JPH04167363A - Nickel electrode and metal hydride electrode and manufacture of battery using them - Google Patents

Nickel electrode and metal hydride electrode and manufacture of battery using them

Info

Publication number
JPH04167363A
JPH04167363A JP2292566A JP29256690A JPH04167363A JP H04167363 A JPH04167363 A JP H04167363A JP 2292566 A JP2292566 A JP 2292566A JP 29256690 A JP29256690 A JP 29256690A JP H04167363 A JPH04167363 A JP H04167363A
Authority
JP
Japan
Prior art keywords
electrode
nickel
powder
alloy
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2292566A
Other languages
Japanese (ja)
Inventor
Hiroyuki Mori
宏之 森
Keiichi Hasegawa
圭一 長谷川
Masaharu Watada
正治 綿田
Masahiko Oshitani
政彦 押谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP2292566A priority Critical patent/JPH04167363A/en
Priority to CA002095036A priority patent/CA2095036C/en
Priority to PCT/JP1991/001445 priority patent/WO1992008251A1/en
Priority to EP91917825A priority patent/EP0557522B1/en
Priority to DK91917825.1T priority patent/DK0557522T3/en
Priority to US08/050,025 priority patent/US5393616A/en
Priority to DE69117068T priority patent/DE69117068T2/en
Publication of JPH04167363A publication Critical patent/JPH04167363A/en
Priority to US08/370,987 priority patent/US5506070A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a pollution-free storage battery of high energy density by combining a hydrogen storage alloy electrode excellent in charge and discharge performance and an Ni electrode of high density that does not contain Cd. CONSTITUTION:Powder of an MmNi5 alloy the Ni of which is partially substituted by Al and one or two kinds of elements selected among Mn, Fe, Co and Cu is mixed with CO powder of 3 to 20wt.% and the mixture is packed in an alkali-resistant porous base to form a hydrogen storage alloy electrode. Powder of Co monoxide is mixed by 5 to 15wt.% in an active material obtained by dissolution of Zn by 2 to 8wt.% in spherical Ni monoxide powder of internal porous capacity 0.14ml/cc or less and the mixture is converted into a paste by addition of water and then packed in the alkali-resistant metal porous base and dry pressed to form an Ni electrode. Both of the electrodes are wound via a separator and a KOH water solution is injected therein and the electrodes are sealed and left for more than five hours and then initial charging is performed. By this constitution a high-capacity, pollution-free, totally Cd-free storage battery is obtained.

Description

【発明の詳細な説明】 (産業−1−の利用分野) 本発明は、負極として水素吸蔵合金電極を、正極として
水酸化ニッケル電極を用いたニッケル・水素化物蓄電池
の電極およびその電池の製造法に関するものである。
Detailed Description of the Invention (Field of Application in Industry-1-) The present invention provides an electrode for a nickel hydride storage battery using a hydrogen storage alloy electrode as a negative electrode and a nickel hydroxide electrode as a positive electrode, and a method for manufacturing the battery. It is related to.

(従来の技術) ポータプルエレクトロニクス機器の進展と共に、その電
源である蓄電池に対して、更なる高容量化や高エネルギ
ー密度化が求められて来ている。最近、このような要求
に答える蓄電池として、負極に水素吸蔵合金電極を正極
にニッケル電極を用いたニンケル・金属水素化物蓄電池
、いわゆる“ニッケル水素電池”が出現し、その実用化
が期待されている。
(Prior Art) As portable electronic devices progress, storage batteries that serve as their power sources are required to have even higher capacity and higher energy density. Recently, as a storage battery that meets these demands, a nickel metal hydride storage battery (nickel-metal hydride battery), which uses a hydrogen storage alloy electrode for the negative electrode and a nickel electrode for the positive electrode, has appeared, and its practical use is expected. .

高容訃のニッケル水素電池を実現するには、電極である
水酸化ニッケル電極の高エネルギー密度化か要求される
。従来、ニッケル電極の主流は焼結式極板であり、その
エネルギー密度は400 m A h / c cか限
界てあり、それ以上の高容沿化は困難であった。近年、
高多孔度の金属多孔体基析に活物質である水酸化ニッケ
ル粉末を充填するペースト式ニッケル電極なるものが開
発され、そのエネルギー密度は500mAh/c c前
後まて向上されて来ている。
To realize a high-capacity nickel-metal hydride battery, it is necessary to increase the energy density of the nickel hydroxide electrode. Conventionally, the mainstream of nickel electrodes has been sintered plates, whose energy density has been limited to 400 mA h/cc, and it has been difficult to achieve higher elongation. recent years,
A paste-type nickel electrode, in which a highly porous metal substrate is filled with nickel hydroxide powder as an active material, has been developed, and its energy density has been improved to around 500 mAh/cc.

