JPH04167368A - Fuel cell generation system - Google Patents

Fuel cell generation system

Info

Publication number
JPH04167368A
JPH04167368A JP2291952A JP29195290A JPH04167368A JP H04167368 A JPH04167368 A JP H04167368A JP 2291952 A JP2291952 A JP 2291952A JP 29195290 A JP29195290 A JP 29195290A JP H04167368 A JPH04167368 A JP H04167368A
Authority
JP
Japan
Prior art keywords
air
fuel cell
combustion exhaust
exhaust gas
air electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2291952A
Other languages
Japanese (ja)
Inventor
Motohiro Takahashi
高橋 元洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2291952A priority Critical patent/JPH04167368A/en
Publication of JPH04167368A publication Critical patent/JPH04167368A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To eliminate adverse effects on the life of a fuel cell by supplying a combustion exhaust gas of low oxygen density to the inlet of an air electrode at a sudden decrease in loads so as to rapidly decrease the oxygen density of air at the air electrode and shorten an overvoltage state. CONSTITUTION:During the normal rated operation of a fuel cell generating system, a valve 12 is completely closed and a combustion exhaust gas supplied from a line 10 is wholey given to a cell container 4 and used for purging. During the partially loaded operation of the system, a voltmeter 18 judges the state of the system and a controller 20B actuates valves 9, 22, 23 in response to signals from the voltmeter 18, an output meter 19 and flow meters 8, 21 respectively and mixes air into the combustion exhaust gas and supplies it to an air electrode 3 to restrain an overvoltage state. If loads are suddenly decreased, the controller 20B initiates set values for the flow meters 8, 21 in response to an output command and opens the valve 22 and closes the valve 9 by means of advanced control to rapidly lower oxygen density in air at the air electrode 3 so as to lower cell voltage, thereby preventing the overvoltage state from continuing.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、燃料電池発電システムに係り、特に急激な負
荷減少に対して、燃料電池の過電圧域での運転時間を短
縮し、電池寿命への悪影響を可能な限り抑えるようにし
た燃料電池発電システムに関するものである。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention relates to a fuel cell power generation system, and particularly relates to a fuel cell power generation system that shortens the operating time of a fuel cell in an overvoltage region in response to a sudden load reduction. However, the present invention relates to a fuel cell power generation system in which the adverse effect on battery life is suppressed as much as possible.

(従来の技術) リン酸を電蝕質として用いる燃料電池では、主として白
金系の貴金属触媒が用いられる。この触媒は、燃料電池
電圧(以下、電池電圧という)が高い状態で粒子が凝集
し、性能劣化を起こすことが知られている。
(Prior Art) In fuel cells that use phosphoric acid as an electrolytic material, platinum-based noble metal catalysts are mainly used. It is known that particles of this catalyst aggregate when the fuel cell voltage (hereinafter referred to as cell voltage) is high, causing performance deterioration.

また、燃料電池の電流−電圧特性上、部分負荷運転時に
は電池電圧が高くなり、過電圧域に近つくことは避けら
れない。
Furthermore, due to the current-voltage characteristics of the fuel cell, during partial load operation, the cell voltage inevitably increases and approaches the overvoltage range.

そこで、このような問題に対して、部分負荷運転時に電
池電圧を許容範囲内に抑制する手段か、従来より種々提
案されてきた。
Therefore, in order to solve this problem, various methods have been proposed to suppress the battery voltage within an allowable range during partial load operation.

一般に、電池電圧は、運転温度、運転圧力、空見極での
酸素濃度、燃料極での水素濃度、利用率等により変化す
る。
In general, battery voltage changes depending on operating temperature, operating pressure, oxygen concentration at the sorami electrode, hydrogen concentration at the fuel electrode, utilization rate, etc.

これらの特性を利用して、部分負荷運転時に空気極出口
ガスの一部を空気極大口に戻し、酸素濃度を低下させ、
電池電圧を低下させる方法か従来最も効果的とされてお
り、現に実用例も多い。
Utilizing these characteristics, during partial load operation, a portion of the air electrode outlet gas is returned to the air outlet, reducing the oxygen concentration.
This method is considered to be the most effective method to lower the battery voltage, and there are many practical examples of this method.

