to detect changes in the magnetic field compared to the use of the magnetoresistive effect of the present invention.

[作用] 制御コイルに対して外部から制御電流を通電すると、こ
の制御電流によって生ずる磁界と、磁気抵抗素子を流れ
ている電流との間の磁気抵抗効果により、磁気抵抗素子
に抵抗変化が生ずる。この抵抗変化は、抵抗変化検出手
段で検知され、磁気抵抗変化信号として出力され、電子
スイッチはこの磁気抵抗変化信号を受けて所定回路の開
閉制御を行なう。
[Operation] When a control current is applied to the control coil from the outside, a resistance change occurs in the magnetoresistive element due to the magnetoresistive effect between the magnetic field generated by the control current and the current flowing through the magnetoresistive element. This resistance change is detected by the resistance change detection means and output as a magnetoresistive change signal, and the electronic switch receives this magnetoresistive change signal and controls the opening and closing of a predetermined circuit.

[実施例] 図面に基づいて本発明を更に説明する。図1の原理図に
おいて既に示したように9本発明に係る継電器は、信号
入力部分を構成する継電器用素子10と、信号検知及び
出力部分を構成する抵抗変化検知手段4及び電子スイッ
チ5とから構成され。
[Example] The present invention will be further explained based on the drawings. As already shown in the principle diagram of FIG. 1, the relay according to the present invention consists of a relay element 10 constituting a signal input section, a resistance change detection means 4 and an electronic switch 5 constituting a signal detection and output section. configured.

外部電流供給手段3から作動のための電流供給を受けて
いる。
It receives current supply for operation from external current supply means 3.

図2は、上記継電器に使用される1本発明の一実施例で
ある継電器用素子10の構造を示す斜視図である。同図
においてこの継電器用素子10は、電流供給端子11.
14及び抵抗変化検出端子12.13を有しモールド化
された磁気抵抗素子1と、この磁気抵抗素子1に巻回さ
れ制御電流端子21に接続された制御コイル2とを有し
ている。磁気抵抗素子1としては、半導体の磁気抵抗素
子及び強磁性金属の磁気抵抗素子のいずれも使用可能で
ある。磁気抵抗効果の応用により、入出力間の絶縁が可
能な継電器素子とすることができる。パーマロイ等の強
磁性金属から成る磁気抵抗素子をこの継電器用素子とし
て用いると、温度変化に拘わらず抵抗変化が安定である
こと、微小磁束の検出能力に優れる等から特に好適であ
る。
FIG. 2 is a perspective view showing the structure of a relay element 10, which is an embodiment of the present invention and is used in the above-mentioned relay. In the figure, this relay element 10 has current supply terminals 11.
14 and resistance change detection terminals 12 and 13, which are molded, and a control coil 2 wound around the magnetoresistive element 1 and connected to a control current terminal 21. As the magnetoresistive element 1, either a semiconductor magnetoresistive element or a ferromagnetic metal magnetoresistive element can be used. By applying the magnetoresistive effect, it is possible to create a relay element that can provide insulation between input and output. It is particularly preferable to use a magnetoresistive element made of a ferromagnetic metal such as permalloy as the relay element because the resistance change is stable regardless of temperature changes and the element has excellent ability to detect minute magnetic flux.

図3は1本発明の実施例2である継電器の構成を回路図
として示すものである。同図の継電器は、継電器用素子
10の磁気抵抗素子として。
FIG. 3 is a circuit diagram showing the configuration of a relay according to a second embodiment of the present invention. The relay shown in the figure is used as a magnetoresistive element of a relay element 10.

ホイートストーンブリッジ回路として接続され。Connected as a Wheatstone bridge circuit.

外部電流供給部3からブリッジ電流を供給される四個の
バーバーポール形磁気抵抗素子(1−1〜1−4)を組
合せた磁気抵抗素子組IAを有する。
It has a magnetoresistive element set IA that is a combination of four barber pole magnetoresistive elements (1-1 to 1-4) supplied with a bridge current from an external current supply section 3.

