JPH0416195A - Production of methylglycoside monoester of fatty acid - Google Patents

Production of methylglycoside monoester of fatty acid

Info

Publication number
JPH0416195A
JPH0416195A JP11632790A JP11632790A JPH0416195A JP H0416195 A JPH0416195 A JP H0416195A JP 11632790 A JP11632790 A JP 11632790A JP 11632790 A JP11632790 A JP 11632790A JP H0416195 A JPH0416195 A JP H0416195A
Authority
JP
Japan
Prior art keywords
fatty acids
methyl
ingredient
reaction
fatty acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11632790A
Other languages
Japanese (ja)
Inventor
Hiroshi Miyake
博 三宅
Masanori Hirano
正徳 平野
Haruhiko Toda
戸田 晴彦
Kyozo Kitano
北野 恭三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lion Corp
Original Assignee
Lion Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lion Corp filed Critical Lion Corp
Priority to JP11632790A priority Critical patent/JPH0416195A/en
Publication of JPH0416195A publication Critical patent/JPH0416195A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)

Abstract

PURPOSE:To enable selective and efficient, obtaining of the subject monoester by reacting a methylglycoside, etc., fatty acids, etc., with a neutral thermoduric immobilized hydrolase in a specific solvent. CONSTITUTION:(A) Methylglycosides are obtained by selection from sugars prepared by containing methyl groups as an aglycone in N hemiacetal (anomeric) hydroxyl groups of 5-7C monosaccharides and disaccharides compose of hexoses. (B) Fatty acids are then obtained by selection from 6-22C (un)saturated fatty acids and esters of the aforementioned fatty acids with 1-3C lower alcohols. (C) Aneutral thermoduric immobilized hydrolase is subsequently obtained by immobilizing a yeast lipase, etc., on active carbon, etc. To 1mol ingredient (B), is added 0.05-0.5mol ingredient (A). To 100 pts.wt. ingredient (B), is added the ingredient (C) so as to provide 0.1-10000 pts.wt. amount of the ingredient (C). Reaction is then carried out in the presence of an organic solvent, such as tertiary butyl alcohol, having electrical characteristics of >=0.5 D dipole moment without containing water at 50-120 deg.C for about 24hr to produce the objective methylglycoside monoester of the fatty acids.

Description

【発明の詳細な説明】 産栗上辺、lL分号 本発明は、酵素反応でメチルグリコシドと脂肪酸類とか
らメチルグリコシド脂肪酸エステルを製造するに際し、
モノエステルを選択的に合成することができるメチルグ
リコシド脂肪酸モノエステルの製造方法に関する。
[Detailed Description of the Invention] Top side of chestnuts, 1L number The present invention is directed to the production of methyl glycoside fatty acid esters from methyl glycoside and fatty acids by enzymatic reaction.
The present invention relates to a method for producing methyl glycoside fatty acid monoesters that can selectively synthesize monoesters.

の   び  が  しよ゛とする 従来、アルキルグリコシド脂肪酸エステルの製法として
は、6単糖のグリコシドに脂肪酸又は脂肪酸誘導体を脱
水縮合剤又は塩基性化合物の存在下に反応させる化学合
成法が提案されている(米国特許筒4,716,152
号公報)。
Conventionally, as a method for producing alkyl glycoside fatty acid esters, a chemical synthesis method has been proposed in which a hexamonosaccharide glycoside is reacted with a fatty acid or a fatty acid derivative in the presence of a dehydration condensation agent or a basic compound. (U.S. Patent No. 4,716,152
Publication No.).

しかし、この化学合成法は、モノエステルのみを高い選
択性で得ることが困難であり、しかも高価な脱水縮合剤
を多量に使用したり、工業的に使用の困難な脂肪酸誘導
体(酸クロライド等)を用いる等の欠点がある。
However, with this chemical synthesis method, it is difficult to obtain only monoesters with high selectivity, and moreover, it requires the use of large amounts of expensive dehydration condensation agents, and fatty acid derivatives (such as acid chlorides) that are difficult to use industrially. There are disadvantages such as using .

