JPH04163811A - Noninductive magnetic shield type bushing using high temperature superconducting material - Google Patents

Noninductive magnetic shield type bushing using high temperature superconducting material

Info

Publication number
JPH04163811A
JPH04163811A JP29147990A JP29147990A JPH04163811A JP H04163811 A JPH04163811 A JP H04163811A JP 29147990 A JP29147990 A JP 29147990A JP 29147990 A JP29147990 A JP 29147990A JP H04163811 A JPH04163811 A JP H04163811A
Authority
JP
Japan
Prior art keywords
current
superconducting
liquid helium
superconducting material
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29147990A
Other languages
Japanese (ja)
Other versions
JP2598164B2 (en
Inventor
Eikichi Inukai
犬飼 英吉
Koichi Nakamura
光一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc filed Critical Chubu Electric Power Co Inc
Priority to JP2291479A priority Critical patent/JP2598164B2/en
Publication of JPH04163811A publication Critical patent/JPH04163811A/en
Application granted granted Critical
Publication of JP2598164B2 publication Critical patent/JP2598164B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Insulators (AREA)
  • Insulating Bodies (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

PURPOSE:To maintain the cooling effect for a long period of time by enclosing a noninductive type conducting body of high temperature superconducting material with a magnetically shielding body, and providing a bushing, cooled by liquid nitrogen, in a housing vessel for superconductivity cooled by liquid helium. CONSTITUTION:A current flows through an outer member 9A and a superconductivity application apparatus 1 to a center member 9B when a direct current voltage is applied across rod-like terminals 13, 14. Thus, sufficient current feeding can be done, since the fluxes generated by the members cancel each other and a magnetic shielding body 8 hinders the penetration of a flux from the outside. And, the dissipation of cold from the liquid helium 3 decreases, since an electrically conducting body 9 and the shielding body 7 are cooled by liquid nitrogen 18 so that the liquid nitrogen 18 intervenes between liquid helium 3 and the atmosphere, and further since the conducting body 9 and the shielding body 7 are formed by a high temperature superconducting material which has low thermal conductivity. Thus, a required current can be fed in a superconductivity application apparatus, as well as the cooling effect can be maintained for a longer period.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、超電導マグネットなどの超電導応用機器を収
納し、その超電導応用機器を液体ヘリウムで冷却するた
めの機器収納容器に取り付けられるブッシングに係り、
詳しくは液体ヘリウムの冷却効果を保つとともに、通電
時の発生磁界、及び外部磁界の影響を極めて少なくする
ことにより十分な通電容量を確保できるようにした高温
超電導材を用いた無誘導磁気シールド型ブッシングに関
する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a bushing that is attached to an equipment storage container for storing superconducting applied equipment such as a superconducting magnet and cooling the superconducting applied equipment with liquid helium. ,
For more details, please refer to the non-inductive magnetically shielded bushing made of high-temperature superconducting material, which maintains the cooling effect of liquid helium and also ensures sufficient current carrying capacity by minimizing the magnetic field generated during energization and the influence of external magnetic fields. Regarding.

(従来の技術) 従来、第4図に示すように、超電導マグネットなどの超
電導応用機器21を収納し、その超電導応用機器21を
液体ヘリウム22で冷却するための機器収納容器23に
は、超電導応用機器21に対して外部から所要の電力を
供給する電源装置がらの給電線24.25と液体ヘリウ
ム22中の超電導応用機器21に接続されたリード線2
6,27とを電気的に接続するためのブッシング28が
取り付けられている。
(Prior Art) Conventionally, as shown in FIG. 4, an equipment storage container 23 for storing superconducting applied equipment 21 such as a superconducting magnet and cooling the superconducting applied equipment 21 with liquid helium 22 is equipped with a superconducting applied equipment 21. A power supply line 24, 25 from a power supply device that supplies the necessary power to the device 21 from the outside, and a lead wire 2 connected to the superconducting applied device 21 in liquid helium 22.
A bushing 28 is attached for electrically connecting the terminals 6 and 27.

