JPH0416236A - Preparation of metal-supporting carrier - Google Patents

Preparation of metal-supporting carrier

Info

Publication number
JPH0416236A
JPH0416236A JP2118007A JP11800790A JPH0416236A JP H0416236 A JPH0416236 A JP H0416236A JP 2118007 A JP2118007 A JP 2118007A JP 11800790 A JP11800790 A JP 11800790A JP H0416236 A JPH0416236 A JP H0416236A
Authority
JP
Japan
Prior art keywords
clay mineral
metal
transition metal
sepiolite
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2118007A
Other languages
Japanese (ja)
Other versions
JP2894788B2 (en
Inventor
Koji Sakano
幸次 坂野
Ryusuke Tsuji
龍介 辻
Hiroaki Hayashi
宏明 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2118007A priority Critical patent/JP2894788B2/en
Publication of JPH0416236A publication Critical patent/JPH0416236A/en
Application granted granted Critical
Publication of JP2894788B2 publication Critical patent/JP2894788B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a carrier especially enhanced in its adsorbing capacity of a sulfur compound by heat-treating clay mineral within a specific temp. range at first to change the structure thereof and exchanging the magnesium ion of the clay mineral with a transition metal ion. CONSTITUTION:When double chain structure type clay mineral is heat-treated at 400-800 deg.C at first, the water present in the tunnels of the structure of this clay mineral is removed and, next, the bonding force of octahedral Mg-O of the MgO layer constituting a crystal is lowered and a magnesium ion becomes easy to elute in water. Herein, the clay mineral is immersed in an aqueous solution containing a transition metal ion such as Co<2+> or Ni<2+> to easily exchange the magnesium ion with the transition metal ion. Therefore, a carrier capable of adsorbing a sulfur compound by the formation of a complex of the transition metal ion and sulfur is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は銅、コバルト、鉄、ニッケル等の遷移金属をそ
の構造中に多量に含んた複鎖構造型粘土鉱物金属担持担
体の製造法に関する。さらに、詳し−は、該粘土鉱物担
体の硫黄系化合物に対する吸着能を顕著に向上させると
ともに、触媒としての機能を持たせる。さらにはより触
媒機能を高めるために別種の触媒金属を該担体に担持さ
せる必要かある蒔、その別種触媒金属の担持か容易に大
量に行われるよう、担持の咳として働・(コバルト、ニ
ッケル、鉄あるいは銅を該複鎖構造型粘土鉱物に容易に
、しかも、安価に導入する金属担持担体の製造方法に関
する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing a clay mineral metal-supported support having a double-chain structure, which contains a large amount of transition metals such as copper, cobalt, iron, and nickel in its structure. . Furthermore, in detail, the adsorption capacity of the clay mineral carrier for sulfur-based compounds is significantly improved, and it is also provided with a function as a catalyst. Furthermore, in order to further enhance the catalytic function, it is necessary to support different types of catalytic metals on the carrier. The present invention relates to a method for producing a metal-supported carrier in which iron or copper is easily and inexpensively introduced into the multi-chain clay mineral.

〔従来の技術〕[Conventional technology]

複鎖構造型粘土鉱物は、従来、気体や液体に対し優れた
吸着能を有しており、化学反応の触媒や、浄化吸着材と
して利用されている。
Multi-chain clay minerals have traditionally had excellent adsorption ability for gases and liquids, and have been used as catalysts for chemical reactions and purification adsorbents.

たとえばセピオライトは「炭化水素類の水素化処理触媒
」 (特開昭53−34691)で開示された方法によ
り金属を担持し、化学反応触媒として用いられた。
For example, sepiolite was used as a chemical reaction catalyst by supporting metals by the method disclosed in ``Catalyst for Hydrogenation of Hydrocarbons'' (Japanese Patent Laid-Open No. 53-34691).

