JPH0416595A - Production of oxide superconducting film - Google Patents

Production of oxide superconducting film

Info

Publication number
JPH0416595A
JPH0416595A JP2120537A JP12053790A JPH0416595A JP H0416595 A JPH0416595 A JP H0416595A JP 2120537 A JP2120537 A JP 2120537A JP 12053790 A JP12053790 A JP 12053790A JP H0416595 A JPH0416595 A JP H0416595A
Authority
JP
Japan
Prior art keywords
substrate
oxide
film
based superconducting
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2120537A
Other languages
Japanese (ja)
Other versions
JPH0710759B2 (en
Inventor
Kazuhiro Endo
和弘 遠藤
Shunji Misawa
俊司 三沢
Sadaji Yoshida
吉田 貞史
Yozo Ikedo
洋三 池戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
SWCC Corp
Original Assignee
Agency of Industrial Science and Technology
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Showa Electric Wire and Cable Co filed Critical Agency of Industrial Science and Technology
Priority to JP2120537A priority Critical patent/JPH0710759B2/en
Publication of JPH0416595A publication Critical patent/JPH0416595A/en
Publication of JPH0710759B2 publication Critical patent/JPH0710759B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain a superconducting film with the conventional evaporating cell by heating metallic complexes contg. metallic elements as starting materials in a high vacuum, depositing evaporated molecules as beams on a substrate and forming a single crystal film on the substrate. CONSTITUTION:Metallic complexes or organometallic compds. contg. the constituent metallic elements of an oxide superconducting material are used as evaporating sources. These sources each having a lower evaporation temp. than the metal are evaporated by heating in a high vacuum. Evaporated molecules are deposited as beams on a substrate and a single crystal film of the oxide superconducting material is formed on the substrate to obtain a superconducting film.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は酸化物系超伝導膜の製造方法に係わり、特にM
BE法(分子線エピタキシ法)による酸化物系超伝導膜
の製造方法の改良に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing an oxide-based superconducting film, and in particular,
This invention relates to improvements in the manufacturing method of oxide-based superconducting films using the BE method (molecular beam epitaxy method).

[従来の技術] La系(La−Ba−Cu−0) 、Y系(Y−Ba−
Cu−0) 、B i系(B i−8r−Ca −Cu
−0)およびTN系(Tj!−Ba−Ca −Cu−0
)等の酸化物に代表される酸化物系の超伝導物質は、従
来の合金系や金属間化合物系、即ち、Nb−Ti系やN
b5Sn系の超伝導物質と比較して、その臨界温度(T
c)が高く、各種の用途への応用が期待されている。
[Prior art] La-based (La-Ba-Cu-0), Y-based (Y-Ba-
Cu-0), Bi-based (Bi-8r-Ca-Cu
-0) and TN-based (Tj!-Ba-Ca-Cu-0
) and other oxides are conventional alloy-based and intermetallic compound-based materials, such as Nb-Ti-based and Nb-Ti-based
Compared to b5Sn-based superconducting materials, its critical temperature (T
c) is high, and is expected to be applied to various uses.

このような応用の前提として、酸化物系の超伝導物質を
用いて超伝導コイルや超伝導素子等を製造するために、
線材化および薄膜化技術を確立することが必要であり、
その中でもジョセフソン素子等のエレクトロニクス材料
への利用として、超伝導間の弱結合を作り易く、微細加
工が容易で高集積化が可能な薄膜の製造技術を確立する
ことが重要となってきている。
As a premise for such applications, in order to manufacture superconducting coils, superconducting elements, etc. using oxide-based superconducting materials,
It is necessary to establish wire rod and thin film technology,
Among these, for use in electronic materials such as Josephson devices, it has become important to establish a manufacturing technology for thin films that can easily create weak bonds between superconductors, can be easily microfabricated, and can be highly integrated. .

従来、薄膜の製造方法の主なものとして、(イ)スパッ
タリング法、(ロ)CVD法および()X)蒸着法が知
られている。
Conventionally, (a) sputtering method, (b) CVD method, and ()X) vapor deposition method are known as main methods for producing thin films.