しかし、従来のペースト式ニッケル電極には、電池の短
絡や寿命低下の原因となる電極膨潤を防止するため、活
物質である水酸化ニッケル粉末に少量のカドミウムを添
加することが不可欠であるが、環境問題に絡みカドミウ
ムを全く含有しないニッケル水素電池の実現が望まれて
いる、。また、従来の水酸化ニッケル粉末は、粒子内部
に多数の細孔を持つ多孔性物質であり、より高密度に充
填する見地より、改良されねばならない課題を有してい
る。
However, in conventional paste-type nickel electrodes, it is essential to add a small amount of cadmium to the nickel hydroxide powder, which is the active material, in order to prevent electrode swelling that causes short circuits and shortened battery life. Due to environmental concerns, there is a desire to develop nickel-metal hydride batteries that do not contain any cadmium. Further, conventional nickel hydroxide powder is a porous material with many pores inside the particle, and has a problem that must be improved from the standpoint of packing it more densely.

一ツノ、水素吸蔵合金電極に関しては、MIoNis系
の水素吸蔵合金(カドミウムを含有しない)を用いた負
極か実用化されて来ている。この電極のアルカリ電解溶
液中での充放電反応は、また不明Iよ点もあるか、一般
には(1)式のような反応機構と考えられている。
Regarding hydrogen storage alloy electrodes, negative electrodes using MIoNis-based hydrogen storage alloys (which do not contain cadmium) have been put into practical use. The charging/discharging reaction of this electrode in an alkaline electrolytic solution is generally thought to have a reaction mechanism as shown in equation (1), although there are still some unknown points.

充電 M+H20+e   :  MH+OH−(1)′ 放
電 (M : M+aNis系合金) すなわち、充電時には、合金表面上で、外部から電子の
供給を受けてプロトンが水素原子に還元され、水素吸蔵
合金中に吸蔵される。放電時には、吸蔵された水素原子
が合金表面上でイオン化されて、プロトンが放出される
。このように、水素吸蔵合金電極の充放電反応では、水
素原子のイオン化反応(あるいは逆反応)が起こる合金
表面か、重要な役割を担っている。
Charge M+H20+e: MH+OH-(1)' Discharge (M: M+aNis alloy) In other words, during charging, protons are reduced to hydrogen atoms on the alloy surface by receiving electrons from the outside, and are occluded in the hydrogen storage alloy. Ru. During discharge, occluded hydrogen atoms are ionized on the alloy surface and protons are released. Thus, in the charging and discharging reactions of hydrogen storage alloy electrodes, the alloy surface, where the ionization reaction (or reverse reaction) of hydrogen atoms occurs, plays an important role.

しかし、MfflNis系の水素吸蔵合金は、アルカリ
電解液中で充放電か繰り返された場合、合金の表面腐食
か進行して、1−記の水素原子のイオン化反応の111
1害や合金粒子間の抵抗増大(電子導電性の低下)等を
生し、次第に容量劣化して寿命に至るという問題を有し
ている。
However, when MfflNis-based hydrogen storage alloys are repeatedly charged and discharged in an alkaline electrolyte, surface corrosion of the alloy progresses, resulting in the hydrogen atom ionization reaction described in 1-1.
This causes problems such as increased resistance between alloy particles (decreased electronic conductivity), etc., and the capacity gradually deteriorates until the end of its life.

従来、これら水素吸蔵合金の腐食による劣化を防止する
ために、MmNi5合金の組成すなわちそのNiの一部
を他の元素で置換して合金自体の耐食性を改良する方法
、高温アルカリ水溶液中で合金をエツチングして、ニッ
ケルリ・ソチにさせる方法、あるいは、ニッケルや銅で
合金表面を被覆する、いわゆるマイクロカプセル化と称
する方法等か行われている。これらは、すべて、合金表
面を耐食性のニッケルや銅で被覆して腐食を防止するも
のである。
Conventionally, in order to prevent the deterioration of these hydrogen storage alloys due to corrosion, methods have been developed to improve the corrosion resistance of the alloy itself by replacing part of the Ni in the MmNi5 alloy with other elements, and to improve the corrosion resistance of the alloy itself by replacing part of the Ni in the MmNi5 alloy with other elements. Methods such as etching and nickel lithography, or so-called microencapsulation, in which the surface of the alloy is coated with nickel or copper, are used. All of these are coated with corrosion-resistant nickel or copper on the alloy surface to prevent corrosion.

しかしながら、これら方法は、合金劣化防止において、
そりなりに効果があるものの、アルカリ・エツチングあ
るいは無電解めっきと言った繁雑な工程を必要とし、製
造コストの上昇を招いている。
However, these methods cannot prevent alloy deterioration.
Although it is somewhat effective, it requires complicated processes such as alkaline etching or electroless plating, which increases manufacturing costs.