継電器は、この磁気抵抗素子組IA及びこれに巻回され
制御電流端子21に接続された制御コイル2から成る継
電器用素子10の他に、ブリッジ接続された磁気抵抗素
子の抵抗変化を検知するための差動増幅器4及びこの差
動増幅器の出力段に接続されるP−MOS及びN−N0
8の各トランジスタ 5−1゜5−2を備えている。な
お、差動増幅器に代えて直流増幅器を使用することもで
きる。電流供給部3は、各継電器内に含むことも、或い
は継電器外に設けて、多数の継電器に一括して電流を供
給するように接続することもできる。
In addition to the relay element 10 consisting of the magnetoresistive element set IA and the control coil 2 wound around it and connected to the control current terminal 21, the relay also includes a relay element 10 for detecting resistance changes of bridge-connected magnetoresistive elements. differential amplifier 4 and P-MOS and N-N0 connected to the output stage of this differential amplifier.
8 transistors 5-1 and 5-2. Note that a DC amplifier may be used instead of the differential amplifier. The current supply unit 3 can be included in each relay, or can be provided outside the relay and connected to supply current to a large number of relays at once.

図4は2図3に示された磁気抵抗素子組IAであるバー
バーポール形磁気抵抗素子の構成を示す平面略図である
。同図において、四個の各磁気抵抗素子1−1〜1−4
は外部端子11〜14を介してホイートストーンブリッ
ジとして接続されており。
FIG. 4 is a schematic plan view showing the structure of a barber pole magnetoresistive element which is the magnetoresistive element set IA shown in FIG. In the figure, each of four magnetoresistive elements 1-1 to 1-4
are connected as a Wheatstone bridge via external terminals 11-14.

導体パターンの形成方向を除いて互いに同じ形状を有す
る。この形式の磁気抵抗素子組IAは、特開昭84−2
2076号公報に記載されたものと同様な構成を有して
いる。各磁気抵抗素子t−i〜1−4は長い直線状の素
子部分7がつづら状に直列に接続されている。
They have the same shape except for the direction in which the conductor patterns are formed. This type of magnetoresistive element set IA was published in Japanese Patent Application Laid-Open No. 84-2
It has the same configuration as that described in the 2076 publication. Each of the magnetoresistive elements t-i to 1-4 has long linear element portions 7 connected in series in a spiral pattern.

図5は上記バーバーポール形磁気抵抗素子の直線状の素
子部分7の基本構成を略図的に示す各磁気抵抗素子1−
1〜1−4の部分拡大平面図であり。
FIG. 5 schematically shows the basic configuration of the linear element portion 7 of the barber pole type magnetoresistive element.
1 to 1-4 are partially enlarged plan views.

同図(a)は四つの内二つの磁気抵抗素子1−1及び1
−3の素子部分7の構成を、同図(b)は別の二つの磁
気抵抗素子1−2及び1−4の素子部分7の構成を、夫
々示す。同図において71は例えばパーマ10イ<N1
−Fe)から成る磁性薄膜を、 72.73は例えば金
(Au)から成る導体パターンを示し、導体パターンは
両端の電極部72と中央の帯状導体層73とがら成る。
Figure (a) shows two of the four magnetoresistive elements 1-1 and 1.
-3 shows the structure of the element portion 7, and FIG. 2B shows the structure of the element portion 7 of two other magnetoresistive elements 1-2 and 1-4. In the same figure, 71 is, for example, a perm 10 i < N1
-Fe), and 72.73 indicates a conductor pattern made of, for example, gold (Au), and the conductor pattern consists of electrode portions 72 at both ends and a strip-shaped conductor layer 73 in the center.

磁性薄膜71は図示M方向に一軸磁気異方性を与えられ
ると共に初期磁化されており、各導体パターン72.7
3は、この磁性膜71上に薄層として形成され、左右両
端の電極部分72を結ぶ線に対し45度で傾斜して所定
間隔で配列された多数の帯状導体層73とでバーバーポ
ール様のパターンに形成される。同図(a) (b)に
て示したように磁気抵抗素子1.−1 、 1−3と磁
気抵抗素子1−2. 1−4とは互いに90度異なる方
向に帯状導体層73が配されており、いずれの帯状導体
層の方向も初期磁化の方向M及び外部磁界Hexの方向
と45度方向又は135度方向である。この構成に従い
、各磁性薄膜71を流れる電流方向mは図示した方向、
即ち帯状導体層73の長軸と直角方向である。
The magnetic thin film 71 is given uniaxial magnetic anisotropy in the M direction shown in the figure and is initially magnetized, and each conductor pattern 72.7
3 is formed as a thin layer on this magnetic film 71, and has a barber pole-like structure with a large number of strip-shaped conductor layers 73 arranged at predetermined intervals and inclined at 45 degrees with respect to the line connecting the electrode portions 72 at both left and right ends. formed into a pattern. As shown in Figures (a) and (b), the magnetoresistive element 1. -1, 1-3 and magnetoresistive element 1-2. The strip-shaped conductor layers 73 are arranged in a direction 90 degrees different from that of 1-4, and the direction of each strip-shaped conductor layer is 45 degrees or 135 degrees with respect to the direction M of initial magnetization and the direction of the external magnetic field Hex. . According to this configuration, the current direction m flowing through each magnetic thin film 71 is the direction shown in the figure.
That is, the direction is perpendicular to the long axis of the strip-shaped conductor layer 73.

