JPH04164864A - Production of superconducting material - Google Patents

Production of superconducting material

Info

Publication number
JPH04164864A
JPH04164864A JP2288014A JP28801490A JPH04164864A JP H04164864 A JPH04164864 A JP H04164864A JP 2288014 A JP2288014 A JP 2288014A JP 28801490 A JP28801490 A JP 28801490A JP H04164864 A JPH04164864 A JP H04164864A
Authority
JP
Japan
Prior art keywords
phase
cooling
superconducting material
superconducting
production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2288014A
Other languages
Japanese (ja)
Inventor
Eiji Natori
栄治 名取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2288014A priority Critical patent/JPH04164864A/en
Publication of JPH04164864A publication Critical patent/JPH04164864A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To obtain a superconducting material having high critical current density, excellent mechanical strength and durability (environmental resistance) in production of a superconducting material in bulk by adopting constitution of three processes comprising melting of raw material, hot processing and then cooling. CONSTITUTION:In production of a superconducting material in bulk, fundamental processes consist of a process of melting a raw material (including calcined powder), a process of hot processing in a mixed phase state of liquid phase and crystal phase after cooling and a process of growing crystal and cooling.

Description

【発明の詳細な説明】 [産業上の利用分野〕 本発明は送電線、アンテナ、超伝導マグネット、超伝導
軸受け、エネルギー貯蔵(ロードレベリング)等に用い
るバルク的な超伝導材料に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to bulk superconducting materials used in power transmission lines, antennas, superconducting magnets, superconducting bearings, energy storage (load leveling), and the like.

[従来の技術] 臨界温度が液体窒素温度77Kを越え幅広い応用が期待
されるいわゆる高温超伝導体はHousuton大学の
C,W、Chuらが発見したLn−Ba−Cu−0系(
Lnは希土類元素を示す)、Arkansau大学のA
+ M、Hermannらの発見したTl−Ba−Ca
−Cu−0系、金属材料技術研究所の前日の発見したB
1−8r−Ca−Cu−0系の3種類に大別できる。 
(これらは安定性・再現性共に高い物質゛であるため公
認の高温超伝導体であるがこの他にもLa−8r−Nb
−0系、Tl−8r−V−0系等が鹿児島大学、日立等
から報告されている。)これらを用いた超伝導材料の従
来の製造方法をバルク(デバイスに用いられる薄膜に対
向した言葉)超伝導材料の代表例である線材で説明する
。その基本工程は粉末粉体冶金協会の昭和63年度春期
大会講演概要集p26〜27に述べられているように銀
製チューブ(シース)に予め作製した超伝導粉末を充填
し、線引き・ロール圧延等により成形加工した後鍋チュ
ーブ内1部の粉末を焼結する工程より成っていた。
[Prior art] The so-called high-temperature superconductor whose critical temperature exceeds the liquid nitrogen temperature of 77 K and is expected to find wide application is the Ln-Ba-Cu-0 system (
Ln indicates a rare earth element), A of the University of Arkansas
+ Tl-Ba-Ca discovered by M, Hermann et al.
-Cu-0 series, B discovered the day before at the Institute of Metals and Materials Technology
It can be roughly divided into three types: 1-8r-Ca-Cu-0 system.
(These are substances with high stability and reproducibility, so they are officially recognized high-temperature superconductors, but in addition to La-8r-Nb
-0 series, Tl-8r-V-0 series, etc. have been reported by Kagoshima University, Hitachi, etc. ) The conventional manufacturing method of superconducting materials using these materials will be explained using wire rods, which are typical examples of bulk (a word opposed to thin films used in devices) superconducting materials. The basic process is as described in the Powder Metallurgy Association's 1986 Spring Conference Lecture Abstracts, pages 26-27, a silver tube (sheath) is filled with pre-prepared superconducting powder, and then wire-drawn, roll-rolled, etc. The process consisted of sintering the powder in a portion of the pot tube after being formed.