この方法は、低温で乾燥したセピオライト担体の構造を
低温で強酸により崩し、触媒とするランタニド、鉄等の
イオンを担持させるものである。
In this method, the structure of a sepiolite carrier that has been dried at a low temperature is broken down with a strong acid at a low temperature, and ions of lanthanide, iron, etc. used as a catalyst are supported on the sepiolite carrier.

しかしなから、二の方法では金属イオンの担持量か少な
く、十分な触媒活性か得られない。さらに、セピオライ
トを担体として前記とは別の各種触媒金属を担持し、い
ろいろな触媒反応を起こさせようとする場合、セピオラ
イトに別の触媒金属を担持することか困難であった。こ
れは開示された方法では別種の触媒金属を担持させる際
の核となるランタニド、鉄等の金属か不足していたため
てあった。また、強酸により複鎖構造型粘土鉱物の結晶
構造を崩壊してしまう危険性もあった。さらには、強酸
を使用するため、製造設備や環境浄化に対する投資の必
要かあり製造コストが高いものとなっていた。
However, in the second method, the amount of metal ions supported is small and sufficient catalytic activity cannot be obtained. Furthermore, when attempting to cause various catalytic reactions by using sepiolite as a carrier to support various catalytic metals other than those mentioned above, it has been difficult to support other catalytic metals on sepiolite. This is because the disclosed method lacks metals such as lanthanide and iron, which serve as cores when supporting different types of catalyst metals. Additionally, there was a risk that the crystal structure of the multi-chain clay mineral would be destroyed by the strong acid. Furthermore, since strong acids are used, it is necessary to invest in manufacturing equipment and environmental purification, resulting in high manufacturing costs.

〔発明の目的〕[Purpose of the invention]

以上に示すように、従来の方法では遷移金属の担持量か
少なく、触媒活性、特に、硫黄化合物に対し十分な性能
を発揮し得なかった。
As shown above, in the conventional method, the amount of transition metal supported was small, and the catalyst activity, in particular, could not exhibit sufficient performance against sulfur compounds.

本発明者らはこのような従来の製造法の欠点に鑑み、特
に硫黄系化合物の吸着性能を向上させた複鎖構造型粘土
鉱物金属担持担体の製造法を開発すへく、鋭意研究を重
ねた結果、加熱処理法によってこれか達成できることを
見出した。
In view of the shortcomings of conventional manufacturing methods, the present inventors have conducted extensive research to develop a manufacturing method for a multi-chain clay mineral metal support that has particularly improved adsorption performance for sulfur-based compounds. As a result, it was discovered that this could be achieved by a heat treatment method.

〔発明の構成〕[Structure of the invention]

本発明の複鎖構造型嘘吐鉱物金属担持担体の製造方法で
は、複鎖構造型粘土鉱物の構造を変化させ、該粘土鉱物
の構造中のマグネシウムイオンを他の遷移金属イオンと
イオン交換させる複鎖構造型粘土鉱物金属担持担体の製
造方法において、前記粘土鉱物を400℃以上800℃
以下の温度て熱処理することによって前記粘土鉱物の構
造を変化させることを特徴としている。
In the method for producing a double-chain structure mineral metal support of the present invention, the structure of a double-chain structure clay mineral is changed, and magnesium ions in the structure of the clay mineral are ion-exchanged with other transition metal ions. In the method for producing a chain structure type clay mineral metal support, the clay mineral is heated at a temperature of 400°C or higher to 800°C.
It is characterized in that the structure of the clay mineral is changed by heat treatment at the following temperature.