このブッシング28は、銅、あるいは銀入銅などの電気
の良導体で形成された2本の電極31゜32を絶縁物3
3に挿着したものであり、その電極31.32の上端部
には給電線24.25か接続されるとともに下端部には
り一ト線26.27か接続される。
This bushing 28 connects two electrodes 31 and 32 made of a good electrical conductor such as copper or silver-filled copper to an insulator 3.
The upper end of the electrode 31.32 is connected to the power supply line 24.25, and the lower end thereof is connected to the beam power line 26.27.

(発明が解決しようとする課題) 上記従来のブッシング28は、冷却温度が4゜2K(ケ
ルビン)という極低温の液体ヘリウム22と大気(常温
)との間が熱伝導の良い金属の電極31.32で導通さ
れているため、ブッシング28部において、液体ヘリウ
ム冷却温度(4,2K)と常温(例えば313に、40
°C)との急激な温度差が生じる。そのため、ブッシン
グ28において液体ヘリウム22の冷熱の急激な逸散か
起こり、高価な液体ヘリウム22の蒸発量が大きくなる
とともに、液体ヘリウム22による冷却効果を低下させ
るいう問題があった。
(Problems to be Solved by the Invention) The conventional bushing 28 has a metal electrode 31 that has good thermal conductivity between the extremely low temperature liquid helium 22 whose cooling temperature is 4°2K (Kelvin) and the atmosphere (room temperature). 32, the bushing 28 has a liquid helium cooling temperature (4.2K) and room temperature (for example, 313, 40K).
(°C). Therefore, there is a problem in that the cold heat of the liquid helium 22 rapidly dissipates in the bushing 28, increasing the amount of evaporation of the expensive liquid helium 22, and reducing the cooling effect of the liquid helium 22.

これを防止しようとすれば、図示していない冷却装置を
用いてブッシング28“部を冷却する必要があり、その
ため、そのブッシング28部を冷却するための大きな電
力を必要とするという問題かあった。
In order to prevent this, it would be necessary to cool the bushing 28'' using a cooling device (not shown), which would require a large amount of electricity to cool the bushing 28. .

そこで本発明では、液体窒素冷却で熱伝導の悪い高温超
電導材を用いてブッシング部の電流通電体を構成するこ
とにより、大きな冷却電力を特徴とする特別な冷却装置
を用いることなく液体ヘリウムの冷却効果を保つことが
できるようにするとともに、電流通電体を無誘導方式に
構成し、更にその電流通電体を磁気シールド体で囲むこ
とにより、有磁界の下で臨界電流の小さい高温超電導材
の電流通電体でも磁束の影響による通電電流の減少を少
なくし、十分な通電容量を確保できるようにすることを
解決すべき技術的課題とするものである。
Therefore, in the present invention, by configuring the current-carrying body of the bushing part using a high-temperature superconducting material with poor thermal conductivity in liquid nitrogen cooling, liquid helium can be cooled without using a special cooling device characterized by large cooling power. In addition, by configuring the current-carrying body in a non-inductive manner and surrounding the current-carrying body with a magnetic shield, the current of the high-temperature superconducting material, which has a small critical current under a magnetic field, can be maintained. The technical problem to be solved is to reduce the decrease in current flowing due to the influence of magnetic flux even in current-carrying bodies, and to ensure sufficient current carrying capacity.

(課題を解決するための手段) 上記課題解決のための技術的手段は、高温超電導材を用
いた無誘導磁気シールド型ブッシングを、超電導材を用
いて製作された超電導応用機器を収納し、その超電導応
用機器を液体ヘリウムで冷却する機器収納容器に、液体
窒素を満たすためのケースを設け、そのケースの内部に
は、高温超電導材を用いた同軸状の電流通電体と、その
電流通電体を囲むように配設された磁気シールド体とを
設け、上記同軸状の電流通電体の一方の端部には、前記
超電導応用機器に所要の電力を供給する電源装置からの
給電線を接続するとともに、他方の端部には前記超電導
応用機器を電気的に接続した構成にすることである。
(Means for solving the problem) The technical means for solving the above problem is to use a non-inductive magnetically shielded bushing made of high-temperature superconducting material to house superconducting application equipment manufactured using superconducting material. A device storage container that cools superconducting application equipment with liquid helium is provided with a case to fill with liquid nitrogen, and inside the case is a coaxial current-carrying body made of high-temperature superconducting material and a current-carrying body. A magnetic shielding body is arranged to surround the coaxial current-carrying body, and one end of the coaxial current-carrying body is connected to a power supply line from a power supply device that supplies the necessary power to the superconducting application equipment. , the other end is electrically connected to the superconducting application equipment.