上記(イ)の方法は、Ar等のガス雰囲気中でターゲッ
トと基板との間に電圧をかけ、電子の衝突によって発生
するガスイオンをターゲットに衝突させて、叩き出され
た原子を基板に付着させる方法であり、主機構が熱的過
程でないため高融点材料の薄膜化が容易であり、基板と
の付着力の強い膜が得られる利点を有する。また上記(
ロ)の方法は、ハロゲン化物や水素化物等の化合物の形
で原料を供給し、高温基板上での反応により薄膜を成長
させる方法で、成長速度が極めて高く量産的である利点
を有し、さらに上記(ハ)の方法は、各成分毎に蒸発源
を設は蒸発速度を独立に制御しながら同時に蒸発させて
、基板上で化合させる方法であり、組成の制御が容易で
、純度の高い薄膜が得られる利点を有する。
Method (a) above applies a voltage between the target and the substrate in a gas atmosphere such as Ar, causes gas ions generated by electron collisions to collide with the target, and the ejected atoms adhere to the substrate. This method has the advantage that since the main mechanism is not a thermal process, it is easy to make a thin film of a high melting point material and a film with strong adhesion to the substrate can be obtained. Also above (
The method (b) is a method in which raw materials are supplied in the form of compounds such as halides and hydrides, and a thin film is grown by reaction on a high-temperature substrate, and has the advantage of extremely high growth rate and mass production. Furthermore, in the method (c) above, an evaporation source is set up for each component, and the evaporation rate is independently controlled while simultaneously evaporating and combining on the substrate, which makes it easy to control the composition and achieves high purity. It has the advantage that a thin film can be obtained.

しかしながら、上記(イ)〜(ハ)の方法では、■原子
層レベルでの成長膜厚を制御すること、■原子スケール
での平滑性を有する表面を得ること、■原子の相互拡散
の影響による超伝導特性の低下を防止すること、および
■組成制御を正確におこなうことがいずれも困難である
という難点を有する。
However, in the methods (a) to (c) above, ■ controlling the growth film thickness at the atomic layer level, ■ obtaining a surface with smoothness on the atomic scale, and ■ controlling the effects of interdiffusion of atoms. It has the disadvantage that it is difficult to prevent deterioration of superconducting properties and (1) to accurately control the composition.

このような難点を解消する方法として、近年、MBE法
(Molecular Beam Epitaxy :
分子線エピタキシ法)による薄膜の製造が検討されてい
る。
In recent years, as a method to overcome these difficulties, the MBE method (Molecular Beam Epitaxy:
The production of thin films using molecular beam epitaxy (molecular beam epitaxy) is being considered.

この方法は、成長させる物質を高真空中で加熱して、各
元素の蒸発分子をビーム状にして基板に向けて蒸発させ
、基板上に単結晶を堆積させるものである。理論的には
、超高真空中での分子衝突に対する平均自由行程が常圧
時より長くなるため、蒸発分子か他の分子と衝突せずに
基板に到達する。
In this method, the material to be grown is heated in a high vacuum to form a beam of evaporated molecules of each element and evaporated toward the substrate, thereby depositing a single crystal on the substrate. Theoretically, the mean free path for molecular collisions in ultra-high vacuum is longer than at normal pressure, so vaporized molecules can reach the substrate without colliding with other molecules.

このMBE法は上記の■〜■の難点をいずれも克服する
ものであり、かつ結晶成長中に電子線回折等により観察
すること、および蒸着マスクを用いて選択成長させるこ
とか可能である利点を有する。
This MBE method overcomes all of the above-mentioned difficulties, and has the advantage that it is possible to observe the crystal by electron beam diffraction, etc. during crystal growth, and to perform selective growth using a vapor deposition mask. have

[発明が解決しようとする課題] 上記のように、MBE法により酸化物超伝導膜を製造す
る場合には、原料温度、基板温度、シャッタの使用等に
より高精度の組成制御や単原子層の膜厚制御ができる上
、エピタキシ成長が期待できる利点を有するが、蒸発源
として用いるY、Ba等が高融点金属のため、その溶融
、蒸発に高融点ルツボや電子銃を使用する必要かあり、
装置構造が複雑となる上、酸化膜を生成させるために導
入する酸化種(02,03、Oo)が原料の金属を酸化
し堆積速度を変化させるため、成長中の酸素分圧が制限
される等の問題点がある。蒸発条件の変化は、フィード
バック回路によるパワー増大により原料の突沸の原因と
もなる。
[Problems to be Solved by the Invention] As mentioned above, when manufacturing an oxide superconducting film by the MBE method, it is necessary to control the composition with high precision and form a monoatomic layer by controlling the raw material temperature, substrate temperature, use of a shutter, etc. It has the advantage of being able to control the film thickness and can be expected to grow epitaxially, but since the Y, Ba, etc. used as the evaporation source are high melting point metals, it is necessary to use a high melting point crucible or electron gun for melting and evaporating them.
The device structure becomes complicated, and the oxidizing species (02, 03, Oo) introduced to generate the oxide film oxidizes the raw metal and changes the deposition rate, which limits the oxygen partial pressure during growth. There are other problems. Changes in evaporation conditions can also cause bumping of the raw material due to increased power due to the feedback circuit.