〔発明の作用〕[Action of the invention]

複鎖構造型粘土鉱物は熱により結晶質構造から非晶質構
造へと変化する。この構造変化は400℃から800℃
で起こる。まず、該粘土鉱物の構造中のトンネル内にあ
る水か抜ける。次に、結晶を構成しているMg0=層の
八面体のMg−0の結合力か低下し、水中でマグネシウ
ムイオンか溶出しやすい状態となる。ここて、Co”、
Ni”Fe’+およびCu2″″等の遷移金属イオンか
存在する水溶液中にこれを浸せきすると、結合力の低下
したマグネシウムイオンと多量の遷移金属イオンとを容
易にイオン交換できる。
Multi-chain clay minerals change from crystalline structure to amorphous structure due to heat. This structural change occurs from 400℃ to 800℃
It happens in First, the water in the tunnels in the structure of the clay mineral escapes. Next, the binding force of Mg-0 in the octahedron of the Mg0=layer that constitutes the crystal decreases, and magnesium ions become easily eluted in water. Here, Co”
When this is immersed in an aqueous solution containing transition metal ions such as Ni"Fe'+ and Cu2", it is possible to easily ion-exchange the magnesium ions with reduced binding strength with a large amount of transition metal ions.

このようにして遷移金属イオンを担持した複鎖構造型粘
土鉱物の金属担持担体は、その構造中に担持された遷移
金属イオンと硫黄との錯体形成反応によって硫黄化合物
を吸着てきる。また、該粘土鉱物表面に存在している水
酸基との反応によりアンモニアやアミン化合物を吸着て
きる。吸着した化合物は、さらに担持金属の触媒作用に
より反応し、変化する。たとえば、ハイドロカーホン、
窒素酸化物および硫黄酸化物はこの反応により分解され
る。
The multi-chain clay mineral metal support supporting transition metal ions in this manner adsorbs sulfur compounds through a complex formation reaction between the transition metal ions supported in its structure and sulfur. Furthermore, ammonia and amine compounds can be adsorbed by reaction with hydroxyl groups present on the surface of the clay mineral. The adsorbed compound further reacts and changes due to the catalytic action of the supported metal. For example, hydrocarbon,
Nitrogen oxides and sulfur oxides are decomposed by this reaction.

また、担持金属は新たな触媒金属を複鎖構造型粘土鉱物
に担持する際の核となる。核となる担持金属かない場合
には、このような触媒金属を担持することか困難である
Further, the supported metal becomes the core when supporting a new catalyst metal on a double-chain structure type clay mineral. It is difficult to support such a catalytic metal in the absence of a supported metal serving as a core.

〔発明の効果〕〔Effect of the invention〕

本発明によれば窒素化合物および硫黄化合物の両者に対
して充分な吸着性能、触媒活性を有する金属担持担体を
簡単に大量に製造することかできる。さらに、新たな触
媒金属を担持して新たな触媒能を付与しようとする場合
、担持金属か新たな触媒金属を担持させるための核とな
り容易に新たな触媒金属を担持てきる。また、強酸およ
び強塩基を使用しないため、製造設備や環境浄化に対す
る投資か少なく製造コストを低減できる。
According to the present invention, a metal-supported carrier having sufficient adsorption performance and catalytic activity for both nitrogen compounds and sulfur compounds can be easily produced in large quantities. Furthermore, when trying to impart a new catalytic ability by supporting a new catalytic metal, the supported metal becomes a core for supporting the new catalytic metal and can easily support the new catalytic metal. In addition, since strong acids and strong bases are not used, manufacturing costs can be reduced with less investment in manufacturing equipment and environmental purification.

〔その他の発明〕[Other inventions]

