JPH0710759B2 - Method for manufacturing oxide-based superconducting film - Google Patents

Method for manufacturing oxide-based superconducting film

Info

Publication number
JPH0710759B2
JPH0710759B2 JP2120537A JP12053790A JPH0710759B2 JP H0710759 B2 JPH0710759 B2 JP H0710759B2 JP 2120537 A JP2120537 A JP 2120537A JP 12053790 A JP12053790 A JP 12053790A JP H0710759 B2 JPH0710759 B2 JP H0710759B2
Authority
JP
Japan
Prior art keywords
substrate
oxide
film
based superconducting
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2120537A
Other languages
Japanese (ja)
Other versions
JPH0416595A (en
Inventor
和弘 遠藤
三沢  俊司
貞史 吉田
洋三 池戸
Original Assignee
工業技術院長
昭和電線電纜株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長, 昭和電線電纜株式会社 filed Critical 工業技術院長
Priority to JP2120537A priority Critical patent/JPH0710759B2/en
Publication of JPH0416595A publication Critical patent/JPH0416595A/en
Publication of JPH0710759B2 publication Critical patent/JPH0710759B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は酸化物系超伝導膜の製造方法に係わり、特にMB
E法(分子線エピタキシ法)による酸化物系超伝導膜の
製造方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to a method for producing an oxide-based superconducting film, and particularly to MB.
The present invention relates to improvement of a method for producing an oxide-based superconducting film by the E method (molecular beam epitaxy method).

[従来の技術] La系(La-Ba-Cu-O)、Y系(Y-Ba-Cu-O)、Bi系(Bi-Sr
-Ca-Cu-O)およびTl系(Tl-Ba-Ca-Cu-O)等の酸化物に
代表される酸化物系の超伝導物質は、従来の合金系や金
属間化合物系、即ち、Nb-Ti系やNb3Sn系の超伝導物質と
比較して、その臨界温度(Tc)が高く、各種の用途への
応用が期待されている。
[Prior Art] La series (La-Ba-Cu-O), Y series (Y-Ba-Cu-O), Bi series (Bi-Sr)
-Ca-Cu-O) and Tl-based (Tl-Ba-Ca-Cu-O) and other oxide-based superconducting materials are conventional alloy-based or intermetallic compound-based, that is, Its critical temperature (Tc) is higher than that of Nb-Ti-based and Nb 3 Sn-based superconducting materials, and its application to various applications is expected.

このような応用の前提として、酸化物系の超伝導物質を
用いて超伝導コイルや超伝導素子等を製造するために、
線材化および薄膜化技術を確立することが必要であり、
その中でもジョセフソン素子等のエレクトロニクス材料
への利用として、超伝導間の弱結合を作り易く、微細加
工が容易で高集積化が可能な薄膜の製造技術を確立する
ことが重要となってきている。
As a premise of such application, in order to manufacture a superconducting coil or a superconducting element using an oxide-based superconducting material,
It is necessary to establish wire rod and thin film technology,
Among them, for use in electronic materials such as Josephson devices, it has become important to establish thin film manufacturing technology that facilitates weak coupling between superconducting materials, facilitates fine processing, and enables high integration. .

従来、薄膜の製造方法の主なものとして、(イ)スパッ
タリング法、(ロ)CVD法および(ハ)蒸着法が知られ
ている。
Heretofore, (a) sputtering method, (b) CVD method, and (c) vapor deposition method have been known as main methods for manufacturing a thin film.

上記(イ)の方法は、Ar等のガス雰囲気中でターゲット
と基板との間に電圧をかけ、電子の衝突によって発生す
るガスイオンをターゲットに衝突させて、叩き出された
原子を基板に付着させる方法であり、主機構が熱的過程
でないため高融点材料の薄膜化が容易であり、基板との
付着力の強い膜が得られる利点を有する。また上記
(ロ)の方法は、ハロゲン化物や水素化物等の化合物の
形で原料を供給し、高温基板上での反応により薄膜を成
長させる方法で、成長速度が極めて高く量産的である利
点を有し、さらに上記(ハ)の方法は、各成分毎に蒸発
源を設けて蒸発速度を独立に制御しながら同時に蒸発さ
せて、基板上で化合させる方法であり、組成の制御が容
易で、純度の高い薄膜が得られる利点を有する。
In the method (a) above, a voltage is applied between the target and the substrate in a gas atmosphere such as Ar, and gas ions generated by the collision of electrons are made to collide with the target, and the knocked-out atoms are attached to the substrate. Since the main mechanism is not a thermal process, it is easy to form a thin film of a high-melting point material, and there is an advantage that a film having a strong adhesion to a substrate can be obtained. The method (b) is a method in which a raw material is supplied in the form of a compound such as a halide or a hydride, and a thin film is grown by a reaction on a high temperature substrate. In addition, the above method (c) is a method in which an evaporation source is provided for each component to simultaneously evaporate while independently controlling the evaporation rate and to combine on the substrate, and the composition can be easily controlled. It has an advantage that a thin film with high purity can be obtained.