MBE法による酸化物系超伝導膜の作製例としては、(
ニ)反応性蒸着により、単結晶YBCO薄膜を作製した
もの(J pn、J、App IPhys、、27.L
91−93.1988)、(ホ)ECRプラズマを使用
して、分子線領域てYBCO薄膜を作製したもの(Jp
n、J、Appl、Phys、、27.L2075−2
077゜1988)または(へ)原料の酸化の問題を回
避するために、蒸発源と成長室とを分け、それぞれ排気
する差動排気システムを用いたもの(Jpn。
An example of manufacturing an oxide-based superconducting film using the MBE method is (
d) Single-crystal YBCO thin film fabricated by reactive vapor deposition (J pn, J, App IPhys, 27.L
91-93.1988), (e) YBCO thin film fabricated in the molecular beam region using ECR plasma (Jp
n, J. Appl, Phys., 27. L2075-2
077゜1988) or (to) In order to avoid the problem of oxidation of raw materials, the evaporation source and the growth chamber are separated and a differential pumping system is used to evacuate them separately (Jpn.

J、Appl、Phys、、28.L635−638.
1989)等を上げることができる。
J, Appl, Phys., 28. L635-638.
1989), etc.

しかしながら、上記(ニ)の方法では、基板周辺の酸素
分圧を高くすることにより酸化物を作製しているが、基
板周辺が分子線領域に達しておらず、MBE法の利点で
あるシャッタ制御による原子層制御は困難である。また
上記(ホ)の方法では、蒸発源としてY等の高融点金属
をもちいているため、原料が酸化するという問題かあり
、(へ)の方法では装置が複雑となる上、成長中の酸素
分圧が制限されるという難点を有する。
However, in the method (d) above, the oxide is produced by increasing the oxygen partial pressure around the substrate, but the area around the substrate does not reach the molecular beam region, and the shutter control, which is an advantage of the MBE method, is Atomic layer control is difficult. In addition, in method (e) above, since a high-melting point metal such as Y is used as an evaporation source, there is a problem that the raw material oxidizes, and in method (f), the equipment is complicated and the oxygen It has the disadvantage that the partial pressure is limited.

本発明は上記の難点を解決するためになされたもので、
即ち、MBE法において高融点ルツボや電子銃等の装置
を必要とせずに、分子線領域を維持しながら酸素分圧を
高め、かつ原料の酸化の問題を生ずることなく酸化物系
超伝導膜を製造する方法を提供することをその目的とす
る。
The present invention has been made to solve the above-mentioned difficulties.
In other words, in the MBE method, it is possible to increase the oxygen partial pressure while maintaining the molecular beam region without requiring equipment such as a high melting point crucible or an electron gun, and to form an oxide-based superconducting film without causing the problem of oxidation of the raw material. Its purpose is to provide a method for manufacturing.

[課題を解決するための手段] 上記目的を達成するために、本発明の酸化物系超伝導膜
の製造方法は、酸化物系超伝導物質を構成する金属元素
を含む金属錯対または有機金属化合物を、高真空中でそ
れぞれ加熱して、その蒸発分子をビーム状にして基板に
向けて蒸発させることにより堆積させ、前記基板上に酸
化物系超伝導物質の単結晶膜を生成させるものである。
[Means for Solving the Problems] In order to achieve the above object, the method for producing an oxide-based superconducting film of the present invention provides a method for producing an oxide-based superconducting film using a metal complex or an organic metal complex containing a metal element constituting an oxide-based superconducting substance. The compound is deposited by heating each compound in a high vacuum and evaporating the evaporated molecules toward the substrate in the form of a beam, thereby producing a single crystal film of an oxide-based superconducting material on the substrate. be.

本発明における酸化物系超伝導物質としては、特に限定
されないが、代表的にはY系、Bi系等の超伝導物質に
適用することができる。
The oxide-based superconducting material in the present invention is not particularly limited, but typically Y-based, Bi-based, etc. superconducting materials can be used.

また酸化物系超伝導物質を構成する金属元素を含む物質
としては、蒸発温度が金属よりも著しく低い金属錯体ま
たは有機金属化合物が用いられ、特に基板上への堆積速
度からβ−ジケトン系の金属錯体が好適する。
In addition, as substances containing metal elements constituting oxide-based superconducting materials, metal complexes or organometallic compounds whose evaporation temperature is significantly lower than that of metals are used, and in particular, β-diketone-based metals are Complexes are preferred.