(発明が解決しようとする課題) 上記のように、従来のペースト式ニッケル電極(カドミ
ウム含有)と水素吸蔵合金電極を用いたニッケル水素電
池は、カドミウムを含まない完全無公賓電池とすること
ができず、且つ、その製造法が繁雑なため製造コストの
高価な電池と成り、且つ、粒子内部細孔の多い水酸化ニ
ッケル粉末を正極活物質として用いる限りにおいては、
電池容量も従来の焼結式電池の25%増加程度しかなら
ないという問題点を有している。
(Problems to be Solved by the Invention) As mentioned above, a nickel-metal hydride battery using a conventional paste-type nickel electrode (containing cadmium) and a hydrogen storage alloy electrode cannot be made into a completely state-free battery that does not contain cadmium. However, as long as nickel hydroxide powder with many internal pores is used as the positive electrode active material, the manufacturing method is complicated, resulting in an expensive battery.
The problem is that the battery capacity is only about 25% higher than that of conventional sintered batteries.

本発明は、上記の種々の問題点を解決するものて、製造
]工程が簡単で、且つ、充放電性能の≧優れた水素吸蔵
合金電極およびカドミウムを含ノ Hしない高エネルギー密度のニッケル電極との組み合わ
せにより、完全無公害かつ高エネルギー密度のニッケル
・金属水素化物蓄電池にニッケル水素電池)を提供する
ものである。
The present invention solves the various problems described above, and provides a hydrogen storage alloy electrode with a simple manufacturing process and excellent charge/discharge performance, and a high energy density nickel electrode that does not contain cadmium or hydrogen. This combination provides a completely pollution-free, high-energy-density nickel-metal hydride storage battery (nickel-metal hydride battery).

(課題を解決するための手段) 本発明は、M+nNl5合金のNiの一部をAlとOn
(Means for Solving the Problems) The present invention provides a method for replacing a part of Ni in an M+nNl5 alloy with Al and On.
.

Fe、Co、Cuの1種もしくは2種以上で置換した水
素吸蔵合金粉末と3〜20重量%の金属コバルト粉末を
混合して、耐アルカリ性金属多孔体基板に充填した水素
吸蔵合金電極と、内部細孔容積か0.14mI/cc以
下の球状を呈した水酸化ニッケル粉末の結晶に2〜8重
量%の亜鉛を固溶させた活物質に、一酸化コバルト粉末
を5〜15重M%混合し、これに水を加えてペースト状
にして、耐アルカリ性金属多孔体基板に充填して乾燥プ
レス後作成されたニッケル電極とをセパレータを介して
捲回し、水酸化カリウム水溶液を注液後密閉化し、5時
間以上放置し、しかる後初充電を行うことを特徴とする
ニッケル・金属水素化物蓄電池である。
A hydrogen storage alloy electrode is prepared by filling an alkali-resistant metal porous substrate with a mixture of hydrogen storage alloy powder substituted with one or more of Fe, Co, and Cu and 3 to 20% by weight of metallic cobalt powder; 5 to 15 weight percent of cobalt monoxide powder is mixed with an active material in which 2 to 8 weight percent of zinc is dissolved in spherical nickel hydroxide powder crystals with a pore volume of 0.14 mI/cc or less. Then, add water to make a paste, fill it into an alkali-resistant porous metal substrate, dry press it, then wrap it with the created nickel electrode through a separator, and after injecting an aqueous potassium hydroxide solution, seal it. This is a nickel/metal hydride storage battery characterized by being left alone for 5 hours or more and then being charged for the first time.

(作 用) 水素吸蔵合金負極の劣化は、合金表面に析出した腐食生
成物、例えば、La(OH)3のごとき導電性のない物
質によって、合金粒子間の電子移動が不可能になるため
であるが、金属コバルト粉末によって、充放電の繰り返
しに伴い、水素吸蔵合金粒子間や合金と集電体間の電子
導電性か保たれるために、容量低下が抑制され、[tつ
、前記(1)式の反応過電圧を小さくする作用もHする
ため、充放電性能の優れた長寿命の水素吸蔵合金電極を
可能とする。
(Function) Deterioration of the hydrogen storage alloy negative electrode is caused by corrosion products deposited on the alloy surface, such as non-conductive substances such as La(OH)3, which make electron transfer between alloy particles impossible. However, as the metal cobalt powder maintains the electronic conductivity between the hydrogen storage alloy particles and between the alloy and the current collector through repeated charging and discharging, capacity reduction is suppressed, and the Since the effect of reducing the reaction overvoltage in equation 1) is also H, it is possible to provide a hydrogen storage alloy electrode with excellent charging and discharging performance and long life.