(作用) 上記構成の高温超電導材を用いた無誘導磁気シールド型
ブッシングによれば、機器収納容器に収納され、液体ヘ
リウムで冷却された超電導応用機器に対して外部の電源
装置から所要の電力が供給されると、高温超電導材を用
いた同軸状の電流通電体の中心導体とその外側の円筒導
体には大きさが等しく方向が反対の電流が通電される。
(Function) According to the non-inductive magnetically shielded bushing using high-temperature superconducting material having the above configuration, the required power is supplied from the external power supply to the superconducting application equipment stored in the equipment storage container and cooled with liquid helium. When supplied, currents of equal magnitude and opposite direction are passed through the center conductor and the outer cylindrical conductor of the coaxial current carrying body using high temperature superconducting material.

従って同軸状の電流通電体に大きな電流が流れても発生
磁束が打ち消しあう。また、同軸状の電流通電体を囲む
ように配設された磁気シールド体のマイスナー効果によ
り外部磁界がシールドされるため、同軸状の電流通電体
は磁界の影響を受けることがないことから、磁束による
通電電流の制限を極めて少なくすることか可能になり、
十分な電流容量を確保することができる。
Therefore, even if a large current flows through the coaxial current-carrying body, the generated magnetic flux cancels each other out. In addition, the external magnetic field is shielded by the Meissner effect of the magnetic shield placed so as to surround the coaxial current-carrying body, so the coaxial current-carrying body is not affected by the magnetic field, so the magnetic flux It becomes possible to extremely reduce the restriction of the current flowing due to
Sufficient current capacity can be secured.

また、同軸状の電流通電体、及び磁気シールド体はケー
スに満たされた液体窒素により冷却されているため、液
体ヘリウム冷却温度(4,2K)と常温(例えば313
に、40°C)の間に液体窒素冷却温度(77K)が介
在することと、前記電流通電体及び磁気シールド体は熱
伝導の悪い高温超電導材で構成されていることから、機
器収納容器の液体ヘリウムの冷熱が直接大気中に逸散さ
れることが少なく、その蒸発量を極めて少なくすること
ができる。
In addition, since the coaxial current-carrying body and magnetic shield body are cooled by liquid nitrogen filled in the case, the liquid helium cooling temperature (4.2K) and room temperature (for example, 313K)
Because the liquid nitrogen cooling temperature (77K) exists between The cold heat of liquid helium is less likely to be dissipated directly into the atmosphere, and the amount of evaporation can be extremely reduced.

(実施例) 次に、本発明の一実施例を図面を参照しながら説明する
(Example) Next, an example of the present invention will be described with reference to the drawings.

第1図は、例えばセラミックス系の高温超電導材を用い
た無誘導磁気シールド型ブッシングの構成を路体的に示
した断面図である。
FIG. 1 is a cross-sectional view showing the construction of a non-inductive magnetically shielded bushing using, for example, a ceramic-based high-temperature superconducting material.

第1図に示すように、超電導マグネットなどの超電導応
用機器1は断熱構造を有する機器収納容器2に収納され
ている。その機器収納容器2には所要量の液体ヘリウA
 3が満たされており、超電導応用機器1がほぼ4,2
にで冷却されている。
As shown in FIG. 1, a superconducting application device 1 such as a superconducting magnet is housed in a device storage container 2 having a heat insulating structure. The equipment storage container 2 contains the required amount of liquid helium A.
3 is satisfied, and superconducting application equipment 1 is almost 4.2
It is cooled down.

また、超電導応用機器lにはリード線4,5が接続され
ている。
Further, lead wires 4 and 5 are connected to the superconducting application equipment l.

一方、機器収納容器2の上部には、断熱構造を有するケ
ース6が水密状に取り付けられている。
On the other hand, a case 6 having a heat insulating structure is attached to the upper part of the equipment storage container 2 in a watertight manner.

そのケース6の内部には、セラミックス系の高温超電導
材で形成された円筒型の磁気シールド体7が、その外周
面を前記機器収納容器2に明けた孔に挿着した状態で固
定されている。円筒型の磁気シールド体7の内径面には
短高円筒型の絶縁部材8が取り付けられており、その絶
縁部材8の内径面には高温超電導材で形成された電流通
電体9が固定されている。その電流通電体9は同軸状に
形成されており、円筒状の外側部材9A、円柱状の中心
部材9B、及び外側部材9Aと中心部材9Bとの間に介
在された絶縁部材9Cから構成されている。また、ケー
ス6の上面には、前記超電導応用機器1に対して所要の
電力を供給するための電源装置からの給電線11.12
か接続される棒状端子13.14を固定した端子板15
が気密状に取り付けられている。
A cylindrical magnetic shield 7 made of a ceramic-based high-temperature superconducting material is fixed inside the case 6 with its outer peripheral surface inserted into a hole formed in the equipment storage container 2. . A short and tall cylindrical insulating member 8 is attached to the inner diameter surface of the cylindrical magnetic shielding body 7, and a current carrying body 9 made of a high temperature superconducting material is fixed to the inner diameter surface of the insulating member 8. There is. The current-carrying body 9 is formed coaxially and is composed of a cylindrical outer member 9A, a cylindrical center member 9B, and an insulating member 9C interposed between the outer member 9A and the center member 9B. There is. Further, on the upper surface of the case 6, power supply lines 11 and 12 from a power supply device for supplying the necessary power to the superconducting application equipment 1 are provided.
Terminal board 15 to which rod-shaped terminals 13 and 14 to be connected are fixed
is installed airtight.

上記棒状端子13.14の下端部は、リート線16.1
7を介して電流通電体9の外側部材9Aと中心部材9B
それぞれの上端部に接続されている。一方、電流通電体
9の外側部材9Aと中心部材9Bそれぞれの下端部には
、前記超電導応用機器1のリード線4,5か接続されて
いる。
The lower end of the rod-shaped terminal 13.14 is connected to the rieet wire 16.1.
The outer member 9A and the center member 9B of the current-carrying body 9 are connected through 7.
connected to the top end of each. On the other hand, the lead wires 4 and 5 of the superconducting application equipment 1 are connected to the lower ends of the outer member 9A and the center member 9B of the current carrying body 9, respectively.

以上のような構成において、ケース6内には所要量の液
体窒素18が注入され、高温超電導材で形成された磁気
シールド体7、及び電流通電体9が液体窒素冷却温度(
77K)で冷却される。
In the above configuration, a required amount of liquid nitrogen 18 is injected into the case 6, and the magnetic shield body 7 formed of a high-temperature superconducting material and the current carrying body 9 are heated to the liquid nitrogen cooling temperature (
77K).

尚、第2図は前記円筒型の磁気シールド体7と円筒型の
絶縁部材8と電流通電体9とを一体的に組付けた状態を
斜視図で示したものであり、第3図はそれを平面図で示
したものである。
Note that FIG. 2 is a perspective view of the cylindrical magnetic shield 7, the cylindrical insulating member 8, and the current carrying body 9 assembled together, and FIG. is shown in a plan view.

以上のような構成において、ケース6、磁気シールド体
7.絶縁部材8.電流通電体9を構成する外側部材9A
と中心部材9Bと絶縁部材9C。
In the above configuration, the case 6, the magnetic shield body 7. Insulating member 8. Outer member 9A constituting current carrying body 9
and a central member 9B and an insulating member 9C.