[発明が解決しようとする課題] しかしながら従来の製造方法では■高温超伝導体は結晶
構造に起因して異方性が強い物質であるにも関わらず結
晶方向の制御が成されていない、線引きや圧延を行なう
事により僅か配向するが粉体は互いに干渉して回転しず
らい状態にあるため配向度は低い、■粒界部等に非超伝
導体相を析出し易く超伝導体相が連続的に成長し゛ない
。■粉体を成形した後の焼結であるため空孔が多く密度
が低い。
[Problems to be solved by the invention] However, in conventional manufacturing methods, ■ Although high-temperature superconductors are materials with strong anisotropy due to their crystal structure, the crystal direction is not controlled; The degree of orientation is low because the powders interfere with each other and are difficult to rotate, although the degree of orientation is low due to rolling and rolling. It does not grow continuously. ■Since the powder is sintered after being molded, there are many pores and the density is low.

等の原因によりコンスタントに得られる臨界電流密度は
103A/cm2(77K)台前半と低いものになって
いた。また空孔が多いと機械強度が弱くなるだけでなく
表面積が多くなるため劣化し易く耐久性(耐環境性)も
悪くしていた。
Due to these reasons, the constantly obtainable critical current density was as low as 103 A/cm2 (77 K). Furthermore, when there are many pores, not only does the mechanical strength become weak, but also the surface area becomes large, which makes it easy to deteriorate and deteriorates the durability (environmental resistance).

本発明はこの様な問題を解決するものであり、臨界電流
密度が高く、機械的強度、耐久性(耐環境性)に優れた
超伝導材料を得んとするものである。
The present invention aims to solve these problems and to obtain a superconducting material that has a high critical current density and excellent mechanical strength and durability (environmental resistance).

[課題を解決するための手段] 上記の問題を解決するため本発明の超伝導材料の製造方
法はバルク的な超伝導材料の製造方法に於いて基本工程
が原料(仮焼粉も含む)を溶融する工程、冷却後液相と
結晶相との混相状態で熱間加工する工程、結晶を成長さ
せると共に全体が固相になるまで冷却する工程より成る
ことを特徴とする。
[Means for Solving the Problems] In order to solve the above problems, the method for manufacturing a superconducting material of the present invention is a method for manufacturing a bulk superconducting material, in which the basic step is to use raw materials (including calcined powder). It is characterized by comprising a step of melting, a step of hot working in a mixed phase state of a liquid phase and a crystalline phase after cooling, and a step of growing crystals and cooling until the whole becomes a solid phase.

[実施例] 以下実施例に従い本発明の詳細な説明する。[Example] The present invention will be described in detail below with reference to Examples.

実施例−1 先ず原料Y 203、B a C03、CuO粉末を混
合分散した後900°C酸素雰囲気中で15時間仮焼す
る0次に仮焼物を粉砕攪拌した後1350°C〜145
0℃に加熱し溶融する。溶融時間が長いとY2O3は凝
集し不均一な分散状態となるため溶融は3〜10分間と
比較的短い時間で行なう事が好ましい0次にこの溶融物
を加熱したシース内に訪込む。シース加熱温度は溶融物
(液相)が冷却され液相と結晶相の混相状態になる温度
即ち1050℃〜1150℃である。次に鋳込物をシー
スと共に回転させながら繰り近し圧延する。この圧延に
よりYBa2Cu307−x(超伝導相: 以下123
相とする)成長の核となるY2BaCuO5(非超伝導
相: 以下211相とする)と液相は均一に分散させら
れる0周知のように123相は211相と液相(3Ba
cu02+2CuO)との包晶反応により生々するため
211相と液相の分散が不均一の場合非超伝導体(21
1相等″)相が多くなり超伝導体相の繋りを切断する。
Example-1 First, raw materials Y 203, B a C03, and CuO powder were mixed and dispersed and then calcined at 900°C in an oxygen atmosphere for 15 hours.The calcined product was then crushed and stirred and then heated at 1350°C to 145°C.
Heat to 0°C to melt. If the melting time is too long, the Y2O3 will aggregate and become non-uniformly dispersed, so it is preferable to melt the Y2O3 in a relatively short time of 3 to 10 minutes.The melt then enters the heated sheath. The sheath heating temperature is a temperature at which the melt (liquid phase) is cooled to a mixed phase state of a liquid phase and a crystalline phase, that is, 1050°C to 1150°C. Next, the casting is rolled while rotating together with the sheath. By this rolling, YBa2Cu307-x (superconducting phase: 123
Y2BaCuO5 (non-superconducting phase: hereinafter referred to as 211 phase), which serves as the nucleus for growth (hereinafter referred to as 211 phase), and the liquid phase are uniformly dispersed.
If the dispersion of the 211 phase and the liquid phase is non-uniform, the non-superconductor (21
1 phase, etc.'') phase increases and breaks the connection between the superconductor phases.