これに対し、最近では酵素法による製造法も注目されて
おり、03以上のアルキル基を有するアルキルグリコシ
ドに一定量以下の水及び脂肪酸分解酵素の存在下、脂肪
酸を作用させる方法が提案されている(特開平2−94
36号公報)。また、02〜C1のアルキル基を有する
アルキルグリコシドと脂肪酸又は脂肪酸の低級アルコー
ルエステルとの混合物に加水分解酵素を作用させる方法
も提案されティる(W089101480)。
In contrast, enzymatic production methods have recently attracted attention, and a method has been proposed in which a fatty acid is allowed to act on an alkyl glycoside having an alkyl group of 03 or more in the presence of a certain amount of water or less and a fatty acid degrading enzyme. (Unexamined Japanese Patent Publication No. 2-94
Publication No. 36). Furthermore, a method has been proposed in which a hydrolase is allowed to act on a mixture of an alkyl glycoside having an alkyl group of 02 to C1 and a fatty acid or a lower alcohol ester of a fatty acid (W089101480).

しかしながら、前者の方法ではアルキル基がメチル、エ
チルの如き低級アルキルグリコシドの使用は効果がなく
、後者の方法はメチルグリコシドに効果がないという不
利がある上、いずれも十分な反応率で高いモノエステル
含有率を有するアルキルグリコシド脂肪酸エステルを得
ることが困難である。特に、反応効率を高めるため、脂
肪酸量をアルキルグリコシドに対して増加させると、ジ
エステル等の多置換体が多量に副生じてしまうという欠
点がある。
However, in the former method, the use of lower alkyl glycosides in which the alkyl group is methyl or ethyl is ineffective, and in the latter method, it is ineffective in treating methyl glycosides. It is difficult to obtain alkyl glycoside fatty acid esters with high content. In particular, when the amount of fatty acid is increased relative to the alkyl glycoside in order to increase reaction efficiency, there is a drawback that a large amount of polysubstituted products such as diesters are produced as by-products.

本発明は、上記事情に鑑みなされたもので、ジエステル
等の多置換体の副生をおさえ、モノエステルのみを選択
的に得ることができると共に、効率よくエステル合成又
はエステル交換反応を行なうことができるメチルグリコ
シド脂肪酸モノエステルを製造する方法を提供すること
を目的とする。
The present invention was made in view of the above circumstances, and it is possible to suppress the by-product of polysubstituted products such as diesters, selectively obtain only monoesters, and efficiently perform ester synthesis or transesterification. The purpose of the present invention is to provide a method for producing methyl glycoside fatty acid monoesters.

を   るーめの   び 本発明者らは、上記目的を達成するため鋭意検討を行な
った結果、炭素数5〜7の単糖類及びヘキソースからな
る2単糖類より選ばれる糖類のメチルグリコシドに、炭
素数6〜22の飽和及び不飽和脂肪酸並びに該脂肪酸と
炭素数1〜3の低級アルコールとのエステルから選ばれ
る脂肪酸類を反応させるに際し、中性耐熱性固定化加水
分解醒素を用いると共に、双極子モーメントが0.5デ
バイ以上の電気特性を有する実質的に水を含まない有機
溶媒中で反応させた場合、このようにアルキル基がメチ
ル基であるアルキルグリコシド、即ちメチルグリコシド
に対して上記脂肪酸類とのエステル合成又はエステル交
換反応が容易に効率よく良好に行なわれ、高い反応率が
達成される上、その際の反応の選択性も高く、ジエステ
ル(ジアシル体)等の多置換体の副生が殆どなく、モノ
エステル(モノアシル体)のみを優先的に与えることを
知見した。またこの場合、反応性を高めるため、脂肪酸
類をメチルグリコシドに対し過剰に使用しても、ジエス
テル等の副生が殆どなく、モノエステルのみを選択的に
得ることができ、このためメチルグリコシド脂肪酸モノ
エステルの製造法として工業的に非常に有利であること
を知見し、本発明をなすに至ったものである。
In order to achieve the above object, the present inventors conducted intensive studies and found that the methyl glycoside of a sugar selected from monosaccharides having 5 to 7 carbon atoms and dimonosaccharides consisting of hexoses has a carbon number of When reacting fatty acids selected from 6 to 22 saturated and unsaturated fatty acids and esters of these fatty acids and lower alcohols having 1 to 3 carbon atoms, a neutral heat-resistant immobilized hydrolytic atom is used, and a dipole When reacted in a substantially water-free organic solvent having electrical properties with a moment of 0.5 Debye or more, the above fatty acids The ester synthesis or transesterification reaction is easily carried out efficiently and well, achieving a high reaction rate, and the selectivity of the reaction is also high, reducing the by-product of polysubstituted products such as diesters (diacyls). It was found that only monoesters (monoacyls) were preferentially given. In addition, in this case, even if fatty acids are used in excess of methyl glycoside in order to increase reactivity, only monoesters can be selectively obtained with almost no by-products such as diesters, and therefore methyl glycoside fatty acids The present invention was based on the discovery that this method is industrially very advantageous as a method for producing monoesters.