第4図は、このような従来例を示したものであり、燃料
電池1は、燃料極2.空気極3およびそれらを収納する
電池容器4から構成されているものとする。燃料極2に
は、燃料供給装置5から制御弁6を介して一方の反応ガ
スである燃料が燃料供給ラインを通して供給される。空
気極3には、空気供給装置7から他方の反応ガスである
空気か流量計8と制御弁9を介して空気供給ラインを通
して供給される。
FIG. 4 shows such a conventional example, in which a fuel cell 1 includes a fuel electrode 2. It is assumed that the air electrode 3 is composed of an air electrode 3 and a battery container 4 that houses the air electrode 3. Fuel, which is one of the reaction gases, is supplied to the fuel electrode 2 from a fuel supply device 5 via a control valve 6 through a fuel supply line. Air, which is the other reaction gas, is supplied to the air electrode 3 from an air supply device 7 through an air supply line via a flow meter 8 and a control valve 9.

また、燃料電池1か加圧状態で運転される時は、通常燃
料極2.空気極3および電池容器4との間に、燃料極2
および空気極3の圧力より高い圧力の不活性ガスか封入
される。この不活性ガスには、多くの場合N2ガスが用
いられるが、燃料電池発電システムの大容量化に伴い、
N2ガスの節減手段として同システム内で発生する燃焼
排ガスか代用される。
Also, when the fuel cell 1 is operated under pressure, the fuel electrode 2. A fuel electrode 2 is placed between the air electrode 3 and the battery container 4.
Also, an inert gas having a pressure higher than that of the air electrode 3 is sealed. N2 gas is often used as this inert gas, but as the capacity of fuel cell power generation systems increases,
As a means of saving N2 gas, the combustion exhaust gas generated within the system is used instead.

一方、電池容器内に封入する不活性ガスには、燃料極か
らリークしたN2ガスが混入されるので、通常は電池容
器4の入口側から出口側へ向う流れを形成し、N2ガス
を排出するようにしている。
On the other hand, since the inert gas sealed in the battery container is mixed with N2 gas leaked from the fuel electrode, a flow is normally formed from the inlet side to the outlet side of the battery container 4, and the N2 gas is discharged. That's what I do.

燃焼排ガスは、通常燃料発電システムに設置される改質
器(図示しない)の燃焼排ガスもしくは補助燃焼器(図
示しない)または燃料処理系へ蒸気を供給するために用
いられることのあるボイラ(図示しない)の燃焼排ガス
等か対象となる。
The flue gas is normally used as the flue gas of a reformer (not shown) installed in a fuel power generation system or an auxiliary combustor (not shown) or a boiler (not shown) that may be used to supply steam to a fuel processing system. ) is applicable to combustion exhaust gas, etc.

このような燃焼排ガスは、燃焼排ガス取出しライン10
から供給されるが、高温のため熱交換器11で冷却され
、送風機12および燃焼排ガス供給ラインを介して電池
容器4に供給される。
Such combustion exhaust gas is transported through the combustion exhaust gas extraction line 10.
However, due to its high temperature, it is cooled by a heat exchanger 11 and supplied to the battery container 4 via a blower 12 and a combustion exhaust gas supply line.

このような構成の燃料電池発電システムにおいて、従来
は負荷減少時に燃料電池1の過電圧を抑制する手段とし
て、空気極3の出口ガスの一部を、空気極リサイクル送
風機13、流量計14および制御弁15を介して空気極
3の入口側に戻すリサイクルラインを設け、これにより
空気極3に供給される空気の酸素濃度を低下させるよう
にしていた。
In a fuel cell power generation system having such a configuration, conventionally, as a means for suppressing overvoltage of the fuel cell 1 when the load is reduced, a part of the outlet gas of the air electrode 3 is transferred to the air electrode recycling blower 13, the flow meter 14, and the control valve. A recycle line was provided to return the air to the inlet side of the air electrode 3 via the air electrode 15, thereby reducing the oxygen concentration of the air supplied to the air electrode 3.