棒状端子13と14.端子板15.及び液体窒素18に
よりブッシング20が構成されている。
Rod-shaped terminals 13 and 14. Terminal board 15. A bushing 20 is made up of the liquid nitrogen 18 and the liquid nitrogen 18 .

次に、本実施例の作用を説明する。Next, the operation of this embodiment will be explained.

前記電源装置から所要の電力が出力されると前記超電導
応用機器lに所要の電流が通電される。
When the required power is output from the power supply device, the required current is applied to the superconducting application equipment l.

今、超電導応用機器1に直流電流が通電されるときに、
電源装置の正極電圧が棒状端子13に、また負極電圧が
棒状端子14に印加されると、電流は、棒状端子13→
リ一ド線16→外側部材9A→リード線4→超電導応用
機器1→リード線5→中心部材9B→リード線17→棒
状端子14の方向に流れる。そのため、電流通電体9の
外側部材9Aと中心部材9Bとは大きさが等しく、方向
か反対の電流が流れる。従って外側部材9Aから発生す
る磁束と中心部材9Bから発生する磁束とは互いに打ち
消しあうため、電流通電体9は無誘導電流通電体となる
Now, when direct current is applied to superconducting application equipment 1,
When the positive electrode voltage of the power supply device is applied to the rod-shaped terminal 13 and the negative electrode voltage is applied to the rod-shaped terminal 14, the current flows from the rod-shaped terminal 13→
It flows in the direction of lead wire 16 → outer member 9A → lead wire 4 → superconducting application equipment 1 → lead wire 5 → center member 9B → lead wire 17 → rod-shaped terminal 14. Therefore, the outer member 9A and the center member 9B of the current-carrying body 9 have the same size, and currents flow in opposite directions. Therefore, since the magnetic flux generated from the outer member 9A and the magnetic flux generated from the central member 9B cancel each other out, the current carrying body 9 becomes a non-inductive current carrying body.

一方、電流通電体9を囲むように配設された磁気シール
ド体7は、外部からの磁束の侵入を高温超電導材のマイ
スナー効果(外部磁界排除現象)を利用して防止する。
On the other hand, the magnetic shielding body 7 arranged so as to surround the current carrying body 9 prevents the intrusion of magnetic flux from the outside by utilizing the Meissner effect (external magnetic field exclusion phenomenon) of the high temperature superconducting material.

また、セラミックス系の高温超電導材は熱伝導率が低い
ため、液体ヘリウム3の冷熱が液体窒素18に伝導され
に<<、液体ヘリウム3による冷却効果を低下させる度
合いが極めて小さい。更に、液体ヘリウム3と大気、即
ち常温の間に、液体窒素18により冷却されるブッシン
グ20が介在するため、液体ヘリウム3の冷熱の逸散が
極めて少なくなることから、高価な液体ヘリウム3の蒸
発量を減らし、液体ヘリウム3による超電導応用機器l
の冷却効果を長時間に渡って保つことができるという特
質を有する。
Furthermore, since the ceramic-based high-temperature superconducting material has a low thermal conductivity, the cold heat of the liquid helium 3 is conducted to the liquid nitrogen 18, and the degree to which the cooling effect of the liquid helium 3 is reduced is extremely small. Furthermore, since the bushing 20 cooled by the liquid nitrogen 18 is interposed between the liquid helium 3 and the atmosphere, that is, room temperature, the dissipation of the cold heat of the liquid helium 3 is extremely reduced, so that the evaporation of the expensive liquid helium 3 is reduced. Superconducting application equipment using liquid helium 3 by reducing the amount
It has the characteristic of being able to maintain its cooling effect for a long time.

(発明の効果) 以上のように本発明によれば、高温超電導材を用いて無
誘導型の電流通電体を形成するとともに、その電流通電
体を磁気シールド体で囲み、更に電流通電体と磁気シー
ルド体とを液体窒素で冷却するように構成したブッシン
グを、液体ヘリウムで超電導応用機器を冷却するための
機器収納容器に取り付けたため、電流通電体に電流が流
れてもその電流通電体からの磁束の発生を極めて少なく
することができるとともに、磁気シールド体により外部
からの磁束の侵入が防止されるため、有磁界下で臨界電
流の小さい高温超電導材で形成された電流通電体であっ
ても十分な電流を通電することかできるという効果かあ
る。
(Effects of the Invention) As described above, according to the present invention, a non-inductive current carrying body is formed using a high temperature superconducting material, the current carrying body is surrounded by a magnetic shielding body, and the current carrying body and the magnetic A bushing configured to cool the shield body with liquid nitrogen was attached to an equipment storage container for cooling superconducting application equipment with liquid helium, so even if current flows through the current-carrying object, magnetic flux from the current-carrying object will not be generated. In addition, the magnetic shield prevents the intrusion of magnetic flux from the outside, so even a current-carrying body made of high-temperature superconducting material with a small critical current under a magnetic field is sufficient. It has the effect of being able to pass a certain amount of current.

更に、機器収納容器の液体ヘリウムと常温の間に、液体
窒素により冷却されるブッシングが介在するため、液体
ヘリウムの冷熱の逸散が極めて少なくなることから、高
価な液体ヘリウムの蒸発量を減らし、液体ヘリウムによ
る超電導応用機器の冷却効果を長時間に渡って保つこと
かできるという効果がある。
Furthermore, since there is a bushing cooled by liquid nitrogen between the liquid helium in the equipment storage container and room temperature, the dissipation of the cold heat of the liquid helium is extremely small, reducing the amount of evaporation of the expensive liquid helium. The effect is that the cooling effect of liquid helium on superconducting application equipment can be maintained for a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の構成を路体的に示した断
面図、第2図はブッシング部の要部を示した斜視図、第
3図はその平面図1.第4図は従来の技術を示した断面
図である。 1:超電導応用機器 2:機器収納容器 3・液体ヘリウム 4:リード線 5:リード線 6:ケース 7:磁気シールド体 8:絶縁部材 9:電流通電体 9A:外側部材 9B=中心部材 9C:絶縁部材 11:電源装置のリード線 12:電源装置のリード線 13:棒状電極 14:棒状電極 15:端子板 I6:リート線 17:リード線 18:液体窒素 20:ブッシング
FIG. 1 is a sectional view showing the construction of an embodiment of the present invention from a road body perspective, FIG. 2 is a perspective view showing the main parts of a bushing, and FIG. 3 is a plan view thereof. FIG. 4 is a sectional view showing a conventional technique. 1: Superconducting applied equipment 2: Equipment storage container 3, liquid helium 4: Lead wire 5: Lead wire 6: Case 7: Magnetic shield body 8: Insulating member 9: Current carrying body 9A: Outer member 9B = Center member 9C: Insulation Member 11: Lead wire of power supply device 12: Lead wire of power supply device 13: Rod-shaped electrode 14: Rod-shaped electrode 15: Terminal plate I6: Reed wire 17: Lead wire 18: Liquid nitrogen 20: Bushing

Claims (1)

【特許請求の範囲】 超電導材を用いて製作された超電導応用機器を収納し、
その超電導応用機器を液体ヘリウムで冷却するように構
成した機器収納容器に取り付けられるもので、前記超電
導応用機器に対して所要の電力を供給する外部の電源装
置からの給電線と前記液体ヘリウム中の前記超電導応用
機器とを電気的に接続するためのブッシングであって、 液体窒素を満たすためのケースを設け、そのケースの内
部には、高温超電導材を用いた同軸状の電流通電体と、
その同軸状の電流通電体を囲むように配設された磁気シ
ールド体とを設け、上記同軸状の電流通電体の一方の端
部には前記電源装置からの給電線を接続するとともに他
方の端部には前記超電導応用機器を電気的に接続したこ
とを特徴とする高温超電導材を用いた無誘導磁気シール
ド型ブッシング。
[Claims] A superconducting application device manufactured using a superconducting material,
It is attached to an equipment storage container configured to cool the superconducting applied equipment with liquid helium, and is connected to a power supply line from an external power supply device that supplies the necessary power to the superconducting applied equipment and the liquid helium. A bushing for electrically connecting the superconducting application equipment, comprising a case filled with liquid nitrogen, and inside the case, a coaxial current-carrying body made of a high-temperature superconducting material,
A magnetic shielding body arranged to surround the coaxial current carrying body is provided, and one end of the coaxial current carrying body is connected to a power supply line from the power supply device, and the other end is connected to the power supply line from the power supply device. A non-inductive magnetically shielded bushing using a high-temperature superconducting material, characterized in that the above-mentioned superconducting application equipment is electrically connected to the part.
JP2291479A 1990-10-29 1990-10-29 Non-inductive magnetic shield type bushing using high temperature superconducting material Expired - Lifetime JP2598164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2291479A JP2598164B2 (en) 1990-10-29 1990-10-29 Non-inductive magnetic shield type bushing using high temperature superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2291479A JP2598164B2 (en) 1990-10-29 1990-10-29 Non-inductive magnetic shield type bushing using high temperature superconducting material

Publications (2)

Publication Number Publication Date
JPH04163811A true JPH04163811A (en) 1992-06-09
JP2598164B2 JP2598164B2 (en) 1997-04-09

Family

ID=17769412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2291479A Expired - Lifetime JP2598164B2 (en) 1990-10-29 1990-10-29 Non-inductive magnetic shield type bushing using high temperature superconducting material

Country Status (1)

Country Link
JP (1) JP2598164B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009065750A (en) * 2007-09-05 2009-03-26 Mitsubishi Electric Corp Rotating machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63292610A (en) * 1987-05-26 1988-11-29 Toshiba Corp Current supply lead for superconducting device
JPH02161260A (en) * 1988-12-13 1990-06-21 Mitsubishi Electric Corp Cold accumulation type very low temperature refrigerating machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63292610A (en) * 1987-05-26 1988-11-29 Toshiba Corp Current supply lead for superconducting device
JPH02161260A (en) * 1988-12-13 1990-06-21 Mitsubishi Electric Corp Cold accumulation type very low temperature refrigerating machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009065750A (en) * 2007-09-05 2009-03-26 Mitsubishi Electric Corp Rotating machine

Also Published As

Publication number Publication date
JP2598164B2 (en) 1997-04-09

Similar Documents

Publication Publication Date Title
EP0596249B1 (en) Compact superconducting magnet system free from liquid helium
US3629690A (en) Current limiting device for limiting short circuit current in energy transfer systems
JPH04163811A (en) Noninductive magnetic shield type bushing using high temperature superconducting material
JP2756551B2 (en) Conduction-cooled superconducting magnet device
JP4599807B2 (en) Current leads for superconducting equipment
JP3284406B2 (en) Superconducting wire connecting device for cryogenic equipment
JP4703545B2 (en) Superconducting devices and current leads
JPS63292610A (en) Current supply lead for superconducting device
US11769615B2 (en) Superconducting joints
JPS621276B2 (en)
JPH10247532A (en) Current lead for superconductive device
JPH03123005A (en) Superconducting magnet device
JPH11297524A (en) Current lead for superconducting device
JP2510373B2 (en) Magnetic shield type bushing using composite superconductor
JP3218649B2 (en) Current leads for superconducting devices
JP2981810B2 (en) Current lead of superconducting coil device
JPH02256206A (en) Superconducting power lead
JP2000082851A (en) Current lead for supfrconducting device
JP2006269184A (en) Lead for superconducting current
US3644988A (en) Method of fabricating composite superconductive conductor
JPH0869719A (en) Current lead for superconducting device
JPH05114753A (en) Current lead of superconductive magnet device
JPH02186510A (en) Superconductor
JPH05206529A (en) Permanent current switch and superconducting device
JPH07115017A (en) Current lead wire using oxide superconductor