図6は各バーバーポール形磁気抵抗素子における抵抗変
化を示す作用説明図である。曲線(a)。
FIG. 6 is an explanatory diagram showing the resistance change in each barber pole magnetoresistive element. Curve (a).

(b)は夫々図5に示した磁気抵抗素子の素子部分の構
成説明図の(a) 、 (b)と対応して示しである。
(b) corresponds to (a) and (b) of the configuration explanatory diagram of the element portion of the magnetoresistive element shown in FIG. 5, respectively.

図6に示したように、外部磁界Hexの増加に伴って2
図5(a)の素子部分を有する磁気抵抗素子1−1. 
1−3は抵抗値が増大し2図5(b)の素子部分を有す
る磁気抵抗素子1−2. 1−4は抵抗値が減少する。
As shown in Fig. 6, as the external magnetic field Hex increases, 2
Magnetoresistive element 1-1 having the element portion shown in FIG. 5(a).
1-3 is a magnetoresistive element 1-2 with an increased resistance value and having the element portion shown in FIG. 5(b). 1-4, the resistance value decreases.

更に、外部磁界が反転する場合には抵抗変化は逆になり
1通常の磁気抵抗素子が磁界の正負方向に対して同じ抵
抗変化を起こすのとは異なる。このため、ホイートスト
ーンブリッジ回路として構成した実施例2の継電器の場
合(図3)。
Furthermore, when the external magnetic field is reversed, the resistance change is reversed, unlike a normal magnetoresistive element, which causes the same resistance change in the positive and negative directions of the magnetic field. Therefore, in the case of the relay of Example 2 configured as a Wheatstone bridge circuit (FIG. 3).

制御コイルの正負二方向の電流方向に従って発生する正
負の外部磁界に対応して異なる開閉信号を発生させるこ
とができる。なお1図6の(a′)曲線は、磁性薄膜7
1の初期磁化の方向に永久磁石によって磁気抵抗素子に
バイアス磁界を与えた場合の抵抗変化を示す特性図であ
る。この永久磁石のバイアス磁界を種々選定することに
より、特定回路の制御電流の大きさに適合させることが
できる。また、この永久磁石によるバイアス方法の場合
、磁界と抵抗変化との関係が、  (a’)曲線に示し
たようにリニアになるというメリットもある。
Different switching signals can be generated in response to positive and negative external magnetic fields generated according to the positive and negative current directions of the control coil. Note that the curve (a') in FIG.
1 is a characteristic diagram showing a resistance change when a bias magnetic field is applied to a magnetoresistive element by a permanent magnet in the direction of initial magnetization of FIG. By selecting various bias magnetic fields of the permanent magnets, it is possible to match the magnitude of the control current of a specific circuit. In addition, this bias method using a permanent magnet has the advantage that the relationship between the magnetic field and resistance change is linear as shown in curve (a').

永久磁石のバイアス方向を初期磁化の方向と逆方向にす
る二とも可能であるが、バイアス磁界が大きい場合には
感度が低下し、更に大きい場合には出力特性が逆転する
It is possible to make the bias direction of the permanent magnet opposite to the initial magnetization direction, but if the bias magnetic field is large, the sensitivity decreases, and if it is even larger, the output characteristics are reversed.