β−ジケトンはケト−エノール互変異性体で、エノール
体が多くの金属に2座配位子として結合したもので、常
温で粉末状の固体であり、加熱することにより蒸発する
。蒸発温度が金属より遥かに低いので、低温でも蒸気圧
が十分にとれ、また酸素に対して金属より安定であるた
め、原料の酸化の問題も生じない。β−ジケトン系の金
属体の中、D PM (dipivaloyl met
hane)とPPM(pentafluoroprop
anoyl pivaloyl methane)につ
いて基板上への堆積速度と熱重量分析(TGA)の結果
から、Y系の超伝導膜の生成には、特にY(PPM)a
、B a (P P M) *およびCu(DPM)2
が原料として適することが判明した。これ等の原料の蒸
発温度120℃の時のMg0(100)基板温度と金属
付着量との関係を第1表に、またその構造図を第4図に
示す。
β-diketone is a keto-enol tautomer, in which the enol is bound to many metals as bidentate ligands, and is a powdery solid at room temperature, but evaporates when heated. Since the evaporation temperature is much lower than that of metals, sufficient vapor pressure can be maintained even at low temperatures, and since it is more stable against oxygen than metals, there is no problem of oxidation of the raw material. Among β-diketone metals, D PM (dipivaloyl met
hane) and PPM (pentafluoroprop
Based on the deposition rate on the substrate and the results of thermogravimetric analysis (TGA) regarding Y(PPM) a
, B a (P P M) * and Cu (DPM)2
was found to be suitable as a raw material. The relationship between the Mg0 (100) substrate temperature and the amount of metal deposited when the evaporation temperature of these raw materials is 120° C. is shown in Table 1, and the structural diagram is shown in FIG. 4.

第1表 Y系原料の堆積速度 本発明の方法においては、分子線領域を保つために基板
上への蒸発分子の堆積は高真空下で行われるが、この場
合の真空度は5X10−’以下、特に10−4以下とす
ることが好ましい。真空度が5XIO−’を越えると蒸
発分子の平均自由行程が短くなり、これにより制御性が
低下する。
Table 1 Deposition rate of Y-based raw material In the method of the present invention, the deposition of evaporated molecules onto the substrate is performed under high vacuum in order to maintain the molecular beam region, but the degree of vacuum in this case is 5X10-' or less , especially preferably 10 −4 or less. When the degree of vacuum exceeds 5XIO-', the mean free path of the evaporated molecules becomes short, resulting in a decrease in controllability.

また、加熱された基板上へ堆積した蒸発分子は分解して
酸化物結晶に成長するが、必要に応じて酸化性雰囲気中
で熱処理を施すことができる。即ち、100%オゾンや
活性酸素を用いた場合には堆積後に熱処理を施さなくと
も超伝導膜を生成することが可能であるが、酸素分圧が
低い場合には熱処理を必要とする。Y糸紐伝導膜の場合
、その温度は880〜950℃が適する。熱処理温度が
880℃未満であるとYBCOの結晶成長が小さく、9
50℃を越える温度や長時間の熱処理によってもBaO
等の分解物を生成し、特性が低下したり超伝導性を示さ
な(なる。
Further, the evaporated molecules deposited on the heated substrate decompose and grow into oxide crystals, but heat treatment can be performed in an oxidizing atmosphere if necessary. That is, when using 100% ozone or active oxygen, it is possible to produce a superconducting film without heat treatment after deposition, but when the oxygen partial pressure is low, heat treatment is required. In the case of a Y-string conductive membrane, a suitable temperature is 880-950°C. When the heat treatment temperature is less than 880°C, the crystal growth of YBCO is small, and 9
BaO can also be removed by heat treatment at temperatures exceeding 50℃ or for long periods of time.
decomposition products, such as decomposition products, resulting in deterioration of properties and failure to exhibit superconductivity.

以上述べたY系の場合に対しては、本願第2の発明とし
て、Y−Ba−Cu−0系の超伝導物質を構成する金属
元素を含むβ−ジケトン系の金属錯体を、高真空中でそ
れぞれ加熱して、その蒸発分子をビーム状にしてMgO
基板に向けて蒸発させることにより前記基板上に堆積さ
せた後、酸化性雰囲気中で880〜950℃の温度で熱
処理を施すことにより、前記基板上に酸化物系超伝導物
質の単結晶膜を生成させる酸化物系超伝導膜の製造方法
として記述される。
In the case of the Y system described above, as the second invention of the present application, a β-diketone metal complex containing a metal element constituting a Y-Ba-Cu-0 system superconductor is prepared in a high vacuum. MgO
After being deposited on the substrate by evaporation toward the substrate, a single crystal film of the oxide-based superconducting material is deposited on the substrate by heat treatment at a temperature of 880 to 950°C in an oxidizing atmosphere. This is described as a method for producing an oxide-based superconducting film.