なお、同図の符号16は、熱交換器11の出口側におけ
る燃焼排ガスの温度測定用温度計、符号17は、熱交換
器11の冷却水の出口側に設けられ、燃焼排ガスの温度
か許容範囲内となるように温度計16の信号で冷却水の
流量を制御する制御弁、符号18は、燃料電池1の電圧
を測定する電圧計、符号19は、燃料電池1の出力を測
定する出力計、符号2OAは、上記した流量計8および
14、電圧計18、電力計19等からの信号か入力され
、制御弁9および15を制御する制御装置である。
In addition, the reference numeral 16 in the same figure is a thermometer for measuring the temperature of the combustion exhaust gas on the outlet side of the heat exchanger 11, and the reference numeral 17 is provided on the outlet side of the cooling water of the heat exchanger 11, and a thermometer is provided to measure the temperature of the combustion exhaust gas on the outlet side of the heat exchanger 11. A control valve that controls the flow rate of cooling water according to the signal from the thermometer 16 so that the flow rate is within the range; 18 is a voltmeter that measures the voltage of the fuel cell 1; and 19 is an output that measures the output of the fuel cell 1. A meter 2OA is a control device that receives signals from the flowmeters 8 and 14, voltmeter 18, wattmeter 19, etc., and controls the control valves 9 and 15.

(発明が解決しようとする課題) 燃料電池の大容量化に伴い、燃料電池1の内容積も増大
している。そこで、上記した空気極3の出口ガスを空気
極3の入口に戻して酸素濃度を低下させる方法では、そ
のリサイクル流量をより増大させる必要があり、このリ
サイクルに必要な送風機容量を増大させなければならず
、また、酸素濃度が低下するのに非常に時間がかかり、
特に急激な負荷減少に対して、燃料電池1の過電圧状態
が長く継続し、燃料電池1に悪影響を与えるといった問
題があった。
(Problems to be Solved by the Invention) As the capacity of fuel cells increases, the internal volume of the fuel cell 1 also increases. Therefore, in the above-described method of returning the outlet gas of the air electrode 3 to the inlet of the air electrode 3 to reduce the oxygen concentration, it is necessary to further increase the recycling flow rate, and the blower capacity required for this recycling must be increased. In addition, it takes a very long time for the oxygen concentration to decrease,
In particular, there is a problem in that the overvoltage state of the fuel cell 1 continues for a long time in response to a sudden load reduction, which adversely affects the fuel cell 1.

そこで、本発明の目的は、燃料電池発電システムに急激
な負荷減少が発生した場合、燃料電池の過電圧状態を短
時間に抑え、燃料電池寿命への悪影響を小さくした燃料
電池発電システムを提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a fuel cell power generation system in which, when a sudden load decrease occurs in the fuel cell power generation system, the overvoltage state of the fuel cell is suppressed for a short period of time, and the adverse effect on the fuel cell life is reduced. It is in.

[発明の構成] (課題を解決するための手段) 本発明は、空気極と燃料極を有する燃料電池と、この燃
料電池の一方の反応ガスとなる原燃料を改質器で水素リ
ッチに改質したガスを燃料極に供給する燃料供給装置と
、他方の反応ガスとなる空気を空気極に供給する空気供
給装置と、改質器に付設した燃焼部を含む燃焼器を備え
た燃料電池発電システムにおいて、燃焼器の燃焼排ガス
の一部または全部を制御弁を介して空気供給装置と空気
極とを接続する空気供給ラインに合流させる燃焼排ガス
合流ラインを設け、部分負荷運転時または急激な負荷減
少時に、燃焼排ガスの空気極への供給流量を制御弁を介
して調節することにより燃料電池の電圧を所定の許容範
囲内に抑えるように制御する制御装置を設けたものであ
る。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides a fuel cell having an air electrode and a fuel electrode, and a reformer that converts raw fuel, which is a reaction gas for one of the fuel cells, into a hydrogen-rich one. A fuel cell power generation system equipped with a fuel supply device that supplies purified gas to the fuel electrode, an air supply device that supplies air that will become the other reaction gas to the air electrode, and a combustor that includes a combustion section attached to a reformer. In the system, a combustion exhaust gas merging line is provided to merge part or all of the combustion exhaust gas from the combustor into the air supply line that connects the air supply device and the air electrode via a control valve, and is used during partial load operation or when sudden loads are applied. A control device is provided that controls the voltage of the fuel cell to be within a predetermined allowable range by adjusting the flow rate of combustion exhaust gas supplied to the air electrode via a control valve when the fuel cell voltage decreases.