本発明の熱処理温度は400℃〜800℃か好適である
。400℃未満ては該粘土鉱物を十分に構造変化させる
ことかできない。800℃を越える温度では該粘土鉱物
の構造かエンスタタイト型の安定な結晶構造に変化し、
金属を充分に担持させる二とかできない。また、本発明
において、該粘土鉱物を水に分散させる際、水の量は1
0重量倍以上が好適である。これより少ないと該粘土鉱
物の分散状態か悪く金属の担持か均一になりにくい。本
発明において、複鎖構造型粘土鉱物に担持させる金属と
しては硫黄化合物を吸着させる必要上、遷移金属か好ま
しい。その中でも特に、入手のしやすさや価格を考慮す
ると、コバルト、ニッケル、鉄および銅か特に好適であ
る。これら金属の塩を前記分散液に添加させる場合、添
加量は5重量部〜70重量部か適当である。これより添
加量か少ないと金属担持量か低下し、硫黄系化合物との
反応か殆となく、硫黄系化合物吸着材としての効果か著
しく低下する。また、これより添加量を多くしても、金
属担持量は増加しない。好ましくは30〜60重量部か
良い。これら金属の塩を添加する方法としては塩そのも
のを直接加える、またはごれら塩を水溶液として加える
など、通常行われる添加法であればいかなる方法ても可
能である。本発明の金属担持担体を抽出する方法として
、水洗、ろ過、乾燥するなど通常行われる方法であれば
いかなる方法でもよい。
The heat treatment temperature of the present invention is preferably 400°C to 800°C. If the temperature is lower than 400°C, the structure of the clay mineral cannot be sufficiently changed. At temperatures exceeding 800°C, the structure of the clay mineral changes to a stable enstatite crystal structure,
There is no way to sufficiently support the metal. Further, in the present invention, when dispersing the clay mineral in water, the amount of water is 1
It is preferable that the amount is 0 times by weight or more. If the amount is less than this, the clay mineral will be poorly dispersed and it will be difficult to support the metal uniformly. In the present invention, transition metals are preferred as the metals to be supported on the double-chain structure type clay mineral in view of the need to adsorb sulfur compounds. Among them, cobalt, nickel, iron and copper are particularly suitable in view of availability and price. When these metal salts are added to the dispersion, the amount added is suitably 5 parts by weight to 70 parts by weight. If the amount added is less than this, the amount of metal supported will be reduced, there will be almost no reaction with sulfur compounds, and the effectiveness as a sulfur compound adsorbent will be significantly reduced. Further, even if the amount added is increased from this value, the amount of metal supported will not increase. Preferably it is 30 to 60 parts by weight. The salts of these metals can be added by any commonly used addition method, such as directly adding the salt itself or adding Gorera salt as an aqueous solution. As a method for extracting the metal-supported carrier of the present invention, any commonly used method such as washing with water, filtration, drying, etc. may be used.

また、本発明の複鎖構造型粘土鉱物としては、セピオラ
イト、パリゴルスカイトおよびアタパルジャイトか使用
てきる。その構造は、セピオライト  (S  i 1
2)    (Mg  s   )   030  (
OH)4   (082)・8H20、アタパルジャイ
トおよびパリゴルスカイトか(MgAf)5  (S 
1Af)s 02G(OH)2 ・8H20で表される
Further, as the double-chain structure type clay mineral of the present invention, sepiolite, palygorskite, and attapulgite can be used. Its structure is sepiolite (S i 1
2) (Mgs) 030 (
OH)4 (082)・8H20, attapulgite and palygorskite (MgAf)5 (S
1Af)s 02G(OH)2 ・8H20.

本発明で使用する粘土鉱物の形状、大きさには特に制限
を設けない。
There are no particular limitations on the shape or size of the clay mineral used in the present invention.

〔実施例〕〔Example〕

以下、本発明を実施例により詳細に説明するか、本発明
はその要旨を超えない限りこれら実施例により何ら限定
されるものではない。
Hereinafter, the present invention will be explained in detail with reference to examples, but the present invention is not limited to these examples in any way unless it exceeds the gist thereof.

(実施例1) 複鎖構造型粘土鉱物にはトルコ産セピオライトを使用し
た。
(Example 1) Sepiolite from Turkey was used as the double-chain structure type clay mineral.

二のセピオライトをアルミナ製のるつぼに入れ、ニクロ
ム炉中で400℃から800℃の温度範囲で4.5時間
熱処理した。
The second sepiolite was placed in an alumina crucible and heat treated in a Nichrome furnace at a temperature ranging from 400°C to 800°C for 4.5 hours.