っまり123相を連続的に成長させるには211相を均
一に分散させる必要があるが所定の条件下に於ける圧延
はミキシング効果により211相の分散を均一にする効
果がある。
In order to grow the 123 phase continuously, it is necessary to uniformly disperse the 211 phase, but rolling under certain conditions has the effect of uniformly dispersing the 211 phase due to the mixing effect.

次に連続して圧延を行いながら1000°C前後即ち1
23相が析出する温度まで冷却(常に液相の存在する状
態にあること)する、その後圧延を止め結晶成長を行な
うため一定時間ホールドし徐冷する。この圧延により結
晶は配向させられる。
Next, rolling is continued at around 1000°C, i.e. 1
The product is cooled to a temperature at which phase 23 precipitates (the liquid phase must always exist), and then rolling is stopped and the product is held for a certain period of time to allow gradual cooling to allow crystal growth. This rolling causes the crystals to become oriented.

この様にして、得られた超伝導材料の臨界電流密度をシ
ースを剥離した後測定した。測定温度は77にである。
The critical current density of the superconducting material thus obtained was measured after the sheath was peeled off. The measured temperature is 77°C.

結果を第1表の比較例と共に第2表に示す。The results are shown in Table 2 together with the comparative examples in Table 1.

第1表 第2表 表に示されているように本発明の製造方法より成る超伝
導材料は顕著に臨界電流密度が向上しているのが判る。
As shown in Tables 1 and 2, it can be seen that the superconducting material produced by the manufacturing method of the present invention has a significantly improved critical current density.

これら実施例材料と比較例材料をX線回折・光学顕微鏡
・SEX観察等により比較したところ本発明よりなる超
伝導材料は比較例より結晶配向度が高く、123相が連
続的に成長し且っ空孔は少ないものであった。また溶融
を行なう比較例すは比較例aより空孔の数は顕著に少な
いが細長い髭(ボイド)が見られた。この髭の幅は比較
例aとほぼ同じであるが長さは数十倍〜数百倍長いため
場合によっては致命的になる事が考えられる。熱間加工
はIBの発生を抑制する効果もあると言える。
Comparison of these Example materials and Comparative Example materials by X-ray diffraction, optical microscopy, SEX observation, etc. revealed that the superconducting material of the present invention had a higher degree of crystal orientation than the Comparative Example, and 123 phases grew continuously. There were few pores. In addition, although the number of pores in the comparative example in which melting was carried out was significantly smaller than that in comparative example a, elongated voids were observed. The width of this whisker is almost the same as that of Comparative Example A, but the length is several tens to hundreds of times longer, which may be fatal in some cases. It can be said that hot working also has the effect of suppressing the occurrence of IB.

尚本実施例ではY B a2Cu 307−x材料で説
明したが結晶構造に起因した異方性を持つ材料で結晶相
と液相との混相状態を得られる材料で有ればよくまた熱
間加工の方法として熱間圧延で説明したがこの他にも熱
間鍛造(この場合シースではなく金型に溶融物を訪込ん
でも良い)など熱間で塑性変形できる方法であれば何等
差し支えない。
In this example, YB a2Cu 307-x material was used, but any material that has anisotropy due to its crystal structure and that can obtain a mixed phase state of a crystalline phase and a liquid phase may be used. Although hot rolling was explained as a method for this, any other method that can be hotly deformed, such as hot forging (in this case, the molten material may be introduced into the mold instead of the sheath), may be used.