[作用] 本発明の方法においては、蒸発温度が金属よりも低い金
属錯体または有機金属化合物を蒸発源に用いるため、通
常の蒸発セルを使用することができ、また原料が酸化に
対して金属より安定なため、酸化物の生成に必要な酸素
の分圧を高くすることができる。またシャッター制御が
可能な真空領域であるため、高精度の制御性を維持しな
がら超伝導膜を製造することができる。
[Function] In the method of the present invention, a metal complex or an organometallic compound whose evaporation temperature is lower than that of the metal is used as the evaporation source, so a normal evaporation cell can be used, and the raw material is more resistant to oxidation than the metal. Because it is stable, the partial pressure of oxygen required to generate oxides can be increased. Furthermore, since the vacuum region allows shutter control, superconducting films can be manufactured while maintaining high precision controllability.

さらに、基板表面で蒸発分子が反応するため、MOCV
D法のように原料が途中で反応や分解することがない。
Furthermore, since the evaporated molecules react on the substrate surface, MOCV
Unlike method D, the raw materials do not react or decompose during the process.

即ち、本発明の方法はMBE法とMOCVD法の利点を
併せ持った結晶成長法といえる。
That is, the method of the present invention can be said to be a crystal growth method that combines the advantages of the MBE method and the MOCVD method.

[実施例] 以下、本発明の実施例について説明する。[Example] Examples of the present invention will be described below.

第3図は本発明の方法に用いられるMBE装置1の一実
施例を示す概略図である。同図において、2は反応室、
3はロードロック室、4は蒸発セルを示す。
FIG. 3 is a schematic diagram showing an embodiment of the MBE apparatus 1 used in the method of the present invention. In the figure, 2 is a reaction chamber;
3 is a load lock chamber, and 4 is an evaporation cell.

反応室2およびロードロック室3はそれぞれターボ分子
ポンプ5とロータリーポンプ6で排気され、ガスを導入
しない状態で10−4Torr以下まで真空にすること
ができる。原料7はそれぞれBN(ボロンナイトライド
)で形成されたルツボ8に収容され、温度コントローラ
9で制御されるタンタルヒータ10により加熱される。
The reaction chamber 2 and the load lock chamber 3 are evacuated by a turbo molecular pump 5 and a rotary pump 6, respectively, and can be evacuated to 10<-4> Torr or less without introducing gas. The raw materials 7 are each housed in a crucible 8 made of BN (boron nitride) and heated by a tantalum heater 10 controlled by a temperature controller 9.

蒸発した原料は基板に向けて直進し、基板に到達する蒸
発分子の量はシャッタ11の開閉により調節することが
可能な構造となっている。
The structure is such that the evaporated raw material moves straight toward the substrate, and the amount of evaporated molecules reaching the substrate can be adjusted by opening and closing the shutter 11.

反応室2内に導入される酸素は0〜5ccmの範囲でマ
スフローコントローラ12により制御され、基板から約
15cmの所までノズル13を通り基板14に吹付けら
れる。基板14は、例えばMgO(Zoo)からなり、
モリブデンで形成されたホルダ15にインジウム等で接
着され、ホルダ15は温度コントローラ16で制御され
るプレート状のタンタルヒータ17で加熱される。尚、
18はゲートバルブ、19は基板搬送器である。
Oxygen introduced into the reaction chamber 2 is controlled in the range of 0 to 5 ccm by a mass flow controller 12, and is blown onto the substrate 14 through a nozzle 13 to a position approximately 15 cm from the substrate. The substrate 14 is made of, for example, MgO (Zoo),
It is bonded with indium or the like to a holder 15 made of molybdenum, and the holder 15 is heated by a plate-shaped tantalum heater 17 controlled by a temperature controller 16. still,
18 is a gate valve, and 19 is a substrate transfer device.

実施例1 第3図に示したMBE装置1を用いてYBCO(Y−B
 a−Cu−0系)超伝導物質の多元蒸着を行った。原
料として、Y、BaおよびCuのβ−ジケトン系の金属
錯体を用いた。
Example 1 YBCO (Y-B
Multi-dimensional vapor deposition of superconducting materials (a-Cu-0 series) was performed. A β-diketone metal complex of Y, Ba and Cu was used as a raw material.