所定の温度で熱処理したセピオライトを30g分取し、
家庭用ミキサに入れ、イオン交換水900ccを加えて
10分間運転し、セピオライトをイオン交換水中に十分
に分散せしめた。その後、塩化鋼(CuC1*  −2
Hz O)をセピオライト100重量部に対して5〜7
0重量部添加し、再びミキサを5分間運転し、塩化銅を
均一に溶解混合させた。塩化銅溶液とセピオライトから
成る混合懸濁液をディスパにより30分間撹拌し、セピ
オライトに銅イオンを十分に反応せしめた。
30g of sepiolite heat-treated at a predetermined temperature was collected,
The mixture was placed in a household mixer, 900 cc of ion-exchanged water was added, and the mixture was operated for 10 minutes to fully disperse sepiolite in the ion-exchanged water. After that, chloride steel (CuC1*-2
Hz O) from 5 to 7 per 100 parts by weight of sepiolite.
After adding 0 parts by weight, the mixer was operated again for 5 minutes to uniformly dissolve and mix the copper chloride. A mixed suspension consisting of a copper chloride solution and sepiolite was stirred for 30 minutes using a disper to cause the copper ions to react sufficiently with the sepiolite.

反応させた後、吸引濾過を数回繰り返し、塩素イオン等
を十分に洗浄、除去した。その後、100℃て15時間
乾燥し、本実施例の金属担持担体を調製した。
After the reaction, suction filtration was repeated several times to thoroughly wash and remove chlorine ions and the like. Thereafter, it was dried at 100° C. for 15 hours to prepare the metal-supported carrier of this example.

上記の如く、調製した金属担持担体中の担持金属量を原
子吸光法で調べた。
As described above, the amount of supported metal in the prepared metal supported support was examined by atomic absorption spectroscopy.

また、上記の如く調製した金属担持担体を用いて硫黄化
合物である硫化水素(N2 S)の吸着試験を行った。
Furthermore, an adsorption test for hydrogen sulfide (N2S), which is a sulfur compound, was conducted using the metal support prepared as described above.

ガス吸着試験は、上記の如く調製した金属担持担体を容
量101のガス非透過性臭気袋に1゜Og入れ、臭気袋
を封入後、110000ppの濃度の硫化水素を101
入れた。その後、乳用式ガス検知管を用いてガス非透過
性臭気袋中のガス濃度を測定した。ガス非透過性臭気袋
中のガス濃度か変化しなくなった時の濃度からガス吸着
量を求めた。結果を第1表ThA−1〜A−10に示す
In the gas adsorption test, the metal-supported carrier prepared as described above was placed in a gas-impermeable odor bag with a capacity of 101 kg at 1° Og, and after sealing the odor bag, hydrogen sulfide with a concentration of 110,000 pp was added at 101 g.
I put it in. Thereafter, the gas concentration in the gas-impermeable odor bag was measured using a milk-type gas detection tube. The amount of gas adsorption was determined from the concentration when the gas concentration in the gas-impermeable odor bag stopped changing. The results are shown in Table 1 ThA-1 to ThA-10.

