JPH04163963A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH04163963A
JPH04163963A JP2290391A JP29039190A JPH04163963A JP H04163963 A JPH04163963 A JP H04163963A JP 2290391 A JP2290391 A JP 2290391A JP 29039190 A JP29039190 A JP 29039190A JP H04163963 A JPH04163963 A JP H04163963A
Authority
JP
Japan
Prior art keywords
mosfets
mosfet
cell
same direction
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2290391A
Other languages
Japanese (ja)
Inventor
Hirofumi Terasawa
宏文 寺澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2290391A priority Critical patent/JPH04163963A/en
Publication of JPH04163963A publication Critical patent/JPH04163963A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent degradation of characteristics by a method wherein insulated gate field effect transistors (MOSFETs) within a wafer are arranged in the same direction, thereby allowing uniform ion implantation. CONSTITUTION:I/O cells in the same bulk are of two kinds of vertical I/O cells 102 horizontals I/O cell 103. The I/O cell 110 is configured by rotating the MOSFETs 90 deg. relative to an I/O cell 100, and the MOSFETs are all positioned in the same direction when they are arranged on a circumference I/O cell section. Naturally, they will be positioned in the same direction as that of the inside base gate. Implanting ions into the MOSFET in the vertical direction will prevent the degradation of the characteristics, thereby making it possible to eliminate the increase in the process number for preventing the degradation of characteristics.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、絶縁ゲート電界効果トランジスタ(MOSF
ET)が形成されている半導体装置で、特に、高速・高
集積な集積回路に関するものであ[従来の技術] 従来の半導体装置をゲートアレイを例に説明する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an insulated gate field effect transistor (MOSF).
It is a semiconductor device in which a gate array (ET) is formed, and particularly relates to a high-speed, highly integrated circuit. [Prior Art] A conventional semiconductor device will be explained using a gate array as an example.

絶縁ゲート電界効果トランジスタ(以下、MOSFET
と称す)が形成されている半導体基板において、第2図
は従来のゲートアレイのチップレイアウトである。ゲー
トアレイの内部は101の内部基本ゲートがアレイ状に
敷き詰められているので、MOSFETの向きは、すべ
て同一方向である。しかし、200の周辺入出力セル部
においては、例えば、下辺にある入出力セル102と、
右辺にある入出力セル103とでは異なってくる。
Insulated gate field effect transistor (hereinafter referred to as MOSFET)
FIG. 2 shows a chip layout of a conventional gate array on a semiconductor substrate on which a gate array (referred to as "gate array") is formed. Inside the gate array, 101 internal basic gates are laid out in an array, so the MOSFETs are all oriented in the same direction. However, in the peripheral input/output cell section 200, for example, the input/output cell 102 on the lower side,
The input/output cell 103 on the right side is different.

ゲートアレイでは、入出力セルのバルクのトランジスタ
配置は、どれも同じなので102と103では90度回
転してるため、必然的にMOSFETも90度回転して
しまい同一方向にならなくなる。
In the gate array, since the bulk transistor arrangement of the input/output cells is all the same, 102 and 103 are rotated by 90 degrees, so inevitably the MOSFETs are also rotated by 90 degrees and are no longer in the same direction.

[発明が解決しようとする課題] しかし、従来の半導体装置では、ゲートアレイの入出力
セルが90度回転しているためMOSFETの向きが2
種類ある。そこで、例えばプロセス工程のイオン打ち込
みを考えた場合、第3図のようにウェハー200のファ
セット部を下にした状態で、左間横から45度の角度で
イオンを打ち込むと仮定する。この場合、201のMO
SFETは均一にイオンが打ち込まれるが、202のM
OSFETにおいては、均一に打ち込まれない。
[Problem to be solved by the invention] However, in the conventional semiconductor device, the input/output cells of the gate array are rotated by 90 degrees, so the orientation of the MOSFET is
There are different types. For example, when considering ion implantation in a process step, it is assumed that ions are implanted from the left side at an angle of 45 degrees with the facet portion of the wafer 200 facing down as shown in FIG. In this case, 201 MO
SFET is uniformly implanted with ions, but the M of 202
In OSFETs, it is not implanted uniformly.