以下、本発明につき更に詳述する。The present invention will be explained in more detail below.

本発明のメチルグリコシド脂肪酸モノエステルの製造法
において、その第1原料は炭素数5〜7の単糖類及びヘ
キソースからなる2糖類より選ばれる糖類のメチルグリ
コシドであり、上記糖類のへミアセタール(アノマー)
性水酸基にメチル基をアグリコンとして有するものが使
用され、またヘミアセタール(アノマー)性水酸基のメ
チル置換後の立体配置がα、β各々単独のもの又はα及
びβが任意の割合で混合しているもののいずれも使用す
ることができる。
In the method for producing methyl glycoside fatty acid monoester of the present invention, the first raw material is a methyl glycoside of a sugar selected from monosaccharides having 5 to 7 carbon atoms and disaccharides consisting of hexoses, and hemiacetals (anomers) of the above sugars.
Those having a methyl group as an aglycone in the hemiacetal (anomeric) hydroxyl group are used, and the steric configuration after methyl substitution of the hemiacetal (anomeric) hydroxyl group is either α or β alone or a mixture of α and β in any proportion. Any of these can be used.

ここで、糖部分(グリコン)を構成する単糖類としては
、炭素数5の単糖として、アラビノース。
Here, the monosaccharide constituting the sugar moiety (glycone) is arabinose, which is a monosaccharide with 5 carbon atoms.

リボース、キシロース、リキソース、キシルロース、リ
ブロース、2−デオキシリボース等が挙げられ、炭素数
6の単糖として、グルコース、ガラクトース、フラクト
ース、マンノース、ソルボース、タロース、2−デオキ
シグルコース、2−デオキシガラクトース等が挙げられ
、炭素数7の単糖として、アロヘプツロース、セドヘプ
ツロース。
Examples include ribose, xylose, lyxose, xylulose, ribulose, 2-deoxyribose, etc. Monosaccharides with 6 carbon atoms include glucose, galactose, fructose, mannose, sorbose, talose, 2-deoxyglucose, 2-deoxygalactose, etc. Examples of monosaccharides with 7 carbon atoms include alloheptulose and sedoheptulose.

マンノヘプツロース、グルコヘプツロース等が挙げられ
る。また、ヘキソースからなる2糖類としては、マルト
ース、ラクトース等が挙げられる。
Examples include mannoheptulose and glucoheptulose. In addition, examples of disaccharides consisting of hexose include maltose, lactose, and the like.

なお、本発明では、上記メチルグリコシドはその1種を
単独で又は2種以上を併用して用いることができる。
In addition, in this invention, the said methyl glycoside can be used individually or in combination of 2 or more types.

次に、本発明の製造法の第2の原料は、炭素数6〜22
の脂肪酸又はその低級アルキルエステルである。
Next, the second raw material of the production method of the present invention has 6 to 22 carbon atoms.
fatty acid or its lower alkyl ester.

ここで、本発明に使用する脂肪酸は、炭素数6〜22の
飽和もしくは不飽和で直鎖もしくは分岐鎖脂肪酸であり
、このような脂肪酸であれば、水酸基、カルボニル基、
フェニル基等で置換されたものでもよい。具体的には、
脂肪酸としてカプロン酸、ソルビン酸、カプリル酸、カ
プリン酸、ラウリン酸、ミリスチン酸、パルミトレイン
酸、パルミチン酸、ステアリン酸、イソステアリン酸。
Here, the fatty acid used in the present invention is a saturated or unsaturated linear or branched fatty acid having 6 to 22 carbon atoms, and such a fatty acid has a hydroxyl group, a carbonyl group,
It may also be substituted with a phenyl group or the like. in particular,
Fatty acids include caproic acid, sorbic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitoleic acid, palmitic acid, stearic acid, and isostearic acid.