また、比較例として熱処理を施さないトルコ産セピオラ
イトを100℃で乾燥したものをそのまま用いた担体(
NαR−1) 、担体を用いない試薬塩化銅そのもの(
N11R−2)およびトルコ産セピオライトを200℃
1350℃および900℃て熱処理し、塩化鋼をセピオ
ライト100重量部に対し60および45重量部添加し
て作製した金属担持担体(尚R−3、R−4、R−7)
、さらにはトルコ産セピオライトを650℃て熱処理し
、塩化銅をセピオライト100重量部に対し4および2
重量部添加して作製した金属担持担体(R−5、R−6
)の硫化水素ガス吸着量を求めた。二の結果を第1表に
示した。
In addition, as a comparative example, we used Turkish sepiolite that was not heat-treated and dried at 100°C as it was.
NαR-1), a carrier-free reagent copper chloride itself (
N11R-2) and Turkish sepiolite at 200℃
Metal support carriers (R-3, R-4, R-7) produced by heat treating at 1350°C and 900°C and adding 60 and 45 parts by weight of chlorinated steel to 100 parts by weight of sepiolite.
Furthermore, Turkish sepiolite was heat treated at 650°C, and copper chloride was added to 4 and 2 parts by weight per 100 parts by weight of sepiolite.
Metal-supported carriers prepared by adding parts by weight (R-5, R-6
) was determined. The results of the second test are shown in Table 1.

本実施例の硫化水素ガス吸着能は、セピオライト担体の
2〜lO倍、塩化鋼そのものの100〜500倍の優れ
た性能を示した。
The hydrogen sulfide gas adsorption capacity of this example was 2 to 1O times that of the sepiolite carrier, and 100 to 500 times that of chloride steel itself.

また、熱処理温度あるいは担持金属処理量が不適切な比
較例R−3〜R−7は担体そのもの、あるいは、塩化鋼
そのものとほぼ同じ性能しか示さ第1表 第2表 (実施例3) 650℃で4.5時間熱処理したトルコ産セピオライト
100重量部に対して担持金属塩として塩化コバルト(
Co C1*  ・6 Hz O)を601L量部添加
した以外は実施例1と同様の方法で本実施例の金属担持
担体を調製した(NIC)。
In addition, Comparative Examples R-3 to R-7 in which the heat treatment temperature or amount of supported metal was inappropriate showed almost the same performance as the support itself or the chloride steel itself (Table 1, Table 2 (Example 3) 650°C Cobalt chloride (
The metal support of this example was prepared in the same manner as in Example 1, except that 601 L parts of Co C1 * 6 Hz O) were added (NIC).

また、比較例として、650℃で熱処理し、塩化コバル
トをセピオライトに対し5重量部以下添加して金属担持
担体を作製した(=&R−10)。
Further, as a comparative example, a metal-supported carrier was prepared by heat-treating at 650° C. and adding 5 parts by weight or less of cobalt chloride to sepiolite (=&R-10).

これら担体の硫化水素ガス吸着能を測定し、第2表に示
した。本実施例の担体は担持金属塩処理なかった。
The hydrogen sulfide gas adsorption capacity of these carriers was measured and shown in Table 2. The carrier of this example was not treated with a supported metal salt.

(実施例2) 650℃で4.5時間熱処理したトルコ産セピオライト
を用い、担持金属の塩として、塩化ニッケル(NiCz
2−6H20)をセピオライト100重量部に対して6
0を置部添加した以外は、実施例1と同様の方法で本実
施例の金属担持担体を調製した(胤B)。
(Example 2) Using Turkish sepiolite heat-treated at 650°C for 4.5 hours, nickel chloride (NiCz
2-6H20) per 100 parts by weight of sepiolite.
The metal-loaded carrier of this example was prepared in the same manner as in Example 1, except that 0 was added in some portions (Seed B).

また、比較例として900’Cて熱処理し、塩化ニッケ
ルをセピオライト100重量部に対し、70重量部添加
して金属担持担体を作製しく Na R〜8)、実施f
lJ1と同様の方法で硫化水素ガス吸着量の試験を行っ
た。結果を第2表に示した。この表には試薬塩化ニッケ
ルそのものについて同様の試験を行った結果(&R−9
)も示した。本実施例の硫化水素ガス吸着能は、不適切
な熱処理を施した比較例の約50倍、塩化ニッケルその
ものの約500倍の優れた性能を示した。
In addition, as a comparative example, a metal supporting carrier was prepared by heat-treating at 900'C and adding 70 parts by weight of nickel chloride to 100 parts by weight of sepiolite.
The amount of hydrogen sulfide gas adsorbed was tested in the same manner as 1J1. The results are shown in Table 2. This table shows the results of a similar test on the reagent nickel chloride itself (&R-9
) was also shown. The hydrogen sulfide gas adsorption ability of this example was approximately 50 times that of a comparative example that was subjected to inappropriate heat treatment, and approximately 500 times as excellent as that of nickel chloride itself.