第4図は、第3図のMOSFET202のイオン打ち込
みの様子を断面図で示したものである。
FIG. 4 is a cross-sectional view showing how ions are implanted into the MOSFET 202 shown in FIG.

拡散領域301は均一にイオンが打ち込まれるが、拡散
領域302はPo1yゲート300の影響により、ゲー
ト近傍303領域はイオンが打ち込まれなくなる。例え
ば、Ponyゲートの高さ(M化膜も含めて)をHとし
ゲート幅をWとすると、イオンが打ち込まれない領域は
、 (SQR(2)xH) xW  [sq、  μmlの
エリアとなる。しかし、この領域は次の熱拡散工程で拡
散されるが、他よりは薄い拡散領域となってしまう。
Ions are uniformly implanted into the diffusion region 301, but due to the influence of the Po1y gate 300 in the diffusion region 302, ions are not implanted into the region 303 near the gate. For example, if the height of the Pony gate (including the M film) is H and the gate width is W, the region where ions are not implanted is an area of (SQR(2) x H) x W [sq, μml]. However, although this region is diffused in the next thermal diffusion step, it becomes a thinner diffusion region than the others.

これは、MOSFETの特性劣化を引き起こし、特に、
微細プロセスによる高速・高集積なデバイスにおいては
、特性劣化が顕著に出てしまうという問題点があった。
This causes characteristic deterioration of the MOSFET, and in particular,
In high-speed, highly integrated devices using microprocesses, there is a problem in that the characteristics deteriorate significantly.

また、上記問題点を解決するために、第2図の状態で1
回イオンを打ち込み、ウェハーを180度回転させても
う一度イオン打ち込みをするという対策がプロセス的に
とられる場合があるが、これも工程が増え、コストアッ
プなどの問題点があった。
In addition, in order to solve the above problem, 1
In some cases, a countermeasure is taken in terms of process, such as implanting ions twice, rotating the wafer 180 degrees, and implanting ions again, but this also increases the number of steps and has problems such as increased cost.

そこで、本発明は上記問題点を解決することを目的とし
、プロセス工程を増やさずMOSFETの特性劣化を防
ぐことを目的とする。
Therefore, the present invention aims to solve the above-mentioned problems, and aims to prevent the deterioration of MOSFET characteristics without increasing the number of process steps.

C課題を解決するための手段〕 上記の問題を解決するために本発明は、絶縁ゲート電界
効果トランジスタ(MOSFET)が形成されている半
導体基板において、同一ウェハー内(同一チップ内と同
意)の絶縁ゲート電界効果トランジスタ(MOSFET
)がすべて同一方向であることを特徴としている。
Means for Solving the Problem C] In order to solve the above problems, the present invention provides an insulating solution within the same wafer (same as within the same chip) in a semiconductor substrate on which an insulated gate field effect transistor (MOSFET) is formed. Gate field effect transistor (MOSFET)
) are all in the same direction.

[実施例] 本発明の実施例をゲートアレイを例に示す。[Example] An embodiment of the present invention will be described using a gate array as an example.

第1図は本発明を応用したゲートアレイのチップレイア
ウト図である。101は内部基本ゲートで、ゲートアレ
イの内部はこれがアレイ状に敷き詰められており、向き
も一定方向である。100.110は周辺入出力セル部
であり上下左右の4方向がある。通常ゲートアレイの場
合入出力セルのバルクはどれも等しく、配線の違いで種
類分けされておりこれを90度ないしは180度口転し
て入出力セル部に割り当てている。第1図では、通常の
同一バルクの入出力セルを上下用の入出力セル102と
、左右用の入出力セル103の2種類に分け、入出力セ
ル110は入出力セル100に対してMOSFETを9
0度回転した構成になっており、周辺入出力セル部に配
置したときに常にMOSFETが同一方向に向くように
なっている。
FIG. 1 is a chip layout diagram of a gate array to which the present invention is applied. Reference numeral 101 denotes internal basic gates, which are laid out in an array inside the gate array and are oriented in a fixed direction. Reference numerals 100 and 110 are peripheral input/output cell sections, which have four directions: top, bottom, left, and right. Normally, in the case of a gate array, the input/output cells have the same bulk, and are divided into types depending on the wiring, which are rotated 90 degrees or 180 degrees and assigned to the input/output cell portions. In FIG. 1, normal input/output cells of the same bulk are divided into two types: input/output cells 102 for upper and lower sides, and input/output cells 103 for left and right sides. 9
The structure is rotated by 0 degrees, so that the MOSFETs always face in the same direction when placed in the peripheral input/output cell section.