オレイン酸、リノール酸、リルン酸、ペンタデカン酸、
エイコサン酸、トコサン酸、トコセン酸。
Oleic acid, linoleic acid, linuric acid, pentadecanoic acid,
Eicosanoic acid, tocosanoic acid, tocosenoic acid.

アラキドン酸、リシルイン酸、ジヒドロキシステアリン
酸等を使用することができる。
Arachidonic acid, lysyllic acid, dihydroxystearic acid, etc. can be used.

更に、脂肪酸のエステルとしては、上記炭素数6〜22
の脂肪酸と炭素数1〜3の低級アルコール、例えばメタ
ノール、エタノール、プロパツールとのエステルを使用
するものであり、具体的にはカプロン酸メチル、カプロ
ン酸エチル、カプリン酸メチル、カプリン酸エチル、ラ
ウリン酸メチル、ラウリン酸プロル、ラウリン酸プロピ
ル、ミリスチン酸メチル、ミリスチン酸エチル、ミリス
チン酸プロピル、パルミチン酸メチル、パルミチン酸エ
チル、パルミチン酸プロピル、ステアリン酸メチル、ス
テアリン酸エチル、ステアリン酸プロピル、オレイン酸
メチル、オレイン酸エチル。
Furthermore, as the fatty acid ester, the above-mentioned carbon number 6-22
It uses esters of fatty acids and lower alcohols having 1 to 3 carbon atoms, such as methanol, ethanol, and propatool, specifically methyl caproate, ethyl caproate, methyl caprate, ethyl caprate, and laurin. Methyl acid, prol laurate, propyl laurate, methyl myristate, ethyl myristate, propyl myristate, methyl palmitate, ethyl palmitate, propyl palmitate, methyl stearate, ethyl stearate, propyl stearate, methyl oleate , ethyl oleate.

オレイン酸プロピル、リノール酸メチル、リノール酸エ
チル、リノール酸プロピル、リノール酸メチル、リノー
ル酸エチル、リノール酸プロピル。
Propyl oleate, methyl linoleate, ethyl linoleate, propyl linoleate, methyl linoleate, ethyl linoleate, propyl linoleate.

エイコサン酸メチル、アラキドン酸メチル、トコサン酸
メチル、トコセン酸メチル等が例示される。
Examples include methyl eicosanoate, methyl arachidonate, methyl tocosanoate, and methyl tocosenoate.

この場合、上記両原料の使用量は適宜選定されるが、通
常脂肪酸類1モルに対してメチルグリコシド0.05〜
50モルが使用され、好ましくは0.1〜10モルであ
る。なお、本発明においては、メチルグリコシドに対し
て脂肪酸類を過剰に使用しても、モノエステルが優先し
て得られ、ジエステル等の多置換体の副生が極めて低く
おさえられる。
In this case, the amounts of both of the above raw materials to be used are appropriately selected, but usually 0.05 to 0.05 to methyl glycoside per mole of fatty acids.
50 mol is used, preferably 0.1 to 10 mol. In the present invention, even if fatty acids are used in excess with respect to methyl glycoside, monoesters are preferentially obtained, and by-products of polysubstituted products such as diesters are kept extremely low.

本発明は、上記両原料を加水分解酵素を用いて後述する
特定の有機溶媒中で反応させるものであるが、ここで使
用される加水分解酵素は中性耐熱性固定化加水分解酵素
である。この場合、加水分解酵素としては、豚膵臓リパ
ーゼ、キャンディダ属由来の酵母リパーゼ、アスペルギ
ルス属、ムコール属、シュードモナス属由来の菌体リパ
ーゼ等のリパーゼ類、豚肝皇由来のエステラーゼ、トリ
プシン、キモトリプシン、サブチリシン等のプロテアー
ゼなどが挙げられるが、加水分解活性がpH5,5〜8
.0の範囲で最大値を有し、耐熱性で。
In the present invention, both of the above raw materials are reacted in a specific organic solvent described below using a hydrolase, and the hydrolase used here is a neutral thermostable immobilized hydrolase. In this case, the hydrolytic enzymes include lipases such as porcine pancreatic lipase, yeast lipase derived from the genus Candida, bacterial lipase derived from the genus Aspergillus, Mucor, and Pseudomonas, esterase derived from porcine liver, trypsin, chymotrypsin, Examples include proteases such as subtilisin, but hydrolytic activity is limited to pH 5.5-8.
.. It has a maximum value in the range of 0 and is heat resistant.