量か不適切な比較例の約6倍の優れた吸着能を示した。The adsorption capacity was approximately 6 times higher than that of the comparative example, which had an inappropriate amount of adsorption.

(実施例4) 650℃で4.5時間熱処理したトルコ産セピオライト
100重量部に対し担持金属塩として塩化第一鉄(Fe
C#2 ・nHz O)を60重量部添加した以外は、
実施例1と同様の方法で本実施例の金属担持担体を調製
した。
(Example 4) Ferrous chloride (Fe
Except for adding 60 parts by weight of C#2 ・nHz O),
The metal support of this example was prepared in the same manner as in Example 1.

二の担体の硫化水素ガスの吸着量を実施例1と同様の方
法で求め第2表N(LDに示した。
The adsorption amount of hydrogen sulfide gas on the second carrier was determined in the same manner as in Example 1 and is shown in Table 2 N (LD).

本実施例の金属担持担体は、比較例R−1のセピオライ
ト担体そのものの約15倍、比較例R−2の塩化銅試薬
の約790倍の優れた性能を示した。
The metal-supported carrier of this example exhibited performance that was about 15 times as excellent as that of the sepiolite carrier itself of Comparative Example R-1, and about 790 times as excellent as that of the copper chloride reagent of Comparative Example R-2.

Claims (1)

【特許請求の範囲】[Claims] 複鎖構造型粘土鉱物の構造を変化させ、該粘土鉱物の構
造中のマグネシウムイオンを他の遷移金属イオンとイオ
ン交換させる複鎖構造型粘土鉱物金属担持担体の製造方
法において、前記粘土鉱物を400℃以上800℃以下
の温度で熱処理することによって前記粘土鉱物の構造を
変化させることを特徴とする複鎖構造型粘土鉱物金属担
持担体の製造方法。
In a method for producing a multi-chain structure type clay mineral metal-supporting support, the structure of the multi-chain structure type clay mineral is changed and magnesium ions in the structure of the clay mineral are ion-exchanged with other transition metal ions. A method for producing a double-chain structure type clay mineral metal-supporting carrier, characterized in that the structure of the clay mineral is changed by heat treatment at a temperature of 800° C. or higher.
JP2118007A 1990-05-08 1990-05-08 Method for producing carrier with double-chain structure type mineral metal for gas adsorption Expired - Fee Related JP2894788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2118007A JP2894788B2 (en) 1990-05-08 1990-05-08 Method for producing carrier with double-chain structure type mineral metal for gas adsorption

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2118007A JP2894788B2 (en) 1990-05-08 1990-05-08 Method for producing carrier with double-chain structure type mineral metal for gas adsorption

Publications (2)

Publication Number Publication Date
JPH0416236A true JPH0416236A (en) 1992-01-21
JP2894788B2 JP2894788B2 (en) 1999-05-24

Family

ID=14725744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2118007A Expired - Fee Related JP2894788B2 (en) 1990-05-08 1990-05-08 Method for producing carrier with double-chain structure type mineral metal for gas adsorption

Country Status (1)