また、正極活物質として、従来粉末よりも内部容積の発
達を抑制した球状の高密度の水酸化ニッケル粉末を用い
て活物質の充1f4密度を高め、且つ、一酸化コバルト
粉末の混合により活物質利用率を95%以上とすること
によって、550−600mAh/ccの高エネルギー
密度の製造法の容易で簡単なニッケル電極か可能となる
。また、水酸化ニッケル粉末の結晶に固溶させた亜鉛は
、従来のカドミウムと同様に、ニッケル電極の膨潤を防
止する作用を有しており、その効果の持続性の点てはカ
ドミウムよりも優れている。
In addition, as the positive electrode active material, we use spherical high-density nickel hydroxide powder, which suppresses the development of internal volume compared to conventional powders, to increase the active material's 1f4 density, and by mixing cobalt monoxide powder, the active material By setting the utilization rate to 95% or more, it is possible to easily manufacture a nickel electrode with a high energy density of 550-600 mAh/cc. In addition, zinc dissolved in the crystals of nickel hydroxide powder has the same effect as conventional cadmium to prevent swelling of nickel electrodes, and its effect is more durable than cadmium. ing.

これら電極を負極と正極に用いることによって、従来よ
りも高容量であり、且つ、カドミウムを全く含有しない
完全無公害のニッケル・金属水素化物蓄電池を得ること
か可能となる。
By using these electrodes for the negative and positive electrodes, it is possible to obtain a completely pollution-free nickel metal hydride storage battery that has a higher capacity than conventional batteries and does not contain any cadmium.

(実施例) 以下、本発明を実施例により詳細に説明する。(Example) Hereinafter, the present invention will be explained in detail with reference to Examples.

[実施例1] 水素吸蔵合金とその電極は、以下の方法で作成した。[Example 1] The hydrogen storage alloy and its electrode were created by the following method.

希土類元素の混合物であるミツシュメタルM+a(主成
分Ce:50mff1%、 La: 28重量%、 N
d: 16Im 96 )とAI、Fe、Cuの各成分
元素を、高周波溶解炉で溶解し、MmNjs;s Al
G、5 Feo7Cuo、+の組成比の水素吸蔵合金を
作成した。この合金をアルゴン雰囲気で熱処理した後、
200メツシユ以下に粉砕し、水素吸蔵合金粉末を得た
Mitshu Metal M+a, which is a mixture of rare earth elements (main components Ce: 50mff1%, La: 28% by weight, N
d: 16Im 96 ) and each component element of AI, Fe, and Cu are melted in a high frequency melting furnace to obtain MmNjs;s Al
A hydrogen storage alloy with a composition ratio of G, 5 Feo7Cuo, + was created. After heat treating this alloy in an argon atmosphere,
The powder was pulverized to 200 mesh or less to obtain a hydrogen storage alloy powder.

この水素吸蔵合金粉末100重量部に10重量部の金属
コバルト粉末(平均粒径1〜15μm)を添加し混合し
た後、ポリビニールアルコールの3vt9oの水溶液で
ペースト状とした。次いて、このペーストを、多孔度9
5%のニッケル繊維多孔体に充填し、真空乾燥後加圧し
て、は、従来のマイクロカプセル化の方法で作Wした電
極具」−の充放電性能をHする。−例として、本発明の
実施例(A)と、ニッケルを20重量96被覆したマイ
クロカプセル化合金電極(B)。
After adding and mixing 10 parts by weight of metallic cobalt powder (average particle size 1 to 15 μm) to 100 parts by weight of this hydrogen storage alloy powder, the mixture was made into a paste with a 3vt9o aqueous solution of polyvinyl alcohol. This paste was then mixed with a porosity of 9
The material was filled into a 5% nickel fiber porous material, vacuum dried, and then pressurized to improve the charge/discharge performance of the electrode device made by the conventional microencapsulation method. - By way of example, an embodiment of the invention (A) and a microencapsulated alloy electrode (B) coated with 20 wt. 96 nickel.

導電助剤としてニッケル粉末を20重量%添加した合金
電極(C)および無添加の電極(D)の容量サイクル特
性の比較を第1図に示す。
FIG. 1 shows a comparison of the capacity cycle characteristics of an alloy electrode (C) containing 20% by weight of nickel powder as a conductive aid and an electrode (D) containing no additive.

第1図から明らかなように、コバルト粉末を添加した本
実施例(A)では、充放電サイクルの初期に容量の増大
を生して、その後サイクルに伴う容量の低下は防止され
るのがわかる。また、その平均放電電位は、第2図に示
すようにサイクルとノしに印な方に移行し、放電反応時
の過電圧が低下するのが認められた。これに対して、従
来のマイクロカプセル化した比較例(B)では、サイク
ルに伴う容量低下はしないものの、本実施例(A)のご
とく初期の容量増大効果は認められず、比較例(C,D
)では、徐々に容量低下を引き起こした。
As is clear from FIG. 1, in this example (A) in which cobalt powder is added, the capacity increases at the beginning of the charge/discharge cycle, and the capacity decrease that accompanies subsequent cycles is prevented. . Moreover, as shown in FIG. 2, the average discharge potential shifted to the marked direction with respect to the cycle, and it was observed that the overvoltage during the discharge reaction decreased. On the other hand, in the conventional microencapsulated comparative example (B), although the capacity did not decrease with cycling, the initial capacity increase effect was not observed as in the present example (A), and the comparative example (C, D
) caused a gradual decrease in capacity.