また、当然MOSFETの向きは内部基本ゲートと同じ
向きになっている。
Also, naturally, the orientation of the MOSFET is the same as that of the internal basic gate.

本実施例のようにウェハー内のMOSFETの向きを統
一し、MOSFETに対して縦方向にイオン打ち込みを
することにより、MOSFETの特性劣化、また特性劣
化を防ぐためのプロセス側の対策である工程増加を防ぐ
ことになる。
As in this example, by unifying the orientation of the MOSFETs in the wafer and implanting ions vertically into the MOSFETs, the characteristics of the MOSFETs deteriorate, and the number of steps is increased as a process-side measure to prevent characteristic deterioration. This will prevent

[発明の効果] 本発明の半導体装置は、以上説明したようにウェハー内
のM、03FETの向きを同一方向に統一することによ
り次の効果がある。
[Effects of the Invention] As explained above, the semiconductor device of the present invention has the following effects by unifying the orientation of the M,03FETs in the wafer in the same direction.

(1)プロセスのイオン打ち込み工程においてイオンを
均一に打ち込むことができ、MOSFETの特性劣化を
防ぐという効果がある。
(1) Ions can be uniformly implanted in the ion implantation step of the process, which has the effect of preventing deterioration of MOSFET characteristics.

特に特性劣化が顕著にきいてくる微細プロセスによる高
速・扁集積は集積回路においては有効である。
In particular, high-speed, compact integration using microprocesses, where characteristic deterioration is noticeable, is effective for integrated circuits.

また、特性改善により歩留まりが上がるという効果があ
る。
Furthermore, the improvement in characteristics has the effect of increasing yield.

(2)従来のMOSFET配置ではMOSFETの特性
劣化を防ぐためウェハーを180度回転させて左右から
2回打ち込むことがなくなり1回で済むことにより工程
が減少しそのぶんチップコストも低下するという効果が
ある。
(2) In conventional MOSFET layout, in order to prevent deterioration of MOSFET characteristics, the wafer is rotated 180 degrees and implanted twice from the left and right, but only once, which reduces the number of steps and reduces chip cost accordingly. be.