これらの原料をシッヤタ付きの蒸発セルのルツボに入れ
、Taヒータによりそれぞれ加熱し、基板上に薄膜を成
長させた。基板は、上記の超伝導物質と熱膨張率および
格子定数の値がほぼ近く、アルカリ土類金属を含むため
化学的に安定なMgOを用いた。
These raw materials were placed in a crucible of an evaporation cell equipped with a shutter and heated with a Ta heater to grow a thin film on the substrate. For the substrate, MgO was used, which has a coefficient of thermal expansion and a lattice constant almost similar to those of the above-mentioned superconducting material, and is chemically stable because it contains an alkaline earth metal.

この時の堆積条件を以下に示す。The deposition conditions at this time are shown below.

基板・・・・・・・・・・MgO(100)基板温度・
・・・・・800℃ 原料温度・・・・・・Y (PPM)3・・・・・・1
20’CB a (P P M) z”160℃Cu 
(D P M) 2”・・45℃酸素量・・・・・・・
・3cm”/min真空度・・・・・・・・lXl0−
4Torr堆積速度・・・・・・2700人/hrこの
ようにして得られた膜の金属組成比はY:Ba : C
u=1 : 2.39 二4.54であった。次いで、
上記の膜を赤外線ゴールドイメージ炉を用いて酸素気流
中(100ml/m1n)で900’CX1hr加熱し
、アニールした。
Substrate・・・・・・・・・MgO (100) substrate temperature・
...800℃ Raw material temperature...Y (PPM)3...1
20'CB a (P P M) z"160℃Cu
(D P M) 2”...45℃ Oxygen amount...
・3cm"/min degree of vacuum...lXl0-
4 Torr Deposition rate: 2700 people/hr The metal composition ratio of the film thus obtained is Y:Ba:C
u=1: 2.39 24.54. Then,
The above film was annealed by heating in an oxygen stream (100 ml/ml) for 900'CX 1 hr using an infrared gold image furnace.

得られた超伝導膜のXRD (X線回折)パターンを第
1図に、またその電気抵抗の温度依存性を第2図に示す
。両図から明らかなように、この超伝導膜はほぼC軸配
向性を示すとともに、Tc(onset)=80KST
c (end)=74にの値を有する。
The XRD (X-ray diffraction) pattern of the obtained superconducting film is shown in FIG. 1, and the temperature dependence of its electrical resistance is shown in FIG. As is clear from both figures, this superconducting film exhibits almost C-axis orientation, and Tc (onset) = 80 KST.
It has a value of c (end)=74.

実施例2 原料および基板の種類、原料および基板の温度を実施例
1と同一とし、酸素量を1 c m”7m i n、真
空度を10−4Torrとして基板上に薄膜を成長させ
た。次いで、上記の膜を実施例1と同様の方法でアニー
ルした。
Example 2 A thin film was grown on the substrate using the same types of raw materials and substrates and the temperatures of the raw materials and substrates as in Example 1, the amount of oxygen at 1 cm"7 min, and the degree of vacuum at 10-4 Torr. Next, a thin film was grown on the substrate. , the above film was annealed in the same manner as in Example 1.

この超伝導膜の特性を第2表に示す。実施例1に比較し
てTcの値が低下しているのは酸化力が弱いためと考え
られる。
The properties of this superconducting film are shown in Table 2. The reason why the Tc value is lower than that in Example 1 is considered to be because the oxidizing power is weak.

尚、第2表において、○は良好、×は不良および△はそ
の中間の状態を示す。
In Table 2, ◯ indicates a good condition, × indicates a poor condition, and △ indicates an intermediate condition.

以下余白 比較例1 原料および基板の種類、原料および基板の温度を実施例
1と同一とし、酸素量を5 c m”7m i n、真
空度を10−”Torrとして基板上に薄膜を成長させ
た。次いで、上記の膜を実施例1と同様の方法でアニー
ルした。
Comparative Example 1 The types of raw materials and substrate and the temperature of the raw materials and substrate were the same as in Example 1, the amount of oxygen was 5 cm"7 min, and the degree of vacuum was 10-" Torr, and a thin film was grown on the substrate. Ta. The above film was then annealed in the same manner as in Example 1.

このようにして得られた膜の特性を第2表に示した。こ
の場合にはシャッタによる制御が不可能で、得られた薄
膜はTcを示さなかった。
The properties of the membrane thus obtained are shown in Table 2. In this case, shutter control was not possible and the obtained thin film did not exhibit Tc.