しかしながら、上記(イ)〜(ハ)の方法では、原子
層レベルでの成長膜厚を制御すること、原子スケール
での平滑性を有する表面を得ること、原子の相互拡散
の影響による超伝導特性の低下を防止すること、および
組成制御を正確におこなうことがいずれも困難である
という難点を有する。
However, in the above methods (a) to (c), controlling the growth film thickness at the atomic layer level, obtaining a surface having atomic scale smoothness, and superconducting properties due to the effect of interdiffusion of atoms. It is difficult to prevent decrease in the composition and to accurately control the composition.

このような難点を解消する方法として、近年、MBE法(M
olecular Beam Epitaxy:分子線エピタキシ法)による薄
膜の製造が検討させている。この方法は、成長させる物
質を高真空中で加熱して、各元素の蒸発分子をビーム状
にして基板に向けて蒸発させ、基板上に単結晶を堆積さ
せるものである。理論的には、超高真空中での分子衝突
に対する平均自由行程が常圧時より長くなるため、蒸発
分子が他の分子と衝突せずに基板に到達する。
In recent years, the MBE method (M
The production of thin films by olecular beam epitaxy is being studied. In this method, a substance to be grown is heated in a high vacuum, and vaporized molecules of each element are made into a beam to be vaporized toward a substrate to deposit a single crystal on the substrate. Theoretically, the mean free path for collision of molecules in ultrahigh vacuum is longer than that under normal pressure, so that evaporated molecules reach the substrate without colliding with other molecules.

このMBE法は上記〜の難点をいずれも克服するもの
であり、かつ結晶成長中に電子線回折等により観察する
こと、および蒸着マスクを用いて選択成長させることが
可能である利点を有する。
The MBE method overcomes all of the above-mentioned problems (1) to (3) and has the advantage that it can be observed by electron beam diffraction or the like during crystal growth and that selective growth can be performed using a vapor deposition mask.

[発明が解決しようとする課題] 上記のように、MBE法により酸化物超伝導膜を製造する
場合には、原料温度、基板温度、シャッタの使用等によ
り高精度の組成制御や単原子層の膜厚制御ができる上、
エピタキシ成長が期待できる利点を有するが、蒸発源と
して用いるY、Ba等が高融点金属ため、その溶融、蒸発
に高融点ルツボや電子銃を使用する必要があり、装置構
造が複雑となる上、酸化膜を生成させるために導入する
酸化種(O2、O3、O*)が原料の金属を酸化し堆積速度を
変化させるため、成長中の酸素分圧が制限される等の問
題点がある。蒸発条件の変化は、フィードバック回路に
よるパワー増大により原料の突沸の原因ともなる。
[Problems to be Solved by the Invention] As described above, in the case of producing an oxide superconducting film by the MBE method, it is possible to control the composition with high accuracy by using a raw material temperature, a substrate temperature, the use of a shutter, or the like, and a monoatomic layer. The film thickness can be controlled,
Although it has the advantage that epitaxy growth can be expected, since Y, Ba, etc. used as evaporation sources are high melting point metals, it is necessary to use high melting point crucibles and electron guns for melting and vaporizing them, and the device structure becomes complicated. Oxidizing species (O 2 , O 3 , O * ) introduced to form an oxide film oxidize the metal of the raw material and change the deposition rate, which causes problems such as limiting the oxygen partial pressure during growth. is there. The change in the evaporation condition also causes the bumping of the raw material due to the power increase by the feedback circuit.