また、ここではゲートアレイを例にあげているが、他の
どんな集積回路においても同様である。
Further, although a gate array is taken as an example here, the same applies to any other integrated circuit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、は本発明のゲートアレイを例にとったときのチ
ップレイアウト図。 第2図、は従来例のゲートアレイを例にとったときのチ
ップレイアウト図。 第3図は、プロセスのイオン打ち込み工程の説明図。 第4図は、プロセスのイオン打ち込み工程の断面図。 100・・・入出力せる部 101・・・内部基本ゲート 102・・・上下用入出力セル 103・・・左右用入出力セル 110・・・左右用入出力セル部 200・・・ウェハー 201・・・MOSFET 202・・・MOSFET 203・・・拡散領域 300・・・Po1yゲート 301・・・拡散領域 302・・・拡散領域 304・・・フォトレジスト 305・・・イオンの軌道 以上 出願人 セイコーエプソン株式会社
FIG. 1 is a chip layout diagram taking the gate array of the present invention as an example. FIG. 2 is a chip layout diagram taking a conventional gate array as an example. FIG. 3 is an explanatory diagram of the ion implantation step of the process. FIG. 4 is a cross-sectional view of the ion implantation step of the process. 100... Input/output unit 101... Internal basic gate 102... Up/down input/output cell 103... Left/right input/output cell 110... Left/right input/output cell section 200... Wafer 201... ...MOSFET 202...MOSFET 203...Diffusion region 300...Poly gate 301...Diffusion region 302...Diffusion region 304...Photoresist 305...More than ion trajectory Applicant: Seiko Epson Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims]  絶縁ゲート電界効果トランジスタ(MOSFET)が
形成されている半導体基板において、同一ウェハー内(
同一チップ内と同意)の絶縁ゲート電界効果トランジス
タ(MOSFET)がすべて同一方向であることを特徴
とする半導体装置。
In a semiconductor substrate on which an insulated gate field effect transistor (MOSFET) is formed,
A semiconductor device characterized in that all insulated gate field effect transistors (MOSFETs) in the same chip are oriented in the same direction.
JP2290391A 1990-10-26 1990-10-26 Semiconductor device Pending JPH04163963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2290391A JPH04163963A (en) 1990-10-26 1990-10-26 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2290391A JPH04163963A (en) 1990-10-26 1990-10-26 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH04163963A true JPH04163963A (en) 1992-06-09

Family

ID=17755408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2290391A Pending JPH04163963A (en) 1990-10-26 1990-10-26 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH04163963A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7910956B2 (en) 2005-06-16 2011-03-22 Kabushiki Kaisha Toshiba Semiconductor device with interface circuit and method of configuring semiconductor devices
JP2011091084A (en) * 2009-10-20 2011-05-06 Nec Corp Semiconductor device and arrangement method of interface cell
US8584069B2 (en) 2009-09-29 2013-11-12 Fujitsu Semiconductor Limited Apparatus and method for design support using layout positions of first and second terminals

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7910956B2 (en) 2005-06-16 2011-03-22 Kabushiki Kaisha Toshiba Semiconductor device with interface circuit and method of configuring semiconductor devices
US8183599B2 (en) 2005-06-16 2012-05-22 Kabushiki Kaisha Toshiba Semiconductor device with interface circuit and method of configuring semiconductor devices
US8584069B2 (en) 2009-09-29 2013-11-12 Fujitsu Semiconductor Limited Apparatus and method for design support using layout positions of first and second terminals
JP2011091084A (en) * 2009-10-20 2011-05-06 Nec Corp Semiconductor device and arrangement method of interface cell

Similar Documents

Publication Publication Date Title
US5468983A (en) Semiconductor device and method of manufacturing the same
JP2823393B2 (en) Semiconductor memory device and method of manufacturing the same
US6084266A (en) Layout of semiconductor devices to increase the packing density of a wafer
JP2668538B2 (en) Manufacturing method of integrated circuit device
KR100377491B1 (en) Semiconductor device
JPS63278248A (en) Basic cell of gate array
JPH04163963A (en) Semiconductor device
JPH06151780A (en) Semiconductor device
EP0097375A1 (en) Three-dimensional semiconductor device
US20020019104A1 (en) Method of manufacturing semiconductor device and semiconductor integrated circuit device
NL1006264C2 (en) Nand-structured and amorphous-silicon-based read-only memory device and method of manufacturing it.
JP2596406B2 (en) Semiconductor integrated circuit
KR100611743B1 (en) TFT with Multiple Gate
JP2800244B2 (en) Basic cell of gate array
JPH0296371A (en) Semiconductor device
KR930001563B1 (en) Semiconductor integrated circuit device
JPH1041411A (en) Semiconductor memory device and manufacture thereof
JPH0410468A (en) Semiconductor integrated circuit
JPH0341479Y2 (en)
KR100214472B1 (en) Semiconductor device fabrication method
US6677206B2 (en) Non-volatile high-performance memory device and relative manufacturing process
JPH0736425B2 (en) Semiconductor memory device
KR950002184B1 (en) Manufacturing method for semiconductor memory device
JPH04152561A (en) Semiconductor device
KR100620641B1 (en) Method for forming semiconductor device