(作 用) 特に、急激な負荷減少時に、酸素濃度の低い燃焼排ガス
を速かに空気極の入口に供給することにより、空気極の
酸素濃度を急速に低下させることができる。これにより
、燃料電池の過電圧状態を可及的に短時間に抑え、燃料
電池寿命に与える悪影響を小さくすることができる。
(Function) In particular, when the load decreases rapidly, the oxygen concentration in the air electrode can be rapidly reduced by quickly supplying combustion exhaust gas with a low oxygen concentration to the inlet of the air electrode. Thereby, the overvoltage state of the fuel cell can be suppressed for as short a time as possible, and the adverse effect on the fuel cell life can be reduced.

(実施例) 以下、本発明の実施例を図面を参照して説明する。第1
図は、本発明の一実施例の構成図である。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. 1st
The figure is a configuration diagram of an embodiment of the present invention.

同図において、1は燃料電池、2は燃料極、3は空気極
、4は電池容器、5は燃料供給装置、6は制御弁、7は
空気供給装置、8は流量計、9は制御弁であり、上記し
た従来の構成と同しである。
In the figure, 1 is a fuel cell, 2 is a fuel electrode, 3 is an air electrode, 4 is a battery container, 5 is a fuel supply device, 6 is a control valve, 7 is an air supply device, 8 is a flow meter, and 9 is a control valve. This is the same as the conventional configuration described above.

また、上記した従来の構成と同様に燃料電池1か加圧状
態で運転される時は、燃料極2.空気極3および電池容
器4の間に、燃料極2および空気極3より高い圧力の不
活性カス(N2カス)が封入されるが、燃料電池発電シ
ステムの大容量化に伴い、N2ガスの節減手段として本
実施例でも同システム内で発生する燃焼排カスを代用す
る。
In addition, when the fuel cell 1 is operated in a pressurized state as in the conventional configuration described above, the fuel electrode 2. Inert gas (N2 gas) is sealed between the air electrode 3 and the battery container 4 at a pressure higher than that of the fuel electrode 2 and the air electrode 3, but as fuel cell power generation systems increase in capacity, N2 gas can be saved. In this embodiment as well, combustion waste generated within the same system is used as a means.

この燃焼排ガスとしては、本実施例でも上記した従来の
構成と同様に、燃料電池発電システムに設置される改質
器(図示しない)の燃焼排カスもしくは補助燃焼器(図
示しない)の燃焼排ガスまたは燃料電池冷却水系で用い
られることのあるボイラ(図示しない)の燃焼排ガス等
を対象とする。
In this embodiment, as in the conventional configuration described above, the combustion exhaust gas may be the combustion exhaust gas from the reformer (not shown) installed in the fuel cell power generation system or the combustion exhaust gas from the auxiliary combustor (not shown). The target is combustion exhaust gas from boilers (not shown) that are sometimes used in fuel cell cooling water systems.

この燃焼排ガスは、上記した従来の構成と同様に燃焼排
ガス取出しライン10から供給され、熱交換器11で許
容温度範囲内に冷却された後送風機12に入る。送風機
12を出た燃焼排ガスは、流量計21゜制御弁22を介
し空気供給ラインの制御弁9と空気極3の入口きの間て
合流する燃焼排ガス合流ラインと、燃焼排ガス供給、ラ
インに分岐する。
This combustion exhaust gas is supplied from the combustion exhaust gas take-off line 10 in the same manner as in the conventional configuration described above, is cooled to within an allowable temperature range by a heat exchanger 11, and then enters the blower 12. The combustion exhaust gas that has exited the blower 12 is branched into a combustion exhaust gas merging line, which joins between the control valve 9 of the air supply line and the inlet of the air electrode 3 via a flow meter 21 and a control valve 22, and a combustion exhaust gas supply line. do.

この燃焼排ガス合流ラインには、流量計21および制御
弁22か設けられ、燃焼排ガスを空気に混入して空気極
3の入口に供給する。また、電池容器4に供給する燃焼
排ガスラインには、制御弁23か設けられ、上記した制
御弁22と相互関係をもって制御される。
A flow meter 21 and a control valve 22 are provided in this combustion exhaust gas confluence line, and the combustion exhaust gas is mixed with air and supplied to the inlet of the air electrode 3. Further, a control valve 23 is provided in the combustion exhaust gas line that supplies the battery container 4, and is controlled in a mutual relationship with the control valve 22 described above.