比較例2 Y、Baの蒸発に電子銃を用い、Cuの蒸発には高融点
ルツボを用いた他は比較例1と同様の方法により、基板
上に薄膜を成長させた。
Comparative Example 2 A thin film was grown on a substrate by the same method as Comparative Example 1, except that an electron gun was used to evaporate Y and Ba, and a high melting point crucible was used to evaporate Cu.

このようにして得られた膜の特性を第2表に示した。こ
の場合には原料が酸化し成膜が不可能であった。
The properties of the membrane thus obtained are shown in Table 2. In this case, the raw material was oxidized and film formation was impossible.

比較例3 Cuの蒸発温度を1500℃とし、酸素量を3cm”/
min、真空度を10−4Torrとした以外は比較例
2と同様の方法により、基板上に薄膜を成長させた。
Comparative Example 3 The evaporation temperature of Cu was 1500°C, and the amount of oxygen was 3cm”/
A thin film was grown on the substrate in the same manner as in Comparative Example 2 except that the vacuum level was 10 −4 Torr.

このようにして得られた膜の特性を第2表に示した。こ
の場合には原料の酸化のため制御性が悪く、得られた薄
膜はTcを示さなかった。
The properties of the membrane thus obtained are shown in Table 2. In this case, controllability was poor due to oxidation of the raw material, and the obtained thin film did not exhibit Tc.

[発明の効果] 以上述べたように、本発明の酸化物系超伝導膜の製造方
法によれば、蒸発温度が金属よりも低い金属錯体または
有機金属化合物を蒸発源に用いるため、高融点ルツボや
電子銃等を必要とせずに、通常の蒸発セルを使用して超
伝導膜を製造することができる。
[Effects of the Invention] As described above, according to the method for producing an oxide-based superconducting film of the present invention, since a metal complex or an organometallic compound whose evaporation temperature is lower than that of a metal is used as an evaporation source, a high melting point crucible can be used. Superconducting films can be produced using a normal evaporation cell without the need for an electron gun or an electron gun.

また原料が酸化に対して金属より安定であるため、差動
排気システム等の装置を必要とせずに、酸化物の生成に
必要な酸素分圧を高くすることができるとともに、シャ
ッター制御が可能な高真空領域であるため、高精度の制
御性を維持しながら超伝導膜を製造することができる。
Additionally, since the raw material is more stable against oxidation than metals, it is possible to increase the oxygen partial pressure required for oxide production without the need for equipment such as a differential pumping system, and shutter control is possible. Since it is a high vacuum region, superconducting films can be manufactured while maintaining high precision controllability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法によって製造された超伝導膜のX
RDパターン、第2図はその電気抵抗の温度依存性を示
すグラフ、第3図は本発明の方法に用いられるMBE装
置の概略図、第4図は本発明の方法に用いられる原料の
構造図である。 2・・・・・・反応管 3・・・・・・ロードロック室 4・・・・・・蒸発セル フ・・・・・・原料 10.17・・・・・・タンタルヒータ11・・・・・
・シャッタ 13・・・・・・ノズル 14・・・・・・基板
Figure 1 shows the superconducting film produced by the method of the present invention.
RD pattern, Fig. 2 is a graph showing the temperature dependence of its electrical resistance, Fig. 3 is a schematic diagram of the MBE apparatus used in the method of the present invention, and Fig. 4 is a structural diagram of the raw material used in the method of the present invention. It is. 2... Reaction tube 3... Load lock chamber 4... Evaporation self... Raw material 10.17... Tantalum heater 11...・・・
・Shutter 13... Nozzle 14... Board

Claims (4)