MBE法による酸化物系超伝導膜の作製例としては、
(ニ)反応性蒸着により、単結晶YBCO薄膜を作製したも
の(Jpn.J.Appl.Phys.,27,L91-93,1988)、(ホ)ECRプ
ラズマを使用して、分子線領域でYBCO薄膜を作製したも
の(Jpn.J.Appl.Phys.,27,L2075-2077,1988)または
(ヘ)原料の酸化の問題を回避するために、蒸発源と成
長室とを分け、それぞれ排気する差動排気システムを用
いたもの(Jpn.J.Appl.Phys.,28,L635-638,1989)等を
上げることができる。
As an example of producing an oxide-based superconducting film by the MBE method,
(D) A single crystal YBCO thin film prepared by reactive evaporation (Jpn.J.Appl.Phys., 27, L91-93,1988), (e) YBCO in the molecular beam region using ECR plasma. A thin film (Jpn.J.Appl.Phys., 27, L2075-2077,1988) or (f) In order to avoid the problem of raw material oxidation, the evaporation source and the growth chamber are separated and exhausted separately. Those using a differential pumping system (Jpn.J.Appl.Phys., 28, L635-638, 1989) can be used.

しかしながら、上記(ニ)の方法では、基板周辺の酸素
分圧を高くすることにより酸化物を作製しているが、基
板周辺が分子線領域に達しておらず、MBE法の利点であ
るシャッタ制御による原子層制御は困難である。また上
記(ホ)の方法では、蒸発源としてY等の高融点金属を
もちいているため、原料が酸化するという問題があり、
(ヘ)の方法では装置が複雑となる上、成長中の酸素分
圧が制限されるという難点を有する。
However, in the method of (d) above, the oxide is produced by increasing the oxygen partial pressure around the substrate, but the periphery of the substrate does not reach the molecular beam region, and shutter control, which is an advantage of the MBE method, is achieved. It is difficult to control the atomic layer by. In the method (e), since a refractory metal such as Y is used as the evaporation source, there is a problem that the raw material is oxidized,
The method (f) has a drawback that the apparatus becomes complicated and the oxygen partial pressure during growth is limited.

本発明は上記の難点を解決するためになされたもので、
即ち、MBE法において高融点ルツボや電子銃等の装置を
必要とせず、分子線領域を維持しながら酸素分圧を高
め、かつ原料の酸化の問題を生ずることなく酸化物系超
伝導膜を製造する方法を提供することをその目的とす
る。
The present invention has been made to solve the above problems,
That is, the MBE method does not require a device such as a high melting point crucible or an electron gun, increases the oxygen partial pressure while maintaining the molecular beam region, and produces an oxide-based superconducting film without causing the problem of raw material oxidation. The purpose is to provide a method of doing.

[課題を解決するための手段] 上記目的を達成するために、本発明の酸化物系超伝導膜
の製造方法は、酸化物系超伝導物質を構成する金属元素
を含む金属錯対または有機金属化合物を、高真空中でそ
れぞれ加熱して、そんの蒸発分子をビーム状にして基板
に向けて蒸発させることにより堆積させ、前記基板上に
酸化物系超伝導物質の単結晶膜を生成させるものであ
る。
[Means for Solving the Problems] In order to achieve the above object, a method for producing an oxide-based superconducting film according to the present invention is a metal complex or an organometallic complex containing a metal element constituting an oxide-based superconducting substance. Compounds are heated in a high vacuum, and the vaporized molecules are deposited in the form of beams to evaporate toward a substrate to form a single crystal film of an oxide superconducting substance on the substrate. Is.

本発明における酸化物系超伝導物質としては、特に限定
されないが、代表的にはY系、Bi系等の超伝導物質に適
用することができる。
The oxide superconducting material in the present invention is not particularly limited, but it is typically applicable to Y-based, Bi-based superconducting materials and the like.

また酸化物系超伝導物質を構成する金属元素を含む物質
としては、蒸発温度が金属よりも著しく低い金属錯体ま
たは有機金属化合物が用いられ、特に基板上への堆積速
度からβ−ジケトン系の金属錯体が好適する。
Further, as the substance containing a metal element constituting the oxide-based superconducting substance, a metal complex or an organometallic compound having an evaporation temperature significantly lower than that of the metal is used, and in particular, a β-diketone-based metal is used because of its deposition rate on the substrate. Complexes are preferred.