なお、符号20Bは、流量計8および2+、電圧計18
、電力計19等から信号が入力され、制御弁9゜22お
よび23を制御する制御装置である。
Note that the code 20B indicates the flowmeters 8 and 2+, and the voltmeter 18.
, a wattmeter 19, etc., and controls the control valves 9, 22 and 23.

次に、以上のように構成された実施例の作用を説明する
Next, the operation of the embodiment configured as above will be explained.

通常の定格運転時には、制御弁22は全閉にされ、燃焼
排ガス取出しライン10から供給された燃焼排ガスは全
て電池容器4に供給され、パージ用となる。
During normal rated operation, the control valve 22 is fully closed, and all the combustion exhaust gas supplied from the combustion exhaust gas extraction line 10 is supplied to the battery container 4 for purging.

また、部分負荷運転時には、電圧計18の測定値から過
電圧状態か否かを判断し、電圧計18.出力計19.流
量計8および21等からの信号を入力した制御装置20
Bで制御弁9.22.23を動作させ、燃料電池1の過
電圧状態を抑えるように、燃焼排ガスを空気に混入させ
て空気極3に供給する。
Also, during partial load operation, it is determined whether or not there is an overvoltage state from the measured value of the voltmeter 18, and the voltmeter 18. Output meter 19. A control device 20 into which signals from flow meters 8 and 21 etc. are input.
At B, the control valves 9, 22, and 23 are operated, and the combustion exhaust gas is mixed with air and supplied to the air electrode 3 so as to suppress the overvoltage state of the fuel cell 1.

さらに、急激な負荷減少か発生した時には、出力指令か
ら制御装置20Bで流量計8および2Iの設定値を作成
し、先行制御により制御弁22は開方向、制御弁9は閉
方向にそれぞれ動作させる。これにより、急激な負荷減
少に対しては、空気極3ての空気中の酸素濃度を急速に
低下させることができ、これに伴って電池電圧を低下さ
せ過電圧状態か継続するのを防止することかできる。
Furthermore, when a sudden load decrease occurs, the control device 20B creates set values for the flowmeters 8 and 2I based on the output command, and uses advance control to operate the control valve 22 in the opening direction and the control valve 9 in the closing direction. . As a result, in response to a sudden load reduction, the oxygen concentration in the air at the air electrode 3 can be rapidly reduced, and the battery voltage is accordingly reduced to prevent the overvoltage state from continuing. I can do it.

したがって、以上のように構成することにより、急激な
負荷減少に対し、電池運転状態を安定な電流−電圧領域
に早急に移行させることが可能となり、電池寿命に悪影
響を与えないようにすることができる。
Therefore, by configuring as described above, it is possible to quickly shift the battery operating state to a stable current-voltage region in response to a sudden load decrease, and it is possible to prevent the battery life from being adversely affected. can.

なお、本発明は、上記した実施例(以下、第1の実施例
という)に限定されるものではなく、種々変形実施でき
る。
Note that the present invention is not limited to the above-described embodiment (hereinafter referred to as the first embodiment), and can be implemented in various modifications.

第2図は、本発明の他の実施例を示す構成図である。こ
の実施例の特徴は、電池容器4から空気極3の入口側に
燃焼排ガスを供給するようにしたことである。すなわち
、燃焼排ガスを電池容器4のパージガスとして用いるこ
とは、上記した第1の実施例と同様であるか、電池容器
4と空気供給ラインの制御弁9の下流側との間に、電池
容器4からの燃焼排ガスを合流させる燃焼排ガス合流ラ
インを設け、この燃焼排ガス合流ラインに流量計21と
制御弁22を設けて上記した第1の実施例と同様に制御
する。なお、上記した第1の実施例と重複する構成は、
説明を省略する。
FIG. 2 is a configuration diagram showing another embodiment of the present invention. A feature of this embodiment is that combustion exhaust gas is supplied from the battery container 4 to the inlet side of the air electrode 3. That is, using the combustion exhaust gas as a purge gas for the battery container 4 is the same as in the first embodiment described above, or the battery container 4 is used between the battery container 4 and the downstream side of the control valve 9 of the air supply line. A combustion exhaust gas merging line for merging the combustion exhaust gases from the combustion exhaust gases is provided, and a flow meter 21 and a control valve 22 are provided in this combustion exhaust gas merging line to perform control in the same manner as in the first embodiment described above. Note that the configuration that overlaps with the first embodiment described above is
The explanation will be omitted.

第3図は、本発明のさらに異なる他の実施例を示す構成
図である。この実施例は、燃焼排ガスを、改質器燃焼部
23の下流に設置された補助燃焼器24とタービン25
との間から取出して燃焼排ガス取出ライン10に供給し
、熱交換器11.送風機12および制御弁22を介して
空気供給ラインの制御弁9の下流側で空気供給ラインに
合流させ、上記した第1の実施例と略同様に制御する。
FIG. 3 is a configuration diagram showing still another embodiment of the present invention. In this embodiment, the combustion exhaust gas is transferred to an auxiliary combustor 24 installed downstream of the reformer combustion section 23 and a turbine 25.
The combustion exhaust gas is taken out from between the heat exchanger 11. and supplied to the combustion exhaust gas extraction line 10. The air supply line joins the air supply line via the blower 12 and the control valve 22 on the downstream side of the control valve 9, and is controlled in substantially the same manner as in the first embodiment described above.

なお、電池容器4のパージガスとしては、従来と同様の
N2ガスまたは上記した実施例と同様の燃焼排ガスの何
れを用いるようにしてもよい。
Note that as the purge gas for the battery container 4, either N2 gas as in the conventional case or combustion exhaust gas as in the above embodiment may be used.

その他、燃焼器の出口ラインから分岐し、圧縮機を介し
て燃焼排ガスの一部を圧縮貯蔵しておく装置を設け、こ
の装置から制御弁(上記した制御弁22と同じ作用をす
る)を介して空気ラインの空気に混入させるようにして
もよい。
In addition, a device is provided that branches off from the outlet line of the combustor and compresses and stores a portion of the combustion exhaust gas via a compressor, and from this device via a control valve (which has the same function as the control valve 22 described above). It may also be mixed into the air in the air line.

[発明の効果] 以上説明したように本発明によれば、急激な負荷減少が
発生した場合、速かに空気の供給を減少させると共に燃
焼排ガスを混入し、空気極での酸素濃度を減少させるよ
うにしているので、燃料電池過電圧域での運転時間を可
及的短時間とし、燃料電池寿命への悪影響を小さくした
燃料電池発電システムを提供することができる。
[Effects of the Invention] As explained above, according to the present invention, when a sudden load decrease occurs, the air supply is quickly reduced and combustion exhaust gas is mixed in to reduce the oxygen concentration at the air electrode. Therefore, it is possible to provide a fuel cell power generation system in which the operating time in the fuel cell overvoltage region is made as short as possible, and the adverse effect on the fuel cell life is reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成図、第2図は本発
明の他の実施例を示す構成図、第3図は本発明のさらに
異なる他の実施例を示す構成図、第4図は従来の燃料電
池発電システムを示す構成図である。 1・・・燃料電池       2・・・燃料極3・・
・空気極        4・・・電池容器5・・・燃
料供給装置     7・・・空気供給装置9、22.
23・・・制御弁 10・・・燃焼排ガス取出しライン 11・・・冷却器        12・・・送風機1
8・・・電圧計        19・・・出力計20
B・・・制御装置 (7317)代理人 弁理士 側近 憲佑第1図 第2図 第3図
FIG. 1 is a block diagram showing one embodiment of the present invention, FIG. 2 is a block diagram showing another embodiment of the present invention, and FIG. 3 is a block diagram showing yet another embodiment of the present invention. FIG. 4 is a configuration diagram showing a conventional fuel cell power generation system. 1...Fuel cell 2...Fuel electrode 3...
- Air electrode 4...Battery container 5...Fuel supply device 7...Air supply device 9, 22.
23...Control valve 10...Combustion exhaust gas extraction line 11...Cooler 12...Blower 1
8...Voltmeter 19...Output meter 20
B...Control device (7317) Agent Patent attorney Aide Kensuke Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 空気極と燃料極を有する燃料電池と、この燃料電池の一
方の反応ガスとなる原燃料を改質器で水素リッチに改質
したガスを前記燃料極に供給する燃料供給装置と、他方
の反応ガスとなる空気を前記空気極に供給する空気供給
装置と、前記改質器に付設した燃焼部を含む燃焼器を備
えた燃料電池発電システムにおいて、前記燃焼器の燃焼
排ガスの一部または全部を制御弁を介して前記空気供給
装置と前記空気極とを接続する空気供給ラインに合流さ
せる燃焼排ガス合流ラインを設け、部分負荷運転時また
は急激な負荷減少時に、前記燃焼排ガスの前記空気極へ
の供給流量を前記制御弁を介して調節することにより前
記燃料電池の電圧を所定の許容範囲内に抑えるように制
御する制御装置を設けたことを特徴とする燃料電池発電
システム。
A fuel cell having an air electrode and a fuel electrode, a fuel supply device for supplying, to the fuel electrode, gas obtained by reforming the raw fuel, which is a reaction gas for one of the fuel cells, into a hydrogen-rich gas in a reformer, and a reaction gas for the other one of the fuel cells. In a fuel cell power generation system comprising an air supply device that supplies air to become a gas to the air electrode, and a combustor including a combustion section attached to the reformer, part or all of the combustion exhaust gas of the combustor is A combustion exhaust gas merging line is provided that joins the air supply line connecting the air supply device and the air electrode via a control valve, and the combustion exhaust gas is connected to the air electrode during partial load operation or when the load decreases rapidly. A fuel cell power generation system comprising: a control device that controls the voltage of the fuel cell to be within a predetermined allowable range by adjusting the supply flow rate via the control valve.
JP2291952A 1990-10-31 1990-10-31 Fuel cell generation system Pending JPH04167368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2291952A JPH04167368A (en) 1990-10-31 1990-10-31 Fuel cell generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2291952A JPH04167368A (en) 1990-10-31 1990-10-31 Fuel cell generation system

Publications (1)

Publication Number Publication Date
JPH04167368A true JPH04167368A (en) 1992-06-15

Family

ID=17775589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2291952A Pending JPH04167368A (en) 1990-10-31 1990-10-31 Fuel cell generation system

Country Status (1)

Country Link
JP (1) JPH04167368A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100361337C (en) * 2004-10-22 2008-01-09 上海神力科技有限公司 Fuel cell capable of rapid response under output power abrupt intensification state
JP2009193885A (en) * 2008-02-15 2009-08-27 Toyota Motor Corp Fuel cell system and control method for the fuel cell system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100361337C (en) * 2004-10-22 2008-01-09 上海神力科技有限公司 Fuel cell capable of rapid response under output power abrupt intensification state
JP2009193885A (en) * 2008-02-15 2009-08-27 Toyota Motor Corp Fuel cell system and control method for the fuel cell system

Similar Documents

Publication Publication Date Title
US6959249B2 (en) Load following algorithm for a fuel cell based system
WO2004045004A2 (en) Fuel cell system and related method
CN108963301B (en) Method for cold starting proton exchange membrane fuel cell and fuel cell power generation system
EP1635414A1 (en) Fuel cell system
EP3333952B1 (en) Fuel cell system and method of operating fuel cell system
JPH04167368A (en) Fuel cell generation system
JPS6260791B2 (en)
US20040146762A1 (en) Reactant supply for a fuel cell power system
JPH0354433B2 (en)
JPH0714595A (en) Operating method of power generating device of fuel cell type
JPS62234871A (en) Fuel cell power generating plant
JPS6318307B2 (en)
JPH06188016A (en) Fuel battery power generation plant
JPH079812B2 (en) Fuel cell
JP2714236B2 (en) Fuel cell power plant
JPH0644995A (en) Fuel cell generating device
JP2615790B2 (en) Phosphoric acid fuel cell power generation system
JPH0824054B2 (en) Fuel cell power plant and control method thereof
JPS622461A (en) Recirculation device for fuel line of fuel cell power generation system
JPH01176667A (en) Fuel cell power generating system
JPS58166669A (en) Fuel cell
JPS6340269A (en) Cooling line control device of fuel cell power generating plant
JP2575529B2 (en) Fuel cell
JPH03266367A (en) Fuel system control unit of fuel cell system
JP2567122B2 (en) Fuel cell power generation system