図7はバーバーポール形磁気抵抗素子の一般的な構造を
示すための断面図である。なお2同図では磁気抵抗素子
1の磁性薄膜の初期磁化に加えて、永久磁石1吋によっ
て図示の方向M。にバイアス磁界を与える例について示
しである。同図において、この磁気抵抗素子1は、永久
磁石101上にSt基板102を設け、該Si基板上に
、 StO□膜103、パーマロイの磁性薄膜104.
密着層105゜導体層106を順次積層すると共に所定
のパターンに形成し、更にその上から保護層107によ
って全体が覆われる。磁性薄膜104は1図示M方向に
一軸磁気異方性が与えられ、且つ初期磁化がなされてい
る。
FIG. 7 is a cross-sectional view showing the general structure of a barber pole magnetoresistive element. 2. In the figure, in addition to the initial magnetization of the magnetic thin film of the magnetoresistive element 1, a permanent magnet of 1 inch is used to magnetize the magnetic thin film in the direction M shown in the figure. An example of applying a bias magnetic field to is shown. In the figure, this magnetoresistive element 1 includes an St substrate 102 provided on a permanent magnet 101, an StO□ film 103, a permalloy magnetic thin film 104, and a permalloy magnetic thin film 104 on the Si substrate.
The adhesive layer 105 and the conductor layer 106 are sequentially laminated and formed into a predetermined pattern, and then the entire structure is covered with a protective layer 107 from above. The magnetic thin film 104 is given uniaxial magnetic anisotropy in the M direction in the drawing, and is initially magnetized.

次に図3の実施例の継電器の作用について説明する。制
御コイル2に対してコイル端子21からコイル電流が供
給されると、このコイル電流は。
Next, the operation of the relay of the embodiment shown in FIG. 3 will be explained. When a coil current is supplied to the control coil 2 from the coil terminal 21, this coil current is.

ホイートストーンブリッジとして接続されたバーバーポ
ール形磁気抵抗素子組IAに外部磁界Hexを与え、電
流供給手段3から電流供給を受けている各磁気抵抗素子
の内、磁気抵抗素子1−1. 1−3は抵抗値が増加し
、磁気抵抗素子1−2. 1−4は抵抗値が減少する。
An external magnetic field Hex is applied to the barber-pole magnetoresistive element set IA connected as a Wheatstone bridge, and of the magnetoresistive elements receiving current supply from the current supply means 3, magnetoresistive elements 1-1. 1-3 has an increased resistance value, and magnetoresistive elements 1-2. 1-4, the resistance value decreases.

この抵抗値変化により、ブリッジ回路は、その抵抗検出
端子12.13に不平衡電圧を出力する。抵抗変化検出
手段として成る差動アンプ4は抵抗変化信号を電子スイ
ッチ5−1. 5−2に与え、コイル電流の方向に対応
して電子スイッチ5−1. 5−2のいずれかが導通し
て各端子51−1゜51−2のいずれかに接続された所
定回路に通電が行われる。
Due to this resistance value change, the bridge circuit outputs an unbalanced voltage to its resistance detection terminal 12.13. A differential amplifier 4 serving as a resistance change detection means sends a resistance change signal to an electronic switch 5-1. 5-2, and corresponding to the direction of the coil current, electronic switches 5-1. When one of the terminals 5-2 becomes conductive, a predetermined circuit connected to one of the terminals 51-1 and 51-2 is energized.

図8は本発明の継電器用素子に使用される実施例3の磁
気抵抗素子IBの外形を示す斜視図である。同図におい
て、磁気抵抗素子IBはモールドされ、断面が略長方形
状の筒状(ボビン状)に形成されている。モールド部に
おけるつぼ18.17はこの間において磁気抵抗素子I
Bを巻回する制御コイル2を固定支持するために設けら
れている。
FIG. 8 is a perspective view showing the outer shape of the magnetoresistive element IB of Example 3 used in the relay element of the present invention. In the figure, the magnetoresistive element IB is molded to have a cylindrical shape (bobbin shape) with a substantially rectangular cross section. The pots 18 and 17 in the mold part are connected to the magnetoresistive element I between them.
It is provided to fixedly support the control coil 2 around which B is wound.

電流供給端子11.14及び抵抗変化検出端子12.1
3は、 SIP  <シングルやインライン壷パッケー
ジ)としてモールド部分から延長して配置されている。
Current supply terminal 11.14 and resistance change detection terminal 12.1
3 is placed extending from the mold part as a SIP <single or inline urn package).

上記各実施例においては磁気抵抗素子としてバーバーポ
ール形磁気抵抗素子を採用した本発明の好適な実施例に
ついて示した。磁気抵抗素子をバーバーポール形としな
い場合には、抵抗は単に外部磁界の絶対値のみに対応し
て変化するので。
In each of the above embodiments, preferred embodiments of the present invention have been shown in which a barber pole type magnetoresistive element is employed as the magnetoresistive element. If the magnetoresistive element is not of the barber pole type, the resistance simply changes in response to the absolute value of the external magnetic field.