このコバルト粉末のみの特異な挙動は、次のごとく推定
される。
The unique behavior of this cobalt powder alone is estimated as follows.

例えば、本実施例(A)において添加された金属コバル
ト粉末は、水素吸蔵合金電極の充放電過程で(2)式の
電気化学的な溶解析出反応か”J能なことから、 ■ Co + 2 e   −Co (Ig>錯イオン−C
o (Oft) 2           (2)充放
電の繰り返しにより、コバルトが徐々に分散して、コバ
ルトの導電性ネットワークが形成され、合金粒子間の電
子導電性を向上させる。
For example, since the metallic cobalt powder added in Example (A) can undergo the electrochemical dissolution precipitation reaction of equation (2) during the charging and discharging process of the hydrogen storage alloy electrode, ■ Co + 2 e -Co (Ig>complex ion -C
o (Oft) 2 (2) By repeating charging and discharging, cobalt is gradually dispersed and a conductive network of cobalt is formed, improving electronic conductivity between alloy particles.

一方、3d軌道を持つコバルトは、水素電極における水
素のイオン化触媒として知られている。
On the other hand, cobalt having a 3d orbital is known as a hydrogen ionization catalyst in a hydrogen electrode.

本発明におけるコバルト粉末の添加は、サイクル寿命以
外に電極容量を増加させる作用も認められるが、このこ
とは、放電反応の律速は水素のイオン化過程であり、コ
バルトが触媒的に働いているものと考えられる。これに
対して、容量低下を生した後の比較例(C,D)の負極
は、また多量の水素を含有していたことから、合金の表
面腐食の進行に伴い電子導電性が低下し、放電反応かt
i11害されて容量低下をしたものと考えられる。
The addition of cobalt powder in the present invention has the effect of increasing the electrode capacity in addition to the cycle life, but this suggests that the rate-determining rate of the discharge reaction is the hydrogen ionization process, and that cobalt is acting as a catalyst. Conceivable. On the other hand, the negative electrodes of Comparative Examples (C, D) after the capacity decrease also contained a large amount of hydrogen, so the electronic conductivity decreased as the surface corrosion of the alloy progressed. Is it a discharge reaction?
It is thought that the i11 was damaged and the capacity decreased.

このように、本実施例(A)は、製造法が簡便で、且つ
、サイクル性能の優れた水素吸蔵合金電極であることが
わかる。
Thus, it can be seen that the present Example (A) is a hydrogen storage alloy electrode that can be manufactured easily and has excellent cycle performance.

尚、このコバルト粉末の効果は、AB  CY (ここで、A−Mi、Y、Ti、Hr、Zr、Ca、T
h、La5B= Ni、Co、Cu、Fe、Mn、 C
= Al.Cr、Si)系合金、あるいは、T1Ni系
合金、ラーベス相合金(MgNi系、ZrLa系、Zr
Ni系)のごとき他の水素吸蔵合金にも間柱の効果を有
する。
The effect of this cobalt powder is AB CY (here, A-Mi, Y, Ti, Hr, Zr, Ca, T
h, La5B = Ni, Co, Cu, Fe, Mn, C
= Al. Cr, Si) based alloys, T1Ni based alloys, Laves phase alloys (MgNi based, ZrLa based, Zr
Other hydrogen storage alloys such as Ni-based alloys also have stud effects.

一方、正極の活物質である水酸化ニッケル粉賢 末とその電極は、以下のように作成した。On the other hand, nickel hydroxide powder, which is the active material of the positive electrode, The terminal and its electrodes were prepared as follows.

硫酸ニッケルに3〜8重量%の硫酸亜鉛を溶解した水溶
液にアンモニアを加えて、ニッケル・アンミン錯イオン
とした後、激しく攪拌しながら、水酸化ナトリウム水溶
液を滴下して、亜鉛を固溶した水酸化ニッケル粉末を合
成した。
After adding ammonia to an aqueous solution of 3 to 8% by weight of zinc sulfate dissolved in nickel sulfate to form a nickel/ammine complex ion, an aqueous sodium hydroxide solution was added dropwise with vigorous stirring to form water in which zinc was dissolved as a solid solution. Nickel oxide powder was synthesized.

このようにして得た水酸化ニッケル粉末は、従来粉末(
0,15ml/g)の約115の内部細孔容積(0,0
5m l / g )を持つ球状の高密度な粒子であり
、そのタッピング密度(カサ密度)は、従来粉末(1,
6g/m+)よりも大きく、2.0g/mlであった。
The nickel hydroxide powder obtained in this way is a conventional powder (
0,15 ml/g) of approximately 115 internal pore volumes (0,0 ml/g)
It is a spherical high-density particle with a particle size of 5ml/g), and its tapping density (bulk density) is lower than that of conventional powder (1,
6g/m+) and 2.0g/ml.