[発明の効果] 以上述べたように本発明によれば異方性の強い物質であ
っても結晶方向を揃え且つ超伝導相を連続的に成長出来
、更に空孔の発生を抑制し高密度化を図れるため高い臨
界電流密度を持つ超伝導材料を得られる。また空孔発生
の抑制は機械的強度を高めるだけでなく表面積の減少に
つながるため劣化を少なくし耐久性(耐環境性)も向上
させることが出来る。
[Effects of the Invention] As described above, according to the present invention, even in materials with strong anisotropy, it is possible to align the crystal orientation and continuously grow a superconducting phase, and furthermore, it is possible to suppress the generation of vacancies and achieve high density. As a result, superconducting materials with high critical current densities can be obtained. In addition, suppressing the generation of pores not only increases mechanical strength but also leads to a decrease in surface area, which reduces deterioration and improves durability (environmental resistance).

以上 出願人 セイコーエプソン株式会社 代理人弁理士 鈴木喜三部 他1名that's all Applicant: Seiko Epson Corporation Representative Patent Attorney Kizobe Suzuki and 1 other person

Claims (1)

【特許請求の範囲】[Claims]  バルク的な超伝導材料の製造方法に於いて基本工程が
原料(仮焼粉も含む)を溶融する工程、冷却後液相と結
晶相との混相状態で熱間加工する工程、結晶を成長させ
ると共に冷却する工程より成ることを特徴とする超伝導
材料の製造方法。
The basic steps in the manufacturing method of bulk superconducting materials are: melting raw materials (including calcined powder), hot processing in a mixed phase state of liquid phase and crystalline phase after cooling, and growing crystals. 1. A method for producing a superconducting material, comprising a step of cooling at the same time.
JP2288014A 1990-10-25 1990-10-25 Production of superconducting material Pending JPH04164864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2288014A JPH04164864A (en) 1990-10-25 1990-10-25 Production of superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2288014A JPH04164864A (en) 1990-10-25 1990-10-25 Production of superconducting material

Publications (1)

Publication Number Publication Date
JPH04164864A true JPH04164864A (en) 1992-06-10

Family

ID=17724696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2288014A Pending JPH04164864A (en) 1990-10-25 1990-10-25 Production of superconducting material

Country Status (1)

Country Link
JP (1) JPH04164864A (en)

Similar Documents

Publication Publication Date Title
Morita et al. Processing and properties of QMG materials
US5846912A (en) Method for preparation of textured YBa2 Cu3 Ox superconductor
US5306700A (en) Dense melt-based ceramic superconductors
WO1991019029A1 (en) Oxide superconductor and production thereof
JPH0440289B2 (en)
EP0423375B1 (en) Oxide superconductor and method of producing the same
Alford et al. Processing, properties and devices in high-Tc superconductors
Xu et al. A new seeding approach to the melt texture growth of a large YBCO single domain with diameter above 53 mm
JPH04164864A (en) Production of superconducting material
JPH04160062A (en) Production of superconducting material
WO1993010047A1 (en) Method of fabricating thallium-containing ceramic superconductors
JP3160901B2 (en) Manufacturing method of superconducting material
US5981442A (en) Neodymium-barium-copper-oxide bulk superconductor and process for producing the same
US5736489A (en) Method of producing melt-processed polycrystalline YBa2 Cu3 O.sub.
JP2779210B2 (en) Conductor for current lead
JP2914799B2 (en) Manufacturing method of oxide superconducting bulk material
JPH04182345A (en) Production of oxide superconducting material
JP4071860B2 (en) Superconducting bulk material and manufacturing method thereof
JP3159764B2 (en) Manufacturing method of rare earth superconductor
JPH0421505A (en) Ceramic superconductor and production thereof
JP4019132B2 (en) RE-Ba-Cu-O-based oxide superconductor and method for producing the same
JPH07187671A (en) Oxide superconductor and its production
JPH04164856A (en) Production of superconducting material
JPH01219003A (en) Production of high temperature oxide superconductor
JPH07277730A (en) High damping oxide superconducting material and its production