β−ジケトンはケトーエノール互変異性体で、エノール
体が多くの金属に2座配位子として結合したもので、常
温で粉末状の固体であり、加熱することにより蒸発す
る。蒸発温度が金属より遥かに低いので、低温でも蒸気
圧が十分にとれ、また酸素に対して金属より安定である
ため、原料の酸化の問題も生じない。β−ジケトン系の
金属体の中、DPM(dipivaloyl methane)とPPM(pentaf
luoropropanoyl pivaloyl methane)について基板上へ
の堆積速度と熱重量分析(TGA)の結果から、Y系の超
伝導膜の生成には、特にY(PPM)3、Ba(PPM)2およびCu(DP
M)2が原料として適することが判明した。これ等の原料
の蒸発温度120℃の時のMgO(100)基板温度と金属付着
量との関係を第1表に、またその構造図を第4図に示
す。
β-diketone is a keto-enol tautomer, which is an enol bound to many metals as a bidentate ligand, is a powdery solid at room temperature, and evaporates when heated. Since the evaporation temperature is much lower than that of metal, the vapor pressure can be sufficiently taken even at low temperature, and it is more stable to oxygen than metal, so that there is no problem of raw material oxidation. Among β-diketone-based metals, DPM (dipivaloyl methane) and PPM (pentaf
From the results of deposition rate on substrate and thermogravimetric analysis (TGA) of luoropropanoyl pivaloyl methane), Y (PPM) 3 , Ba (PPM) 2 and Cu (DP
It was found that M) 2 is suitable as a raw material. Table 1 shows the relationship between the MgO (100) substrate temperature and the metal deposition amount when the evaporation temperature of these raw materials was 120 ° C., and its structural diagram is shown in FIG.

本発明の方法においては、分子線領域を保つために基板
上への蒸発分子の堆積は高真空下で行われるが、この場
合の真空度は5×10-4以下、特に10-4以下とすることが
好ましい。真空度が5×10-4を超えると蒸発分子の平均
自由行程が短くなり、これにより制御性が低下する。
In the method of the present invention, the evaporation molecules are deposited on the substrate under a high vacuum in order to maintain the molecular beam region. In this case, the degree of vacuum is 5 × 10 −4 or less, particularly 10 −4 or less. Preferably. When the degree of vacuum exceeds 5 × 10 -4 , the mean free path of the vaporized molecules becomes short, which lowers the controllability.

また、加熱された基板上へ堆積した蒸発分子は分解して
酸化物結晶に成長するが、必要に応じて酸化性雰囲気中
で熱処理を施すことができる。即ち、100%オゾンや活
性酸素を用いた場合には堆積後に熱処理を施さなくとも
超伝導膜を生成することが可能であるが、酸素分圧が低
い場合には熱処理を必要とする。Y系超伝導膜の場合、
その温度は880〜950℃が適する。熱処理温度が880℃未
満であるとYBCOの結晶成長が小さく、950℃を超える温
度や長時間の熱処理によってもBaO等の分解物を生成
し、特性が低下したり超伝導性を示さなくなる。
Further, the vaporized molecules deposited on the heated substrate are decomposed and grow into oxide crystals, but if necessary, heat treatment can be performed in an oxidizing atmosphere. That is, when 100% ozone or active oxygen is used, it is possible to form a superconducting film without heat treatment after deposition, but when oxygen partial pressure is low, heat treatment is required. In the case of Y-based superconducting film,
A suitable temperature is 880 to 950 ° C. If the heat treatment temperature is lower than 880 ° C, YBCO crystal growth is small, and decomposition products such as BaO are generated even if the heat treatment is performed at a temperature higher than 950 ° C or for a long time, and the characteristics are deteriorated or superconductivity is not exhibited.

以上述べたY系の場合に対しては、本願第2の発明とし
て、Y-Ba-Cu-O系の超伝導物質を構成する金属元素を含
むβ−ジケトン系の金属錯体を、高真空中でそれぞれ加
熱して、その蒸発分子をビーム状にしてMgO基板に向け
て蒸発させることにより前記基板上に堆積させた後、酸
化性雰囲気中で880〜950℃の温度で熱処理を施すことに
より、前記基板上に酸化物系超伝導物質の単結晶膜を生
成させる酸化物系超伝導膜の製造方法として記述され
る。
In the case of the Y-based case described above, as a second invention of the present application, a β-diketone-based metal complex containing a metal element constituting a Y-Ba-Cu-O-based superconducting material is placed in a high vacuum. By heating each, and after depositing on the substrate by evaporating the vaporized molecules toward the MgO substrate in the form of a beam, by applying a heat treatment at a temperature of 880 to 950 ° C. in an oxidizing atmosphere, It is described as a method of manufacturing an oxide-based superconducting film in which a single crystal film of an oxide-based superconducting material is formed on the substrate.