Country Link
JP (1) JP2894788B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06320165A (en) * 1993-05-19 1994-11-22 Tookemi:Kk Water treatment
US5399538A (en) * 1990-06-27 1995-03-21 Nikki-Universal Co., Ltd. Porous sepiolite, process for producing same and adsorptive decomposition catalyst compostion utilizing such porous sepiolite
EP0652047A1 (en) * 1993-11-10 1995-05-10 Agency of Industrial Science and Technology of Ministry of International Trade and Industry Method for separation of nitrogen and carbon dioxide by use of ceramic materials as separating agent
EP0754493A3 (en) * 1995-07-21 1997-05-07 Toyota Motor Co Ltd Catalyst for purifying exhaust gases and process for producing the same
EP0781590A1 (en) * 1995-12-25 1997-07-02 Toyota Jidosha Kabushiki Kaisha Exhaust catalyst for purifying exhaust gas emitted from diesel engine
JP2009530350A (en) * 2006-03-24 2009-08-27 イスチチュト ファルマコテラピコ イタリアーノ ソシエタ ペル アチオニ Spray composition for topical use for the treatment and / or prevention of cold sore infection

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399538A (en) * 1990-06-27 1995-03-21 Nikki-Universal Co., Ltd. Porous sepiolite, process for producing same and adsorptive decomposition catalyst compostion utilizing such porous sepiolite
JPH06320165A (en) * 1993-05-19 1994-11-22 Tookemi:Kk Water treatment
EP0652047A1 (en) * 1993-11-10 1995-05-10 Agency of Industrial Science and Technology of Ministry of International Trade and Industry Method for separation of nitrogen and carbon dioxide by use of ceramic materials as separating agent
EP0754493A3 (en) * 1995-07-21 1997-05-07 Toyota Motor Co Ltd Catalyst for purifying exhaust gases and process for producing the same
EP0781590A1 (en) * 1995-12-25 1997-07-02 Toyota Jidosha Kabushiki Kaisha Exhaust catalyst for purifying exhaust gas emitted from diesel engine
JP2009530350A (en) * 2006-03-24 2009-08-27 イスチチュト ファルマコテラピコ イタリアーノ ソシエタ ペル アチオニ Spray composition for topical use for the treatment and / or prevention of cold sore infection

Also Published As

Publication number Publication date
JP2894788B2 (en) 1999-05-24

Similar Documents

Publication Publication Date Title
JPH03296434A (en) Composite adsorbent and its manufacture
EP0311066B1 (en) Process for the production of copper-containing zeolite and the method of application thereof
CN107649176B (en) Catalyst for catalytic hydrolysis of hydrogen cyanide and preparation method thereof
JPS59160534A (en) Adsorbent for mercury vapor and treatment of mercury vapor-containing gas
JPH0416236A (en) Preparation of metal-supporting carrier
CN101569857B (en) Method for preparing molecular sieve adsorbent
KR101369021B1 (en) Low temperature oxidation catalyst improved water-stability for removal of toxic gases
Homeyer et al. Design of metal clusters in NaY zeolite
CA2038304A1 (en) Catalyst preparation process
EP0754493A2 (en) Catalyst for purifying exhaust gases and process for producing the same
JP3550653B2 (en) Method for treating nitrous oxide gas-containing gas and catalyst for treating the same
JP3232590B2 (en) Oxidation catalyst
US4830999A (en) Zeolite containing entrapped anionic material
JP2928852B2 (en) Catalyst for catalytic cracking of nitrogen oxides and catalytic cracking method
JP2008080195A (en) Hydrocarbon adsorbent composed of silica-enriched beta-type zeolite
JP4190047B2 (en) Method for oxidizing organic compounds and catalyst for aldehyde oxidation
JP3436470B2 (en) Deodorant
JPH0775738A (en) Production of oxidation catalyst
JPH0796175A (en) Adsorbent
JPH044045A (en) Catalyst for processing exhaust gas
JPH0780056A (en) Deodorizing method
JPH07328431A (en) Gaseous hydrogen halide adsorbent
JPH07256099A (en) Catalyst for treating organochlorine compound
JPH04150943A (en) Composite catalyst for decomposing ozone and preparation thereof
JP3482658B2 (en) Nitrogen oxide removal method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees