JPH04162427A - Device and method for vapor phase film formation - Google Patents

Device and method for vapor phase film formation

Info

Publication number
JPH04162427A
JPH04162427A JP28646390A JP28646390A JPH04162427A JP H04162427 A JPH04162427 A JP H04162427A JP 28646390 A JP28646390 A JP 28646390A JP 28646390 A JP28646390 A JP 28646390A JP H04162427 A JPH04162427 A JP H04162427A
Authority
JP
Japan
Prior art keywords
film
gas
electrode plate
raw material
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28646390A
Other languages
Japanese (ja)
Inventor
Hideaki Kotsuru
英昭 小水流
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Fujitsu Electronics Ltd
Fujitsu Ltd
Original Assignee
Kyushu Fujitsu Electronics Ltd
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Fujitsu Electronics Ltd, Fujitsu Ltd filed Critical Kyushu Fujitsu Electronics Ltd
Priority to JP28646390A priority Critical patent/JPH04162427A/en
Publication of JPH04162427A publication Critical patent/JPH04162427A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To equalize the thickness distribution and characteristic distribution of a film by alternately supplying the gas introducing ports of a pair of electrode plates with a raw gas, alternately applying voltage to a pair of the electrode plates, generating plasma and forming the film to a body to be film- formed. CONSTITUTION:A gas introducing port 1a is supplied with a raw gas, and an electrode plate 1 is fed with power after five or ten sec. The supply of the raw gas of the gas introducing port 1a and the supply of power of the electrode plate 1 are interrupted when one min elapses. A gas introducing port 2a is supplied instantaneously with the raw gas, and an electrode plate 2 is fed with power after five or ten sec. The supply of the raw gas of the gas introducing port 2a and the supply of power of the electrode plate 2 are interrupted when one min elapses. The gas introducing port 1a is fed instantaneously with the raw material gas, and afterwards a series of the same operation is repeated. The rate of film formation is brought to approximately fifty Angstrom /min, and a silicon nitride film (Si3N4) in thickness of 1000Angstrom can be formed on an Si chip 7 for approximately twenty min.

Description

【発明の詳細な説明】 〔概要〕 気相成膜装置および気相成膜方法に係り、特に陽光柱プ
ラズマCVD装置およびその装置を用いる気相成膜方法
に関し。
DETAILED DESCRIPTION OF THE INVENTION [Summary] The present invention relates to a vapor-phase film-forming apparatus and a vapor-phase film-forming method, and particularly to a positive column plasma CVD apparatus and a vapor-phase film-forming method using the apparatus.

被成膜体に形成する被膜の厚さ分布と特性分布を一様に
することを目的とし。
The purpose is to make the thickness distribution and property distribution of the coating formed on the object to be coated uniform.

被成膜体をはさんで配置された。ガス導入口を有する一
対の電極板と、各電極板に一体化され。
They were placed across the object to be film-formed. A pair of electrode plates each having a gas inlet are integrated into each electrode plate.

複数のガス供給孔を有するガス供給板であって。A gas supply plate having a plurality of gas supply holes.

該ガス導入口から導入された原料ガスを該複数のガス供
給孔を通して該被成膜体に供給するガス供給板と、各電
極板にそれぞれ電圧を印加する高周波電源と、該一対の
電極板の該ガス導入口から原料ガスを交互に間欠的に供
給する機構と、該一対の電極板に、該高周波電源より供
給される電圧を交互に間欠的に印加する機構とを有し、
該一対の電極板の該ガス導入口に原料ガスを交互に供給
しかつ該一対の電極板に電圧を交互に印加してプラズマ
を発生し、該被成膜体に被膜を形成する気相成膜装置に
より構成する。
a gas supply plate that supplies the raw material gas introduced from the gas inlet to the object to be film-formed through the plurality of gas supply holes; a high-frequency power source that applies a voltage to each electrode plate; and a high-frequency power supply that applies voltage to each electrode plate; a mechanism for alternately and intermittently supplying source gas from the gas inlet; and a mechanism for alternately and intermittently applying a voltage supplied from the high-frequency power source to the pair of electrode plates;
A vapor phase deposition method in which a source gas is alternately supplied to the gas inlets of the pair of electrode plates, and a voltage is alternately applied to the pair of electrode plates to generate plasma and form a film on the object to be coated. Consists of a membrane device.

また、前記の気相成膜装置により被成膜体に被膜を形成
するに際し、各電極板のガス導入口に原料ガスを供給す
る時間は、少なくとも各電極板に電圧を印加する時間を
含む気相成膜方法により構成する。
Furthermore, when forming a film on an object to be film-formed using the above-mentioned vapor phase film forming apparatus, the time for supplying the raw material gas to the gas inlet of each electrode plate includes at least the time for applying voltage to each electrode plate. Constructed using a phase film formation method.

〔産業上の利用分野〕[Industrial application field]

本発明は気相成膜装置および気相成膜方法に係り、特に
陽光柱プラズマCVD装置およびその装置を用いる気相
成膜方法に関する。
The present invention relates to a vapor-phase film-forming apparatus and a vapor-phase film-forming method, and more particularly to a positive column plasma CVD apparatus and a vapor-phase film-forming method using the apparatus.

最近、半導体装置の微細化に伴い、半導体装置内部に形
成される膜の厚さも薄くなり、製造過程において基板内
の膜厚分布を一様にすることが要求されている。
2. Description of the Related Art Recently, with the miniaturization of semiconductor devices, the thickness of films formed inside semiconductor devices has become thinner, and it is required to make the film thickness distribution within a substrate uniform during the manufacturing process.

また、プラスチックパッケージの軽薄短小化に伴い、実
装時の熱ストレスによるパッケージクラックを避けるた
め、あるいはTAB(テープ・オートメーテツド・ホン
ディング)、ハイブリッドIC,ベアチップなどの出現
による高密度化に対して高信頼性を保つため、モールド
成形前金属部に形成する窒化膜の厚さは一様な厚さ分布
を有することが要求されている。
In addition, as plastic packages become lighter, thinner, shorter and smaller, it is necessary to avoid package cracks due to thermal stress during mounting, and to increase density due to the emergence of TAB (tape automated bonding), hybrid ICs, bare chips, etc. In order to maintain high reliability, the thickness of the nitride film formed on the metal part before molding is required to have a uniform thickness distribution.

〔従来の技術〕[Conventional technology]

第4図は膜形成に用いる。従来の陽光プラズマCVD装
置主要部の斜視図で、7は被成膜基板。
FIG. 4 is used for film formation. It is a perspective view of the main part of a conventional solar plasma CVD apparatus, and 7 is a substrate on which a film is to be formed.

12、13は電極板、14は高周波電源、 15はコン
テナ。
12 and 13 are electrode plates, 14 is a high frequency power source, and 15 is a container.

16はメツシュ天板を表す。16 represents the mesh top plate.

被成膜基板7をコンテナ15中の空間にフローティング
状態あるいはアース状態で配置し、その両側に電極板1
2.13を配置している。コンテナ15上部からメツシ
ュ天板I6を通して原料ガスをコンテナ15内部に供給
し、電極板12.13に高周波電圧を印加して原料ガス
をプラズマ化し、被成膜基板7に膜を成長する。例えば
、シリコン窒化膜を成長する時は、原料ガスとして1例
えば、シランと窒素を用いる。
The substrate 7 to be film-formed is placed in a space in the container 15 in a floating state or in a grounded state, and electrode plates 1 are placed on both sides of the substrate 7.
2.13 is placed. Raw material gas is supplied into the container 15 from the upper part of the container 15 through the mesh top plate I6, and a high frequency voltage is applied to the electrode plates 12.13 to turn the raw material gas into plasma, thereby growing a film on the substrate 7 to be film-formed. For example, when growing a silicon nitride film, for example, silane and nitrogen are used as source gases.

ところが、第4図に示すように、コンテナ15内部に被
成膜基板7を3次元的に配置すると、原料ガスの供給側
であるコンテナ15上部で原料ガスの分解が著しいので
、被成膜基板7上部に成長するシリコン窒化膜の厚さが
大きく、かつ分解の早いシランの影響でSi成分に富む
屈折率の大きいシリコン窒化膜が成長し、排気側である
被成膜基板7下部に成長するシリコン窒化膜は厚さが小
さく。
However, as shown in FIG. 4, when the deposition target substrate 7 is three-dimensionally arranged inside the container 15, the decomposition of the raw material gas is significant at the upper part of the container 15, which is the supply side of the raw material gas. The thickness of the silicon nitride film grown on the upper part of 7 is large, and due to the influence of silane which decomposes quickly, a silicon nitride film rich in Si components and having a high refractive index grows and grows on the lower part of the deposition substrate 7 on the exhaust side. Silicon nitride film has a small thickness.

Si成分が少ない屈折率の小さいシリコン窒化膜が成長
する。したがって、膜厚、膜質とも不均一になる。
A silicon nitride film with a small Si component and a low refractive index is grown. Therefore, both the film thickness and film quality become non-uniform.

また、左右の電極板12.13からの放電の干渉により
、中心部に放電集中が起こり易いといった問題もある。
There is also the problem that discharge tends to concentrate in the center due to interference of discharge from the left and right electrode plates 12, 13.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は以上の問題に鑑み、被成膜基板7に成長する膜
の膜厚、膜質の分布を一様ならしめよう工夫された構造
を有する気相成膜装置および気相成膜方法を提供するこ
とを目的とする。
In view of the above-mentioned problems, the present invention provides a vapor-phase film-forming apparatus and a vapor-phase film-forming method having a structure designed to make the thickness and film quality distribution of the film grown on the film-forming substrate 7 uniform. The purpose is to

〔課題を解決するための手段〕[Means to solve the problem]

第1図は本発明の気相成膜装置主要部の斜視図である。 FIG. 1 is a perspective view of the main parts of the vapor phase film forming apparatus of the present invention.

上記課題は、被成膜体7をはさんで配置された。The above-mentioned subjects were arranged with the film-formed object 7 in between.

ガス導入口1a、 2aを有する一対の電極板1.2と
A pair of electrode plates 1.2 having gas inlets 1a, 2a.

各電極板1. 2に一体化され、複数のガス供給孔を有
するガス供給板であって、該ガス導入口1a。
Each electrode plate 1. 2, and has a plurality of gas supply holes, the gas inlet 1a.

2aから導入された原料ガスを該複数のガス供給孔を通
して該被成膜体7に供給するガス供給板3゜4と、各電
極板1.2にそれぞれ電圧を印加する    。
A voltage is applied to the gas supply plate 3.4 which supplies the raw material gas introduced from 2a to the object 7 through the plurality of gas supply holes, and to each electrode plate 1.2.

高周波電源5,6と、該一対の電極板の該ガス導入口1
a、 2aから原料ガスを交互に間欠的に供給する機構
と、該一対の電極板1,2に、該高周波電源5,6より
供給される電圧を交互に間欠的に印加する機構とを有し
、該一対の電極板1. 2の該ガス導入口1a、 2a
に原料ガスを交互に供給しがっ該一対の電極板1. 2
に電圧を交互に印加してプラプスマを発生し、該被成膜
体7に被膜を形成する気相成膜装置によって解決される
High frequency power sources 5, 6 and the gas inlet 1 of the pair of electrode plates
a, a mechanism that alternately and intermittently supplies source gas from 2a, and a mechanism that alternately and intermittently applies voltage supplied from the high frequency power sources 5 and 6 to the pair of electrode plates 1 and 2. The pair of electrode plates 1. 2 gas inlet ports 1a, 2a
While supplying raw material gas alternately to the pair of electrode plates 1. 2
This problem can be solved by a vapor phase film forming apparatus which generates a plasma by alternately applying a voltage to the film forming body 7 to form a film on the film forming object 7.

また、前記の気相成膜装置により被成膜体7に被膜を形
成するに際し、各電極板1,2のガス導入口1a、 2
aに原料ガスを供給する時間は、少なぐとも各電極板1
.2に電圧を印加する時間を含む気相成膜方法によって
解決される。
Further, when forming a film on the object 7 to be film-formed using the above-mentioned vapor phase film-forming apparatus, the gas inlet ports 1a and 2 of each electrode plate 1 and 2 are used.
The time for supplying raw material gas to a is at least equal to each electrode plate 1.
.. This problem is solved by a vapor phase film forming method that includes a time period in which a voltage is applied.

〔作用〕[Effect]

本発明では、一対の電極板1,2に一体化されたガス供
給板3.4を取り付け、一対の電極板l。
In the present invention, an integrated gas supply plate 3.4 is attached to the pair of electrode plates 1 and 2, and the pair of electrode plates l.

2のガス導入口1a、 2aに原料ガスを交互に供給し
かつ一対の電極板1,2に電圧を交互に印加してプラプ
ズマを発生し、被成膜体7に被膜を形成するのであるか
ら、一方の電極板に近い被成膜体ともう一方の電極板に
近い被成膜体とに形成される被膜の厚さは等しくなる。
The raw material gas is alternately supplied to the gas inlet ports 1a and 2a of 2, and a voltage is alternately applied to the pair of electrode plates 1 and 2 to generate plasma and form a film on the object 7 to be coated. , the thickness of the film formed on the film-formed object near one electrode plate and the film-formed object near the other electrode plate are equal.

原料ガスの分解は両方の電極板に近い部分て早いから中
心部より被膜の厚さが太き(なる傾向はあるが、従来の
気相成膜装置に比べれば膜厚分布、膜質分布とも、はる
かに−様な被膜を形成することができる。
The decomposition of the raw material gas is faster in the areas near both electrode plates, so the film thickness tends to be thicker than in the center (though there is a tendency for it to be thicker in both the film thickness distribution and film quality distribution compared to conventional vapor phase film deposition equipment). Much more similar coatings can be formed.

また、一対の電極板1,2に電圧を交互に印加するので
あるから、一対の電極板1,2に電圧が同時に印加され
ることはない。したがって、中心部に放電集中の起こる
こともない。
Furthermore, since voltages are applied alternately to the pair of electrode plates 1 and 2, voltages are not applied to the pair of electrode plates 1 and 2 at the same time. Therefore, no discharge concentration occurs in the center.

さらに、原料ガスの供給と電圧の印加を間欠的に行う際
、原料ガスの供給を電圧の印加より早期に開始すること
により、原料ガスを被成膜体に行きわたらせ、それから
電圧を印加して放電を行うようにすれば、膜厚分布、膜
質分布を一様にするのに効果的である。
Furthermore, when supplying the raw material gas and applying voltage intermittently, by starting the supply of the raw material gas earlier than the application of the voltage, the raw material gas can be spread over the object to be film-formed, and then the voltage can be applied. If discharge is performed, it is effective to make the film thickness distribution and film quality distribution uniform.

〔実施例〕〔Example〕

第1図は本発明の気相成膜装置主要部の斜視図。 FIG. 1 is a perspective view of the main parts of the vapor phase film forming apparatus of the present invention.

第2図は電極板とガス供給板の側面断面図であり。FIG. 2 is a side sectional view of the electrode plate and the gas supply plate.

1.2は電極板、 1a、 2aはガス導入口、3,4
はガス供給板、 3a〜3jはガス供給孔、5,6は高
周波電源、7は被成膜体、8は第1の支持体、9は第2
の支持体、 10は第3の支持体、 11は絶縁物を表
す。
1.2 is the electrode plate, 1a, 2a is the gas inlet, 3, 4
is a gas supply plate, 3a to 3j are gas supply holes, 5 and 6 are high frequency power supplies, 7 is a film-forming object, 8 is a first support, and 9 is a second support.
, 10 is a third support, and 11 is an insulator.