その結果、従来よりも約2096の充填量の増大が可能
となる。
As a result, it is possible to increase the filling amount by about 2096 points compared to the conventional case.

また、水酸化ニッケル粉末の結晶に固溶させた亜鉛は、
2重量%以上の範囲で電極膨潤(電極厚みの増大)の原
因であるγ−Ni00Hの生成防止に有効に作用し、し
かも、その効果の持続性はカドミウムよりも優れていた
。亜鉛量の増加は水酸化ニッケルの比率を下げるため、
実用的見地から2〜8重量%が適当である。
In addition, zinc dissolved in crystals of nickel hydroxide powder is
In a range of 2% by weight or more, it was effective in preventing the formation of γ-Ni00H, which causes electrode swelling (increase in electrode thickness), and the durability of the effect was superior to that of cadmium. Increasing the amount of zinc lowers the proportion of nickel hydroxide;
From a practical standpoint, 2 to 8% by weight is appropriate.

この高密度な水酸化ニッケル粉末に一酸化コハルト粉末
を混合した後、CMC(カルボキシメチルセルロース)
の水溶液でペースト状として、多孔度9596のニンケ
ル繊維多孔体基板に覧 充填し、乾燥後加圧して、電極を作成した。
After mixing cohardt monoxide powder with this high-density nickel hydroxide powder, CMC (carboxymethyl cellulose)
The paste was made into a paste with an aqueous solution of and filled into a Ninkel fiber porous substrate with a porosity of 9596, dried and then pressurized to prepare an electrode.

ここで、一酸化コバルト粉末は、電解液中で(3)式の
化学的な溶解析出反応を経由して、水酸化ニッケル粒子
の表面を1mし、初充電時に導電性のCo 0011に
変化して、水酸化ニッケルrt子や集電体間に導電性ネ
ットワークを形成することによって、活物質の刊用率を
95〜100%まで向上させる作用を有する。ここで重
要なのは、(3)式の反応により、コバルトを電極全体
に均一に分散させることである。そのためには、少なく
とも電解液中に5時間以上放置する必要がある。
Here, the cobalt monoxide powder undergoes the chemical dissolution precipitation reaction of equation (3) in the electrolytic solution, spreads over 1 m of the surface of the nickel hydroxide particles, and changes to conductive Co0011 during the first charge. By forming a conductive network between the nickel hydroxide particles and the current collector, it has the effect of improving the usage rate of the active material to 95 to 100%. What is important here is to uniformly disperse cobalt throughout the electrode by the reaction of equation (3). For this purpose, it is necessary to leave it in the electrolytic solution for at least 5 hours or more.

電解液中に放置     電解液中に放置CoO−” 
 Co  (II)錯イオン −一初充電 Co  (Oll) 2−  Co OOH(3)この
ようにして得たニッケル電極(E)と、従来の水酸化ニ
ッケル粉末を用いた比較例(F)の容量を、第3図に示
す。この図から、一酸化コバルトの添加量の適正な範囲
は2〜15重量%であること、また、本実施例(E)の
容量は、従来電極(F)の約1.2倍の600mAh/
CCまて向上するのがわかる。なお、ニッケル電極(E
)では、一酸化コバルトの添加量が15重量51oを超
えると活物質利用率は増加するが、エネルギー密度は低
下することがわかる。
Leaving it in the electrolyte Leaving it in the electrolyte CoO-”
Co (II) complex ion - first charge Co (Oll) 2- Co OOH (3) Capacity of the thus obtained nickel electrode (E) and a comparative example (F) using conventional nickel hydroxide powder is shown in Figure 3. This figure shows that the appropriate range for the amount of cobalt monoxide added is 2 to 15% by weight, and that the capacity of this example (E) is 600mAh/1.2 times that of the conventional electrode (F).
I can see that CC is improving. In addition, nickel electrode (E
), it can be seen that when the amount of cobalt monoxide added exceeds 15% by weight, the active material utilization rate increases, but the energy density decreases.

次に、上記実施例の水素吸蔵合金電極とニッケル電極を
ナイロン不織布のセパレータを介して巻き込み、比重1
.24の水酸化カリウム水溶液を汁液して、AAサイズ
の円筒密閉式ニラ製 ケル・金属水素化物蓄電池を作成した。電池の初充電は
、注液し密閉した後、上記の理由により、5時間以上放
置したのちに行った。
Next, the hydrogen storage alloy electrode and nickel electrode of the above example were wrapped together with a nylon nonwoven fabric separator interposed therebetween, and the specific gravity was 1.
.. A cylindrical sealed cylindrical chive metal hydride storage battery of AA size was prepared by diluting the potassium hydroxide aqueous solution of No. 24. The first charge of the battery was carried out after the liquid was injected and the battery was sealed, and the battery was left to stand for 5 hours or more for the above-mentioned reason.