[作用] 本発明の方法においては、蒸発温度が金属よりも低い金
属錯体または有機金属化合物を蒸発源に用いるため、通
常の蒸発セルを使用することができ、また原料が酸化に
対して金属より安定なため、酸化物の生成に必要な酸素
の分圧を高くすることができる。またシャッター制御が
可能な真空領域であるため、高精度の制御性を維持しな
がら超伝導膜を製造することができる。
[Operation] In the method of the present invention, since a metal complex or an organometallic compound having an evaporation temperature lower than that of a metal is used as an evaporation source, an ordinary evaporation cell can be used, and the raw material is more resistant to oxidation than the metal. Since it is stable, the partial pressure of oxygen required for oxide formation can be increased. Further, since it is a vacuum region in which shutter control is possible, it is possible to manufacture a superconducting film while maintaining high precision controllability.

さらに、基板表面で蒸発分子が反応するため、MOCVD法
のように原料が途中で反応や分解することがない。即
ち、本発明の方法はMBE法とMOCVD法の利点を併せ持った
結晶成長法といえる。
Further, since the vaporized molecules react on the surface of the substrate, the raw material does not react or decompose in the middle unlike the MOCVD method. That is, it can be said that the method of the present invention is a crystal growth method having the advantages of the MBE method and the MOCVD method.

[実施例] 以下、本発明の実施例について説明する。[Examples] Examples of the present invention will be described below.

第3図は本発明の方法に用いられるMBE装置1の一実施
例を示す概略図である。同図において、2は反応室、3
はロードロック室、4は蒸発セルを示す。
FIG. 3 is a schematic view showing an embodiment of the MBE device 1 used in the method of the present invention. In the figure, 2 is a reaction chamber, 3
Indicates a load lock chamber, and 4 indicates an evaporation cell.

反応室2およびロードロック室3はそれぞれターボ分子
ポンプ5とロータリーポンプ6で排気され、ガスを導入
しない状態で10-6Torr以下まで真空にすることができ
る。原料7はそれぞれBN(ボロンナイトライド)で形成
されたルツボ8に収容され、温度コントローラ9で制御
されるタンタルヒータ10により加熱される。蒸発した原
料は基板に向けて直進し、基板に到達する蒸発分子の量
はシャッタ11の開閉により調節することが可能な構造と
なっている。
The reaction chamber 2 and the load lock chamber 3 are exhausted by a turbo molecular pump 5 and a rotary pump 6, respectively, and can be evacuated to 10 -6 Torr or less without introducing gas. Each raw material 7 is housed in a crucible 8 made of BN (boron nitride) and heated by a tantalum heater 10 controlled by a temperature controller 9. The vaporized raw material goes straight toward the substrate, and the amount of vaporized molecules reaching the substrate can be adjusted by opening and closing the shutter 11.

反応室2内に導入される酸素は0〜5ccmの範囲でマスフ
ローコントローラ12により制御され、基板から約15cmの
所までノズル13を通り基板14に吹付けられる。基板14
は、例えばMgO(100)からなり、モリブデンで形成され
たホルダ15にインジウム等で接着され、ホルダ15は温度
コントローラ16で制御されるプレート状のタンタルヒー
タ17で加熱される。尚、18はゲートバルブ、19は基板搬
送器である。
Oxygen introduced into the reaction chamber 2 is controlled by the mass flow controller 12 within a range of 0 to 5 ccm, and is blown onto the substrate 14 through the nozzle 13 up to about 15 cm from the substrate. Board 14
Is made of, for example, MgO (100) and is bonded to a holder 15 made of molybdenum with indium or the like. The holder 15 is heated by a plate-shaped tantalum heater 17 controlled by a temperature controller 16. Reference numeral 18 is a gate valve, and 19 is a substrate carrier.

実施例1 第3図に示したMBE装置1を用いてYBCO(Y-Ba-Cu-O系)
超伝導物質の多元素着を行った。原料として、Y、Baお
よびCuのβ−ジケトン系の金属錯体を用いた。
Example 1 Using the MBE device 1 shown in FIG. 3, YBCO (Y-Ba-Cu-O system)
Multi-element deposition of superconducting material was performed. As a raw material, a β-diketone-based metal complex of Y, Ba and Cu was used.

これらの原料をシャッタ付きの蒸発セルのルツボに入
れ、Taヒータによりそれぞれ加熱し、基板上に薄膜を成
長させた。基板は、上記の超伝導物質と熱膨張率および
格子定数の値がほぼ近く、アルカリ土類金属を含むため
科学的に安定なMgOを用いた。
These raw materials were placed in a crucible of an evaporation cell equipped with a shutter and heated by a Ta heater to grow a thin film on the substrate. The substrate was made of MgO that is scientifically stable because it has a thermal expansion coefficient and a lattice constant close to those of the above-mentioned superconducting substance and contains an alkaline earth metal.

この時の堆積条件を以下に示す。The deposition conditions at this time are shown below.

基板……………MgO(100) 基板温度………600℃ 原料温度………Y(PPM)3………120℃ Ba(PPM)2……160℃ Cu(DPM)2……45℃ 酸素量…………3cm3/min 真空度…………1×10-4Torr 堆積速度………2700Å/hr このようにして得られた膜の金属組成比はY:Ba:Cu=1:
2.39:4.54であった。次いで、上記の膜を紫外線ゴール
ドイメージ炉を用いて酸素気流中(100ml/min)で900℃
×1hr加熱し、アニールした。
Substrate ……… MgO (100) Substrate temperature ……… 600 ℃ Raw material temperature ……… Y (PPM) 3 ……… 120 ℃ Ba (PPM) 2 … 160 ℃ Cu (DPM) 2 … 45 ℃ Oxygen amount ………… 3cm 3 / min Vacuum degree ………… 1 × 10 -4 Torr Deposition rate ………… 2700Å / hr The metal composition ratio of the film thus obtained is Y: Ba: Cu = 1 :
It was 2.39: 4.54. Then, the above film was heated to 900 ° C in an oxygen stream (100 ml / min) using an ultraviolet gold image furnace.
It was annealed by heating for × 1 hr.

得られた超伝導膜のXRO(X線回折)パターンを第1図
に、またその電気抵抗の温度依存性を第2図に示す。両
図から明らかなように、この超伝導膜はほぼC軸配向性
を示すとともに、Tc(on set)=80K、Tc(end)=74K
の値を有する。
The XRO (X-ray diffraction) pattern of the obtained superconducting film is shown in FIG. 1, and the temperature dependence of its electric resistance is shown in FIG. As is clear from both figures, this superconducting film shows almost C-axis orientation, and Tc (on set) = 80K, Tc (end) = 74K.
Has a value of.

実施例2 原料および基板の種類、原料および基板の温度を実施例
1と同一とし、酸素量を1cm3/min、真空度を10-5Torr
として基板上に薄膜を成長させた。次いで、上記の膜を
実施例1と同様の方法でアニールした。
Example 2 The raw material and substrate type, the raw material and substrate temperature were the same as in Example 1, the oxygen amount was 1 cm 3 / min, and the vacuum degree was 10 −5 Torr.
As a thin film was grown on the substrate. Then, the above film was annealed in the same manner as in Example 1.

この超伝導膜の特性を第2表に示す。実施例1に比較し
てTcの値ガ低下しているのは酸化力が弱いためと考えら
れる。
The characteristics of this superconducting film are shown in Table 2. The decrease in the Tc value compared to Example 1 is considered to be due to the weak oxidizing power.

尚、第2表において、○は良好、×は不良および△はそ
の中間の状態を示す。
In Table 2, ◯ means good, × means bad, and Δ means intermediate state.

比較例1 原料および基板の種類、原料および基板の温度を実施例
1と同一とし、酸素量を5cm3/min、真空度を10-3Torr
として基板上に薄膜を成長させた。次いで、上記の膜を
実施例1と同様の方法でアニールした。
Comparative Example 1 The types of raw materials and substrates, the temperatures of raw materials and substrates were the same as in Example 1, the amount of oxygen was 5 cm 3 / min, and the degree of vacuum was 10 −3 Torr.
As a thin film was grown on the substrate. Then, the above film was annealed in the same manner as in Example 1.

このようにして得られた膜の特性を第2表に示した。こ
の場合にはシャッタによる制御ガ不可能で、得られた薄
膜はTcを示されなかった。
The characteristics of the film thus obtained are shown in Table 2. In this case, the shutter control was impossible, and the obtained thin film did not show Tc.

比較例2 Y、Baの蒸発に電子銃を用い、Cuの蒸発には高融点ルツ
ホを用いた他は比較例1と同様に方法により、基板上に
薄膜を成長させた。
Comparative Example 2 A thin film was grown on a substrate by the same method as in Comparative Example 1 except that an electron gun was used for evaporation of Y and Ba, and a high melting point Ruthu was used for evaporation of Cu.

このようにして得られた膜の特性を第2表に示した。こ
の場合には原料が酸化し成膜が不可能であった。
The characteristics of the film thus obtained are shown in Table 2. In this case, the raw material was oxidized and film formation was impossible.

比較例3 Cuの蒸発温度を1500℃とし、酸素量を3cm3/min、真空
度を10-4Torrとした以外は比較例2と同様の方法によ
り、基板上に薄膜を成長させた。
Comparative Example 3 A thin film was grown on a substrate by the same method as in Comparative Example 2 except that the evaporation temperature of Cu was 1500 ° C., the amount of oxygen was 3 cm 3 / min, and the degree of vacuum was 10 −4 Torr.

このようにして得られた膜の特性を第2表に示した。こ
の場合には原料の酸化のため制御性が悪く、得られた薄
膜はTcを示さなかった。
The characteristics of the film thus obtained are shown in Table 2. In this case, the controllability was poor due to the oxidation of the raw material, and the obtained thin film did not show Tc.

[発明の効果] 以上述べたように、本発明の酸化物系超伝導膜の製造方
法によれば、蒸発温度が金属よりも低い金属錯体または
有機金属化合物を蒸発源に用いるため、高融点ルツボや
電子銃等を必要とせずに、通常に蒸発セルを使用して超
伝導膜を製造することができる。
[Effects of the Invention] As described above, according to the method for producing an oxide-based superconducting film of the present invention, since a metal complex or an organometallic compound having an evaporation temperature lower than that of a metal is used as an evaporation source, the high melting point crucible is used. A superconducting film can be manufactured by using an evaporation cell in general, without the need for an electron gun or the like.

また原料が酸化に対して金属より安定であるため、差動
排気システム等の装置を必要とせずに、酸化物の生成に
必要な酸素分圧を高くすることができるとともに、シャ
ッター制御が可能な高真空領域であるため、高精度の制
御性を維持しながら超伝導膜を製造することができる。
In addition, since the raw material is more stable against oxidation than metal, the oxygen partial pressure required for oxide generation can be increased and shutter control is possible without the need for a device such as a differential exhaust system. Since it is in the high vacuum region, the superconducting film can be manufactured while maintaining the controllability with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の方法によって製造された超伝導膜のXR
Dパターン、第2図はその電気抵抗の温度依存性を示す
グラフ、第3図は本発明の方法に用いられるMBE装置の
概略図、第4図は本発明の方法に用いられる原料の構造
図である。 2……反応管 3……ロードロック室 4……蒸発セル 7……原料 10、17……タンタルヒータ 11……シャッタ 13……ノズル 14……基板
FIG. 1 shows the XR of the superconducting film manufactured by the method of the present invention.
D pattern, FIG. 2 is a graph showing the temperature dependence of its electric resistance, FIG. 3 is a schematic diagram of an MBE apparatus used in the method of the present invention, and FIG. 4 is a structural diagram of raw materials used in the method of the present invention. Is. 2 ... Reaction tube 3 ... Load lock chamber 4 ... Evaporation cell 7 ... Raw material 10, 17 ... Tantalum heater 11 ... Shutter 13 ... Nozzle 14 ... Substrate

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01B 13/00 565 D 7244−5G H01L 39/24 ZAA C 9276−4M (72)発明者 吉田 貞史 茨城県つくば市梅園1丁目1番4 工業技 術院電子技術総合研究所内 (72)発明者 池戸 洋三 神奈川県川崎市川崎区小田栄2丁目1番1 号 昭和電線電纜株式会社内 審査官 真々田 忠博─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical display location H01B 13/00 565 D 7244-5G H01L 39/24 ZAA C 9276-4M (72) Inventor Sada Yoshida History 1-4 Umezono, Tsukuba-shi, Ibaraki Electronic Technology Research Institute, Industrial Technology Institute (72) Yozo Ikedo 2-1-1 Oda Sakae, Kawasaki-ku, Kawasaki-shi, Kanagawa Showa Electric Wire & Cable Co., Ltd. Examiner Sanada Tadahiro

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】酸化物系超伝導物質を構成する金属元素を
含む金属錯体または有機金属化合物を、高真空中でそれ
ぞれ加熱して、その蒸発分子をビーム状にして基板に向
けて蒸発させることにより堆積させ、前記基板上に酸化
物系超伝導物質の単結晶膜を生成させることを特徴とす
る酸化物系超伝導膜の製造方法。
1. A metal complex or an organometallic compound containing a metal element that constitutes an oxide-based superconducting substance is heated in a high vacuum to vaporize vaporized molecules of the vaporized molecules toward a substrate. And a single crystal film of an oxide-based superconducting material is formed on the substrate, to produce an oxide-based superconducting film.
【請求項2】Y-Ba-Cu-O系の超伝導物質を構成する金属
元素を含むβ−ジケトン系の金属錯体を、高真空中でそ
れぞれ加熱して、その蒸発分子をビーム状にしてMgO基
板に向けて蒸発させることにより前記基板上に堆積させ
た後、酸化性雰囲気中で880〜950℃の温度で熱処理を施
すことにより、前記基板上に酸化物系超伝導物質の単結
晶膜を生成させることを特徴とする酸化物系超伝導膜の
製造方法。
2. A β-diketone-based metal complex containing a metal element constituting a Y-Ba-Cu-O-based superconducting substance is heated in a high vacuum to form vaporized molecules thereof into a beam. After being deposited on the substrate by evaporating toward the MgO substrate, a heat treatment is performed at a temperature of 880 to 950 ° C. in an oxidizing atmosphere to form a single crystal film of an oxide-based superconducting material on the substrate. A method for producing an oxide-based superconducting film, which comprises:
【請求項3】金属錯体は、β−ジケトン系の金属錯体で
ある請求項1記載の酸化物系超伝導膜の製造方法。
3. The method for producing an oxide-based superconducting film according to claim 1, wherein the metal complex is a β-diketone-based metal complex.
【請求項4】真空度は5×10-4Torr以下の高真空である
請求項1または2記載の酸化物系超伝導膜の製造方法。
4. The method for producing an oxide superconducting film according to claim 1, wherein the degree of vacuum is a high vacuum of 5 × 10 −4 Torr or less.
JP2120537A 1990-05-10 1990-05-10 Method for manufacturing oxide-based superconducting film Expired - Lifetime JPH0710759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2120537A JPH0710759B2 (en) 1990-05-10 1990-05-10 Method for manufacturing oxide-based superconducting film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2120537A JPH0710759B2 (en) 1990-05-10 1990-05-10 Method for manufacturing oxide-based superconducting film

Publications (2)

Publication Number Publication Date
JPH0416595A JPH0416595A (en) 1992-01-21
JPH0710759B2 true JPH0710759B2 (en) 1995-02-08

Family

ID=14788744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2120537A Expired - Lifetime JPH0710759B2 (en) 1990-05-10 1990-05-10 Method for manufacturing oxide-based superconducting film

Country Status (1)

Country Link
JP (1) JPH0710759B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3475186B2 (en) 2001-03-21 2003-12-08 株式会社ニチベイ Blinds, blind slats, manufacturing method thereof and molding machine

Also Published As

Publication number Publication date
JPH0416595A (en) 1992-01-21

Similar Documents

Publication Publication Date Title
EP0302506B1 (en) Method and apparatus for fabricating superconductive thin films
US5108984A (en) Method for producing thin film of oxide superconductor
US6156376A (en) Buffer layers on metal surfaces having biaxial texture as superconductor substrates
Schieber Deposition of high temperature superconducting films by physical and chemical methods
US5135906A (en) Superconducting thin film of compound oxide and process for preparing the same
Zhao et al. In-situ growth of YBCO high-Tc superconducting thin films by plasma-enhanced metalorganic chemical vapor deposition
Stoessel et al. Thin-film processing of high-T c superconductors
JPH0710759B2 (en) Method for manufacturing oxide-based superconducting film
US5196398A (en) Process for producing thallium type superconducting thin film
US6194353B1 (en) Process for preparing superconducting thin film formed of oxide superconductor material
EP0505112B1 (en) Bi-Sr-Ca-Cu-O system superconducting thin film and method of forming the same
US4981839A (en) Method of forming superconducting oxide films using zone annealing
JP3897550B2 (en) Preparation method of boride superconductor thin film
US5314870A (en) Preparing thin film of oxide superconductor
JP2539458B2 (en) Method and device for manufacturing superconducting thin film
US4914080A (en) Method for fabricating superconductive film
US5260267A (en) Method for forming a Bi-containing superconducting oxide film on a substrate with a buffer layer of Bi2 O3
EP0643400B1 (en) Method for making a superconductor thin film
JPH0365502A (en) Preparation of superconductive thin film
JP2835235B2 (en) Method of forming oxide superconductor thin film
JP2541037B2 (en) Oxide superconducting thin film synthesis method
JP3020518B2 (en) Oxide superconductor thin film
US3988178A (en) Method for preparing superconductors
JP2601034B2 (en) Manufacturing method of oxide superconducting film
JPH05170448A (en) Production of thin ceramic film

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term