電極板1. 2は1例えば1m口の金属製で、中心にガ
ス導入口1a、 2aが形成されている。ガス導入口1
a、 2aの先には9図示しないが原料ガスを間欠的に
供給する機構が取り付けられている。
Electrode plate 1. 2 is made of metal and has, for example, a 1 m opening, with gas inlet ports 1a and 2a formed in the center. Gas inlet 1
A, Although not shown, a mechanism for intermittently supplying raw material gas is attached to the tip of 9 and 2a.

ガス供給板3.4は9例えば1m口の金属製で。The gas supply plate 3.4 is made of metal and has a 1 m opening, for example.

電極板1.2と絶縁物11を介して一体化されている。It is integrated with the electrode plate 1.2 via the insulator 11.

ガス供給板3,4全面にガス供給孔3a〜3jが開けら
れている。ガス供給孔3a〜3jのピッチは。
Gas supply holes 3a to 3j are opened on the entire surface of the gas supply plates 3 and 4. What is the pitch of the gas supply holes 3a to 3j?

例えば30mm、、径は例えば10mmである。For example, the diameter is 30 mm, and the diameter is 10 mm.

高周波電源5,6は9例えば周波数13.56MHzの
電源で、各電源には、電極板1.2に電圧を間欠的に印
加する機構が取り付けられている。
The high frequency power sources 5 and 6 are power sources with a frequency of 13.56 MHz, for example, and each power source is equipped with a mechanism for intermittently applying a voltage to the electrode plate 1.2.

被成膜体7はその上に被膜を形成するもので。The film-forming object 7 is one on which a film is to be formed.

本実施例ではチップをパッケージに収容してモールド成
形する場合を想定して、膜厚と膜質の分布を調べるため
、被成膜体7として10mm口の81チツプを選び、そ
の配置を次のようにした。
In this example, in order to investigate the distribution of film thickness and film quality, assuming that the chip is housed in a package and molded, 81 chips with a 10 mm opening were selected as the film-forming object 7, and the chips were arranged as follows. I made it.

まず、3箇のSiチップを第1の支持体であるリードフ
レーム8に張りつけた。次に、そのリードフレーム8を
10枚づつ第2の支持体であるアルミニウム板9の両面
に固定した。そのアルミニウム板9を10枚、第3の支
持体であるアルミニウム台lOに並べて立てた。従って
、膜厚と膜質の分布を調べるためのSiチップは合計6
00箇である。被成膜体7はフローティング状態あるい
はアース状態のどちらでもよい。
First, three Si chips were attached to a lead frame 8, which was a first support. Next, ten lead frames 8 were fixed to both sides of an aluminum plate 9, which was a second support. Ten of the aluminum plates 9 were stood side by side on an aluminum stand 10, which was a third support. Therefore, a total of 6 Si chips are needed to investigate the distribution of film thickness and film quality.
There are 00 items. The film-forming object 7 may be in either a floating state or a grounded state.

電極板l、2.ガス供給板3,4.被成膜体7゜第1〜
第3の支持体8〜IOは1図示しないが真空チャンバの
中に配置される。
Electrode plate l, 2. Gas supply plates 3, 4. Film-forming object 7゜1st~
The third supports 8 to IO are arranged in a vacuum chamber (not shown).

原料ガスとしてシラン(SiH<)を1003CCM、
窒素(N2)を16003CCM、ガス導入口1a、 
2aから供給し。
1003 CCM of silane (SiH<) as a raw material gas,
16003 CCM of nitrogen (N2), gas inlet 1a,
Supplied from 2a.

0、01Torrの減圧状態で13.56M)jz、 
 l k Wの電力を電極板1,2に供給してプラズマ
を発生させ、原料ガスを分解71反応させてSiチップ
7にシリコン窒化膜(Si3N4)を]、000A堆積
した。
13.56M)jz at reduced pressure of 0.01Torr,
A power of 1 kW was supplied to the electrode plates 1 and 2 to generate plasma, and the raw material gas was decomposed and reacted to cause a silicon nitride film (Si3N4) to be deposited on the Si chip 7.

第3図は原料ガス供給と電力供給のタイミンクを示す図
である。
FIG. 3 is a diagram showing the timing of raw material gas supply and power supply.

まず、ガス導入口1aに原料ガスを供給し、5〜10秒
後に電極板lに電力を供給する。その後1分経過した時
点てガス導入口1aの原料ガスの供給と電極板■の電力
の供給を遮断する。すぐにガス導入口2aに原料ガスを
供給し、5〜IO秒後に電極板2に電力を供給する。そ
の後1分経過した時点でガス導入口2aの原料ガスの供
給と電極板2の電力の供給を遮断する。すぐにガス′導
入口1aに原料ガスを供給し、以下、同し一連の操作を
繰り返す。この場合、成膜速度は50A/分程度となり
First, raw material gas is supplied to the gas inlet 1a, and after 5 to 10 seconds, power is supplied to the electrode plate 1. After one minute has elapsed, the supply of raw material gas to the gas inlet 1a and the supply of electric power to the electrode plate (2) are cut off. Raw material gas is immediately supplied to the gas inlet 2a, and power is supplied to the electrode plate 2 after 5 to 10 seconds. After one minute has passed, the supply of raw material gas to the gas inlet 2a and the supply of electric power to the electrode plate 2 are cut off. The raw material gas is immediately supplied to the gas' inlet 1a, and the same series of operations is repeated thereafter. In this case, the film forming rate is about 50 A/min.

約20分でSiチップ7に1000人の厚さのシリコン
窒化膜(Si3N4)を形成することができた。
A silicon nitride film (Si3N4) with a thickness of 1,000 layers could be formed on the Si chip 7 in about 20 minutes.

600枚のSiチップ7の膜厚分布は1000人を中心
に、+11%、−13%であった。膜質の評価としての
屈折率の分布は2.02〜2,16であった。
The film thickness distribution of the 600 Si chips 7 was +11% and -13%, mainly for 1000 people. The distribution of refractive index as an evaluation of film quality was 2.02 to 2.16.

比較のため、従来の陽光プラズマCVD装置によりS1
チツプ7を600枚、上述と同様に配置して厚さ100
OAのシリコン窒化膜(Si3N4)を形成した時は、
膜厚分布は1000人を中心に、+60%。
For comparison, S1 was measured using a conventional solar plasma CVD apparatus.
600 chips 7 are arranged in the same manner as above to have a thickness of 100.
When forming the OA silicon nitride film (Si3N4),
The film thickness distribution is +60% mainly for 1000 people.

=55%であった。膜質の評価としての屈折率の分布は
2.05〜3,08であった。
=55%. The refractive index distribution as an evaluation of film quality was 2.05 to 3.08.

従って1本発明の気相成膜装置によれば、従来よりもは
るかに膜厚分布、膜質分布の一様な被膜を形成すること
ができる。
Therefore, according to the vapor phase film forming apparatus of the present invention, it is possible to form a film with a much more uniform film thickness distribution and film quality distribution than conventional methods.

原料ガス供給と電力供給のタイミングは、タイミング調
整機構を設けて、電極板1に電力を供給時間は必ずガス
導入口1aに原料ガスを供給する時間に含まれるように
し、同様に電極板2に電力を供給時間は必ずガス導入口
2aに原料ガスを供給する時間に含まれるようにする。
The timing of raw material gas supply and power supply is determined by providing a timing adjustment mechanism so that the time for supplying power to electrode plate 1 is always included in the time for supplying raw material gas to gas inlet 1a, and similarly, for supplying raw material gas to electrode plate 2. The time for supplying electric power is always included in the time for supplying raw material gas to the gas inlet 2a.

本実施例はチップをパッケージに収容してモールド成形
する場合を想定して示したが7本発明の気相成膜装置お
よび気相成膜方法は、半導体装置の層間絶縁膜およびそ
の他の膜形成にも適用できることは勿論である。
Although this embodiment has been shown assuming a case where a chip is housed in a package and molded, the vapor phase film forming apparatus and vapor phase film forming method of the present invention can be used to form interlayer insulating films and other films of semiconductor devices. Of course, it can also be applied to

〔発明の効果〕〔Effect of the invention〕

以上説明したように9本発明によれば、半導体装置の製
造からパッケージ実装にいたる工程で生じる。気相成長
による成膜において、膜厚、膜質の分布を一様にするこ
とができる。
As explained above, according to the present invention, the problem occurs in the steps from semiconductor device manufacturing to package mounting. In film formation by vapor phase growth, distribution of film thickness and film quality can be made uniform.

本発明は、特に量産に適するもので、再現性のよいプロ
セスを維持し、半導体装置の高信頼性に寄与するもので
ある。
The present invention is particularly suitable for mass production, maintains processes with good reproducibility, and contributes to high reliability of semiconductor devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の気相成膜装置主要部の斜視図。 第2図は電極板とガス供給板の側面断面図。 第3図は原料ガス供給と電力供給のタイミングを示す図
。 第4図は従来の陽光プラズマCVD装置主要部の斜視図 である。 図において。 1.2は電極板。 1a、 2aはガス導入口。 3.4はガス供給板。 3a〜3jはガス供給孔。 5.6は高周波電源。 7は被成膜基板であり被成膜体であってSiチップ。 8は第1の支持体であってリードフレーム。 9は第2の支持体であってアルミニウム板。 10は第3の支持体であってアルミニウム台。 11は絶縁物。 12、13は電極板。 14は高周波電源。 15はコンテナ。 16はメツシュ天板 手ノp部り 便来の陽光7°ラス゛pcvp・ 箭 41 使置主更部の余l梨図 図
FIG. 1 is a perspective view of the main parts of the vapor phase film forming apparatus of the present invention. FIG. 2 is a side sectional view of the electrode plate and gas supply plate. FIG. 3 is a diagram showing the timing of raw material gas supply and power supply. FIG. 4 is a perspective view of the main parts of a conventional solar plasma CVD apparatus. In fig. 1.2 is the electrode plate. 1a and 2a are gas inlets. 3.4 is the gas supply plate. 3a to 3j are gas supply holes. 5.6 is a high frequency power supply. 7 is a substrate on which a film is to be formed, which is an object on which a film is to be formed, and is a Si chip. 8 is a first support body, which is a lead frame. 9 is a second support body, which is an aluminum plate. 10 is a third support body, which is an aluminum stand. 11 is an insulator. 12 and 13 are electrode plates. 14 is a high frequency power supply. 15 is a container. 16 is the 7° sunlight coming from the top of the mesh top plate.

Claims (1)

【特許請求の範囲】 〔1〕被成膜体(7)をはさんで配置された、ガス導入
口(1a、2a)を有する一対の電極板(1、2)と、
各電極板(1、2)に一体化され、複数のガス供給孔を
有するガス供給板であって、該ガス導入口(1a、2a
)から導入された原料ガスを該複数のガス供給孔を通し
て該被成膜体(7)に供給するガス供給板(3、4)と
、 各電極板(1、2)にそれぞれ電圧を印加する高周波電
源(5、6)と、 該一対の電極板の該ガス導入口(1a、2a)から原料
ガスを交互に間欠的に供給する機構と、 該一対の電極板(1、2)に、該高周波電源(5、6)
より供給される電圧を交互に間欠的に印加する機構とを
有し、 該一対の電極板の該ガス導入口(1a、2a)に原料ガ
スを交互に供給しかつ該一対の電極板(1、2)に電圧
を交互に印加してプラプズマを発生し、該被成膜体(7
)に被膜を形成することを特徴とする気相成膜装置。 〔2〕請求項1記載の気相成膜装置により被成膜体(7
)に被膜を形成するに際し、各電極板(1、2)のガス
導入口(1a、2a)に原料ガスを供給する時間は、少
なくとも各電極板(1、2)に電圧を印加する時間を含
むことを特徴とする気相成膜方法。
[Scope of Claims] [1] A pair of electrode plates (1, 2) having gas inlets (1a, 2a) disposed with a film-forming object (7) in between;
A gas supply plate integrated with each electrode plate (1, 2) and having a plurality of gas supply holes, the gas inlet (1a, 2a)
), applying a voltage to the gas supply plates (3, 4) that supply the raw material gas introduced from the plurality of gas supply holes to the object (7) to be film-formed (7), and each electrode plate (1, 2). a high frequency power source (5, 6), a mechanism that alternately and intermittently supplies raw material gas from the gas inlets (1a, 2a) of the pair of electrode plates, and the pair of electrode plates (1, 2), The high frequency power source (5, 6)
and a mechanism for alternately and intermittently applying a voltage supplied from the pair of electrode plates (1a, 2a), and a mechanism for alternately supplying raw material gas to the gas inlet ports (1a, 2a) of the pair of electrode plates (1a, 2a); , 2) to generate plasma by alternately applying a voltage to the film-forming object (7).
) A vapor phase film forming apparatus characterized by forming a film on. [2] A film-forming object (7
), the time for supplying the raw material gas to the gas inlets (1a, 2a) of each electrode plate (1, 2) is at least the time for applying voltage to each electrode plate (1, 2). A vapor phase film forming method characterized by comprising:
JP28646390A 1990-10-24 1990-10-24 Device and method for vapor phase film formation Pending JPH04162427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28646390A JPH04162427A (en) 1990-10-24 1990-10-24 Device and method for vapor phase film formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28646390A JPH04162427A (en) 1990-10-24 1990-10-24 Device and method for vapor phase film formation

Publications (1)

Publication Number Publication Date
JPH04162427A true JPH04162427A (en) 1992-06-05

Family

ID=17704719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28646390A Pending JPH04162427A (en) 1990-10-24 1990-10-24 Device and method for vapor phase film formation

Country Status (1)

Country Link
JP (1) JPH04162427A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009539270A (en) * 2006-05-31 2009-11-12 ティーガル コーポレイション System and method for semiconductor processing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009539270A (en) * 2006-05-31 2009-11-12 ティーガル コーポレイション System and method for semiconductor processing

Similar Documents

Publication Publication Date Title
US6207304B1 (en) Method of forming silicon oxy-nitride films by plasma-enhanced chemical vapor deposition
JPH07201762A (en) Gas feeder for manufacturing semiconductor element
JP2000150513A (en) Deposition of silicon nitride thin film
JPS6042823A (en) Method for forming thin film
US20240055233A1 (en) Substrate processing device and substrate processing method
JPH07105354B2 (en) Method of depositing amorphous silicon hydride on a substrate in a plasma chamber
JP3112880B2 (en) Cleaning method for CVD equipment
JPH04162427A (en) Device and method for vapor phase film formation
JPS6012728A (en) Electrode structure for film forming
JPS5941773B2 (en) Vapor phase growth method and apparatus
JPS60147113A (en) Manufacture of silicon film
JPS58132932A (en) Plasma processing device
JPH01298169A (en) Film formation
WO2005019497B1 (en) Methods of reducing plasma-induced damage for advanced plasma cvd dielectrics
JPH09326387A (en) Film formation method and its device
JPH03152921A (en) Chemical vapor deposition device
JP2001032077A (en) Plasma cvd film forming method
JPS62239526A (en) Epitaxial growth process for metallic coating
KR100384500B1 (en) Self-cleaning method of thin film forming device
JPH05291240A (en) Semiconductor manufacturing apparatus
JPH04154125A (en) Formation of silicon oxynitride film
JPH07110996B2 (en) Plasma CVD equipment
JP2522987B2 (en) Thin film forming equipment
JPS6194320A (en) Thin film forming equipment
JPH04214618A (en) Thin film formation method and device