裂 こうして作成した電池の放電特性を第4図に、サイクル
容量特性を第5図に示す。本発明電池(G)は、従来の
比較例(H)より約1.2倍の容量を持ち、サイクル特
性の優れた電池であることがわかる。
The discharge characteristics of the battery thus prepared are shown in FIG. 4, and the cycle capacity characteristics are shown in FIG. It can be seen that the battery of the present invention (G) has a capacity about 1.2 times that of the conventional comparative example (H) and has excellent cycle characteristics.

なお、上記実施例では、ニッケル繊維多孔体基板を用い
た例を示したが、これに限らず、エキスバンドメタル、
メタルメツシュ、ニッケルめっきパンチングメタル等を
基板として用いてもよい。
In addition, in the above example, an example using a nickel fiber porous substrate was shown, but the invention is not limited to this, and expanded metal,
Metal mesh, nickel-plated punching metal, or the like may be used as the substrate.

また、本発明では、金属コバルト粉末又は一酸化コバル
ト粉末を用いたか、その他のコバルト化合物あるいはア
ルカリ電解液中で溶解しえるコバルト含有合金を添加し
ても同様の効果を有する。
Further, in the present invention, the same effect can be obtained by using metallic cobalt powder or cobalt monoxide powder, or by adding other cobalt compounds or cobalt-containing alloys that can be dissolved in an alkaline electrolyte.

(発明の効果) 以上のように、本発明の水素吸蔵合金電極とニッケル電
極を組み合わせることによって、従来よりも高エネルギ
ー密度てカドミウムを含まない無公害の、且つ、製造行
程の簡単なニッケル・金属水素化物蓄電池を提供できる
ことから、その工業的価値は極めて大である。
(Effects of the Invention) As described above, by combining the hydrogen storage alloy electrode of the present invention and the nickel electrode, it is possible to create a nickel metal that has a higher energy density than the conventional one, does not contain cadmium, is pollution-free, and has a simple manufacturing process. Since it can provide a hydride storage battery, its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の水素吸蔵合金電極のサイクル容量特性
を示す図、 第2図は本発明の水素吸蔵合金電極の平均放電電位の変
化を示す図、 第3図は本発明のニッケル電極と従来のニッケル電極の
容量を示す図、 第4図は本発明のニッケル・金属水素化物蓄電池と従来
電池の放電特性を示す図、 第5図は本発明のニッケル・金属水素化物蓄電池と従来
電池のサイクル特性を示す図である。 出願人     湯浅電池株式会社 第2図 1 2 3 4 5 6 7  B  9 10充放電
サイクル数(回) 第3図 Coo添加量 第4図 放電容量(mAh)
Figure 1 shows the cycle capacity characteristics of the hydrogen storage alloy electrode of the present invention, Figure 2 shows the change in average discharge potential of the hydrogen storage alloy electrode of the invention, and Figure 3 shows the nickel electrode of the invention. Figure 4 is a diagram showing the capacity of a conventional nickel electrode. Figure 4 is a diagram showing the discharge characteristics of the nickel metal hydride storage battery of the present invention and a conventional battery. Figure 5 is a diagram showing the discharge characteristics of the nickel metal hydride storage battery of the invention and a conventional battery. FIG. 3 is a diagram showing cycle characteristics. Applicant Yuasa Battery Co., Ltd. Figure 2 1 2 3 4 5 6 7 B 9 10 Number of charge/discharge cycles (times) Figure 3 Coo addition Figure 4 Discharge capacity (mAh)

Claims (3)

【特許請求の範囲】[Claims] (1)水素吸蔵合金として、MmNi_5(Mm:ミッ
シュメタル)合金のNiの一部をAlとMn、Fe、C
o、Cuの一種もしくは2種以上で置換した合金粉末を
用い、金属コバルト粉末を3〜20重量%の範囲で混合
し、このものを耐アルカリ性金属多孔体内に充填したこ
とを特徴とする金属水素化物電極。
(1) As a hydrogen storage alloy, a part of Ni of MmNi_5 (Mm: misch metal) alloy is mixed with Al, Mn, Fe, and C.
A metal hydrogen characterized by using an alloy powder substituted with one or more types of Cu, mixed with metal cobalt powder in a range of 3 to 20% by weight, and filling this into an alkali-resistant metal porous body. Compound electrode.
(2)内部細孔容積が0.14ml/g以下で、望まし
くは0.05ml/g以下の球状を呈する水酸化ニッケ
ル粉末の結晶中に、亜鉛が2〜8重量%の範囲で固溶状
態で存在するニッケル電極の活物質粉末に、一酸化コバ
ルト粉末を5〜15重量%の範囲で混合し、このものを
耐アルカリ性金属多孔体基板内に充填したことを特徴と
するニッケル電極。
(2) Zinc is in a solid solution state in the range of 2 to 8% by weight in the crystals of nickel hydroxide powder exhibiting a spherical shape with an internal pore volume of 0.14 ml/g or less, preferably 0.05 ml/g or less. 1. A nickel electrode, characterized in that cobalt monoxide powder is mixed in an amount of 5 to 15% by weight with active material powder for a nickel electrode, and this mixture is filled into an alkali-resistant porous metal substrate.
(3)前記金属水素化物電極とニッケル電極をセパレー
タを介して捲回し、水酸化カリウム水溶液を注入し密閉
化した後、5時間以上放置して初充電を行うことを特徴
とするニッケル・金属水素化物電池の製造法。
(3) Nickel/metal hydride, characterized in that the metal hydride electrode and the nickel electrode are wound together with a separator interposed therebetween, and after injecting an aqueous potassium hydroxide solution and sealing, the nickel/metal hydride electrode is left to stand for 5 hours or more for initial charging. Method for manufacturing compound batteries.
JP2292566A 1990-10-29 1990-10-29 Nickel electrode and metal hydride electrode and manufacture of battery using them Pending JPH04167363A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2292566A JPH04167363A (en) 1990-10-29 1990-10-29 Nickel electrode and metal hydride electrode and manufacture of battery using them
CA002095036A CA2095036C (en) 1990-10-29 1991-10-22 Metal hydride electrode, nickel electrode and nickel-hydrogen battery
PCT/JP1991/001445 WO1992008251A1 (en) 1990-10-29 1991-10-22 Hydrogen-storing electrode, nickel electrode, and nickel-hydrogen battery
EP91917825A EP0557522B1 (en) 1990-10-29 1991-10-22 Hydrogen-storing electrode, nickel electrode, and nickel-hydrogen battery
DK91917825.1T DK0557522T3 (en) 1990-10-29 1991-10-22 Hydrogen storage electrode, nickel electrode and nickel-hydrogen battery
US08/050,025 US5393616A (en) 1990-10-29 1991-10-22 Metal hydride electrode
DE69117068T DE69117068T2 (en) 1990-10-29 1991-10-22 HYDROGEN STORAGE ELECTRODE, NICKEL ELECTRODE AND NICKEL HYDROGEN BATTERY
US08/370,987 US5506070A (en) 1990-10-29 1995-01-10 Metal hydride electrode, nickel electrode and nickel-hydrogen battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2292566A JPH04167363A (en) 1990-10-29 1990-10-29 Nickel electrode and metal hydride electrode and manufacture of battery using them

Publications (1)

Publication Number Publication Date
JPH04167363A true JPH04167363A (en) 1992-06-15

Family

ID=17783430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2292566A Pending JPH04167363A (en) 1990-10-29 1990-10-29 Nickel electrode and metal hydride electrode and manufacture of battery using them

Country Status (1)

Country Link
JP (1) JPH04167363A (en)

Similar Documents

Publication Publication Date Title
CA2095036C (en) Metal hydride electrode, nickel electrode and nickel-hydrogen battery
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JP5205051B2 (en) Nickel metal hydride battery design
JP2680669B2 (en) Hydrogen storage alloy electrode for alkaline storage battery
JP2679274B2 (en) Nickel-hydrogen battery
JPH04167363A (en) Nickel electrode and metal hydride electrode and manufacture of battery using them
JP3490866B2 (en) Hydrogen storage alloy electrode for alkaline storage battery and alkaline storage battery using the same
JPH09204930A (en) Nickel hydrogen storage battery
JP3065713B2 (en) Hydrogen storage electrode and nickel-hydrogen battery
JP3392700B2 (en) Alkaline secondary battery
JPH04169059A (en) Hydrogen absorbing alloy electrode for alkaline storage battery
JP3458899B2 (en) Nickel hydroxide positive plate for alkaline battery and alkaline battery thereof
JPH10149824A (en) Manufacture of hydrogen storage alloy electrode
JPH1040950A (en) Alkaline secondary battery
JPH06145849A (en) Hydrogen storage alloy electrode
JPH04319258A (en) Hydrogen storage alloy electrode
JP2586752B2 (en) Hydrogen storage alloy electrode
JP2004185956A (en) Nickel-hydrogen storage battery
JPH04169061A (en) Hydrogen absorbing alloy electrode for alkaline storage battery
JPH04171664A (en) Hydrogen storage alloy electrode
JPH04171663A (en) Hydrogen storage alloy electrode
JPH03122235A (en) Zinc electrode for alkaline storage battery
JPH0574447A (en) Hydrogen occluding electrode
JPH04171661A (en) Hydrogen storage alloy electrode
JPH04167360A (en) Hydrogen storage alloy electrode for alkaline storage battery