制御コイルの電流の正負二方向に対応して異なる開閉信
号を出力することはできないが1通常の継電器の如き一
種類の開閉信号で足りる場合には採用できる。
Although it is not possible to output different switching signals corresponding to the positive and negative directions of the current in the control coil, it can be used in cases where one type of switching signal is sufficient, such as in a normal relay.

各実施例の継電器においては、磁気抵抗素子を備えたこ
とにより、磁気抵抗効果の感度に従って小型化、低消費
電力化が可能であり、また電子スイッチとの組合せによ
って継電器の長寿命化、早い応答速度が可能となり、高
周波数域における開閉制御に採用可能な継電器とするこ
とができる。
The relays of each example are equipped with a magnetoresistive element, which allows for downsizing and lower power consumption according to the sensitivity of the magnetoresistive effect, and in combination with an electronic switch, the relay can have a longer lifespan and faster response. This enables the relay to be used for switching control in high frequency ranges.

[発明の効果] 以上説明したように1本発明の継電器によると、従来の
継電器と異なり鉄心及び吸引片を使用しないので2小型
化及び低消費電力化が可能であり、更に機械的接点を使
用°しないため、長寿命化も可能となったので、高周波
数域で使用可能であり、小型、低消費電力で長寿命の継
電器を提供できる。
[Effects of the Invention] As explained above, 1) unlike conventional relays, the relay of the present invention does not use an iron core or a suction piece, so 2 it is possible to downsize and reduce power consumption, and it also uses mechanical contacts. Since the relay has a long life, it can be used in a high frequency range, and it is possible to provide a compact, low power consumption, long life relay.

また1本発明の継電器用素子の場合、可動部を有しない
構造のため、長寿命であると共に、モールド状に形成す
る場合には機械的衝撃にきわめて強い継電器用素子とす
ることができる。
Moreover, in the case of the relay element of the present invention, since it has a structure without a moving part, it has a long life and, when formed in a mold shape, can be made into a relay element that is extremely resistant to mechanical shock.

【図面の簡単な説明】[Brief explanation of drawings]

図1は本発明の原理図1図2は実施例1の継電器用素子
の斜視図1図3は実施例2の継電器の回路図1図4はバ
ーバーポール形磁気抵抗素子組の構成を示す平面略図1
図5はバーバーポール形磁気抵抗素子の素子部分の構成
説明図9図6はバーバーポール形磁気抵抗素子の作用説
明図1図7はバーバーポール形磁気抵抗素子の構造を示
す断面図1図8は実施例3の継電器用素子の磁気抵抗素
子の外観を示す斜視図である。 図1において、1は磁気抵抗素子、2は制御コイル、3
は電流供給部、4は抵抗変化検出手段。 5は電子スイッチ、10は継電器用素子である。 −へ 0L0 −へ 図7 /− △−−−−−−−。 図9 手続補正書(方式) %式%) 1 事件の表示 平成2年特許願第294695号 2 発明の名称 継電器及び継電器用素子 3 補正をする者 事件との関係  特許出願人 名称      (522)富士通株式会社4 代理人 住所 〒211神奈川県川崎市中原区上小田中1015
番地富士通株式会社内 電話(044)754−3035−テ・ −一7 補正
の内容
Fig. 1 is a diagram of the principle of the present invention Fig. 2 is a perspective view of a relay element of Embodiment 1 Fig. 3 is a circuit diagram of a relay of Embodiment 2 Fig. 4 is a plan view showing the configuration of a barber pole magnetoresistive element set Schematic diagram 1
Figure 5 is a diagram illustrating the structure of the element part of a barber pole type magnetic resistance element. Figure 6 is a diagram explaining the operation of a barber pole type magnetic resistance element. Figure 7 is a sectional view showing the structure of a barber pole type magnetic resistance element. Figure 8 is FIG. 7 is a perspective view showing the appearance of a magnetoresistive element of a relay element of Example 3. In FIG. 1, 1 is a magnetoresistive element, 2 is a control coil, and 3 is a magnetoresistive element.
4 is a current supply section, and 4 is a resistance change detection means. 5 is an electronic switch, and 10 is a relay element. -to 0L0 -to Figure 7 /- △---------. Figure 9 Procedural amendment (method) % formula %) 1 Display of the case 1990 Patent Application No. 294695 2 Name of the invention Relay and relay element 3 Person making the amendment Relationship to the case Name of patent applicant (522) Fujitsu Co., Ltd. 4 Agent Address 1015 Kamiodanaka, Nakahara-ku, Kawasaki City, Kanagawa Prefecture 211
Address: Fujitsu Limited Tel: (044) 754-3035-TE-17 Contents of amendment

Claims (1)

【特許請求の範囲】 1)作動のための電流を供給される磁気抵抗素子(1)
と、 該磁気抵抗素子(1)に巻回され外部端子から制御電流
を供給される制御コイル(2)と、 前記磁気抵抗素子(1)の抵抗変化を検知して抵抗変化
信号を出力する抵抗変化検知手段(4)と、前記抵抗変
化信号を受けて所定回路の開閉制御を行う電子スイッチ
(5)と を備える継電器。 2)前記磁気抵抗素子(1)がバーバーポール形磁気抵
抗素子であることを特徴とする請求項1記載の継電器。 3)前記磁気抵抗素子(1)が筒状にモールドされてい
ることを特徴とする請求項1又は2記載の継電器。 4)前記磁気抵抗素子(1)が永久磁石によってバイア
スされることを特徴とする請求項1〜3記載の継電器。 5)磁気抵抗素子(1)と、該磁気抵抗素子(1)に巻
回され制御電流端子(21)に接続される制御コイル(
2)とを備える継電器用素子。
[Claims] 1) Magnetoresistive element (1) supplied with current for operation
a control coil (2) wound around the magnetoresistive element (1) and supplied with a control current from an external terminal; and a resistor that detects a resistance change of the magnetoresistive element (1) and outputs a resistance change signal. A relay comprising a change detection means (4) and an electronic switch (5) that receives the resistance change signal and controls opening and closing of a predetermined circuit. 2) A relay according to claim 1, characterized in that the magnetoresistive element (1) is a barber pole type magnetoresistive element. 3) The relay according to claim 1 or 2, wherein the magnetoresistive element (1) is molded into a cylindrical shape. 4) Relay according to claims 1 to 3, characterized in that the magnetoresistive element (1) is biased by a permanent magnet. 5) A magnetoresistive element (1) and a control coil (
2) A relay element comprising:
JP29469590A 1990-10-31 1990-10-31 Relay and its element Pending JPH04169024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29469590A JPH04169024A (en) 1990-10-31 1990-10-31 Relay and its element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29469590A JPH04169024A (en) 1990-10-31 1990-10-31 Relay and its element

Publications (1)

Publication Number Publication Date
JPH04169024A true JPH04169024A (en) 1992-06-17

Family

ID=17811109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29469590A Pending JPH04169024A (en) 1990-10-31 1990-10-31 Relay and its element

Country Status (1)

Country Link
JP (1) JPH04169024A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022043788A (en) * 2020-09-04 2022-03-16 日本テクノ株式会社 Insulation status grasp and cutoff operation prediction device based on three-phase AC zero-phase current

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022043788A (en) * 2020-09-04 2022-03-16 日本テクノ株式会社 Insulation status grasp and cutoff operation prediction device based on three-phase AC zero-phase current

Similar Documents

Publication Publication Date Title
US5223789A (en) AC/DC current detecting method
US4309655A (en) Measuring transformer
JPH11505966A (en) Magnetic field sensor with bridge circuit of magnetoresistive bridge element
KR20020089317A (en) Thin-film magnetic field sensor
CA1144640A (en) Pulse generator using read head with wiegand wire
JP4904359B2 (en) Magnetic detector
JP2005529338A (en) Sensor and method for measuring the flow of charged particles
JPWO2008026327A1 (en) Magnetic detector
JPWO2008012959A1 (en) Magnetic sensor
JP4904358B2 (en) Magnetic detector
JPH07110345A (en) Demagnetizing method for zero flux control type current sensor
GB2088137A (en) Magnetomechanical converter
JPH04169024A (en) Relay and its element
JPH112647A (en) Direct current sensor and method for preventing flowing-out of direct current
CA2424472A1 (en) Transformer probe
JPH11101861A (en) Magneto-resistance effect type sensor
US20220068527A1 (en) Current controlling element based on saturation of a magnetic circuit
US4222020A (en) Control winding for a magnetic latching reed relay
US7800365B2 (en) Magnetic detection device and electrical product
JP4245006B2 (en) Magnetic sensor
JPH0687073B2 (en) Leakage detector
JPH10270775A (en) Magneto-resistance effect element and revolution sensor using the same
JP2001305163A (en) Current sensor
JP2514338B2 (en) Current detector
JPH04236381A (en) Relay device