【特許請求の範囲】[Claims] (1)酸化物系超伝導物質を構成する金属元素を含む金
属錯体または有機金属化合物を、高真空中でそれぞれ加
熱して、その蒸発分子をビーム状にして基板に向けて蒸
発させることにより堆積させ、前記基板上に酸化物系超
伝導物質の単結晶膜を生成させることを特徴とする酸化
物系超伝導膜の製造方法。
(1) Deposit by heating the metal complexes or organometallic compounds containing metal elements constituting the oxide-based superconducting material in a high vacuum, and forming the evaporated molecules into a beam shape and evaporating them toward the substrate. A method for producing an oxide-based superconducting film, characterized in that a single crystal film of an oxide-based superconducting material is produced on the substrate.
(2)Y−Ba−Cu−O系の超伝導物質を構成する金
属元素を含むβ−ジケトン系の金属錯体を、高真空中で
それぞれ加熱して、その蒸発分子をビーム状にしてMg
O基板に向けて蒸発させることにより前記基板上に堆積
させた後、酸化性雰囲気中で880〜950℃の温度で
熱処理を施すことにより、前記基板上に酸化物系超伝導
物質の単結晶膜を生成させることを特徴とする酸化物系
超伝導膜の製造方法。
(2) β-diketone-based metal complexes containing metal elements constituting Y-Ba-Cu-O-based superconducting materials are heated in a high vacuum, and their evaporated molecules are formed into a beam to produce Mg.
After being deposited on the substrate by evaporation toward the O substrate, a single crystal film of the oxide-based superconducting material is deposited on the substrate by heat treatment at a temperature of 880 to 950°C in an oxidizing atmosphere. A method for producing an oxide-based superconducting film, the method comprising: producing an oxide-based superconducting film.
(3)金属錯体は、β−ジケトン系の金属錯体である請
求項1記載の酸化物系超伝導膜の製造方法。
(3) The method for producing an oxide-based superconducting film according to claim 1, wherein the metal complex is a β-diketone-based metal complex.
(4)真空度は5×10^−^4Torr以下の高真空
である請求項1または2記載の酸化物系超伝導膜の製造
方法。
(4) The method for producing an oxide-based superconducting film according to claim 1 or 2, wherein the degree of vacuum is a high vacuum of 5 x 10^-^4 Torr or less.
JP2120537A 1990-05-10 1990-05-10 Method for manufacturing oxide-based superconducting film Expired - Lifetime JPH0710759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2120537A JPH0710759B2 (en) 1990-05-10 1990-05-10 Method for manufacturing oxide-based superconducting film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2120537A JPH0710759B2 (en) 1990-05-10 1990-05-10 Method for manufacturing oxide-based superconducting film

Publications (2)

Publication Number Publication Date
JPH0416595A true JPH0416595A (en) 1992-01-21
JPH0710759B2 JPH0710759B2 (en) 1995-02-08

Family

ID=14788744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2120537A Expired - Lifetime JPH0710759B2 (en) 1990-05-10 1990-05-10 Method for manufacturing oxide-based superconducting film

Country Status (1)

Country Link
JP (1) JPH0710759B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7069973B2 (en) 2001-03-21 2006-07-04 Nichibei Co., Ltd. Blind, slat for blinds, and method of producing the same and forming machine therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7069973B2 (en) 2001-03-21 2006-07-04 Nichibei Co., Ltd. Blind, slat for blinds, and method of producing the same and forming machine therefor
US7461440B2 (en) 2001-03-21 2008-12-09 Nichibei Co., Ltd. Blind, blind slat, manufacturing method of the same, and forming machine of the same

Also Published As

Publication number Publication date
JPH0710759B2 (en) 1995-02-08

Similar Documents

Publication Publication Date Title
US6156376A (en) Buffer layers on metal surfaces having biaxial texture as superconductor substrates
US5350738A (en) Method of manufacturing an oxide superconductor film
JPWO2006101255A1 (en) Superconducting magnesium boride thin film and manufacturing method thereof
US5135906A (en) Superconducting thin film of compound oxide and process for preparing the same
Stoessel et al. Thin-film processing of high-T c superconductors
Erbil et al. A Review of Metalorganic Chemical Vapor Deposition of High-Temperature
JPH0416595A (en) Production of oxide superconducting film
JPH0286014A (en) Composite oxide superconducting thin film and film forming method
JP3897550B2 (en) Preparation method of boride superconductor thin film
Tiwari et al. Growth of epitaxial NdNiO 3 and integration with Si (100)
US5314870A (en) Preparing thin film of oxide superconductor
US5260267A (en) Method for forming a Bi-containing superconducting oxide film on a substrate with a buffer layer of Bi2 O3
JP3253295B2 (en) Manufacturing method of oxide thin film
Shyju et al. Review on indium zinc oxide films: material properties and preparation techniques
US5376627A (en) Method of preparing Tl-containing oxide superconducting thin film
JPH0365502A (en) Preparation of superconductive thin film
Park Characteristics of Bi-superconducting Thin Film Fabricated by Layer-by-layer and Co-sputtering Method
JP2541037B2 (en) Oxide superconducting thin film synthesis method
JP2835235B2 (en) Method of forming oxide superconductor thin film
JPH0288426A (en) Production of superconducting thin film
JPS63236794A (en) Production of superconductive thin film of oxide
JPH0196015A (en) Formation of superconducting thin film
JPH0465306A (en) Oxide superconductor thin film
KR950008862B1 (en) MANUFACTURING METHOD OF YBA2 CU3O7-x (X=0-0.5) SUPER CONDUCTOR
JPS63310519A (en) Manufacture of membrane consisting of oxide superconductor material

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term