かつ固定化されたものである。And it is fixed.

例えば、中性耐熱性加水分解酵素としては酵素粉末50
■を0.41dのリン酸バッファー(0,1M、pH7
)に溶解し、70℃で30分間加熱した後の残存活性が
40%以上、好ましくは80%以上、更に好ましくは9
5%以上の耐熱性を有するものであれば種々のものを使
用でき、キャンデイダ・アンタークチイカ(Candi
da antarctica)由来の中性耐熱性リパー
ゼ(sp−31S2.NoVO社製、最大活性pH7,
5) 、ムコール・マイハイ(Mucor鵬1ehei
)由来の中性耐熱性リパーゼ(Lipozyme 。
For example, as a neutral heat-stable hydrolase, enzyme powder 50
■ 0.41d phosphate buffer (0.1M, pH 7)
) and the residual activity after heating at 70°C for 30 minutes is 40% or more, preferably 80% or more, more preferably 9
Various materials can be used as long as they have a heat resistance of 5% or more.
neutral thermostable lipase (sp-31S2. manufactured by NoVO, maximum activity pH 7,
5) Mucor Peng1ehei
)-derived neutral thermostable lipase (Lipozyme.

NoVO社製、最大活性pH6,0)などが好適に用い
られる。また、耐熱性プロテアーゼとしては、バチルス
・サーモブロテオリキサス由来のもの(サーモライシン
■)、サームス・アクアティカスYT−G由来のもの(
アクアライシン0)などが用いられるが、勿論これらに
限られるものではない。
NoVO Co., Ltd., maximum active pH 6.0), etc. are preferably used. In addition, thermostable proteases include those derived from Bacillus thermobroteorixus (Thermolysin ■) and those derived from Thermus aquaticus YT-G (
Aqualysin 0) and the like are used, but of course they are not limited to these.

なお、これらの中性耐熱性加水分解酵素は精製品でも粗
製品でもよく、更に加水分解酵素を生成する菌体(処理
菌体、休止もしくは静止菌体)の乾燥品を使用すること
もできる。
These neutral heat-stable hydrolytic enzymes may be purified products or crude products, and it is also possible to use dried bacterial cells (treated bacterial cells, resting or stationary bacterial cells) that produce hydrolytic enzymes.

また、上記中性耐熱性加水分解酵素の固定化方法として
は、担体結合法、架橋法、包括法のうちいずれの方法を
採用してもよいが、特に担体結合法が好適に採用できる
Furthermore, as a method for immobilizing the neutral thermostable hydrolase, any of the carrier binding method, crosslinking method, and entrapping method may be employed, and the carrier binding method is particularly preferably employed.

この場合、固定化担体として具体的には、活性炭、多孔
性ガラス、酸性白土、漂白土、カオリナイト、アルミナ
、シリカゲル、ベントナイト、ヒドロキシアパタイト、
リン酸カルシウム、金属酸化物等の無機物質、デンプン
、グルテン等の天然高分子化合物、ポリエチレン、ポリ
プロピレン。
In this case, specific immobilization carriers include activated carbon, porous glass, acid clay, bleaching clay, kaolinite, alumina, silica gel, bentonite, hydroxyapatite,
Inorganic substances such as calcium phosphate and metal oxides, natural polymer compounds such as starch and gluten, polyethylene and polypropylene.

フェノールホルマリン樹脂、アクリル樹脂、アニオン交
換樹脂、カチオン交換樹脂等の合成高分子物質などを挙
げることができるが、本発明では特に物理的形態として
多孔性を有する合成高分子物質、例えば多孔性ポリエチ
レン、多孔性ポリプロピレン、多孔性フェノールホルマ
リン樹脂、多孔性アクリル樹脂が最も好ましく用いられ
る。なお、本発明では、酵素の活性発現を阻害しないも
のであれば上記以外の種々の固定化担体を使用しても何
ら差し支えない。
Synthetic polymeric substances such as phenol-formalin resin, acrylic resin, anion exchange resin, and cation exchange resin can be mentioned, but in the present invention, synthetic polymeric substances that have porosity as a physical form, such as porous polyethylene, Porous polypropylene, porous phenol formalin resin, and porous acrylic resin are most preferably used. In the present invention, various immobilization carriers other than those described above may be used without any problem as long as they do not inhibit the expression of enzyme activity.

更に、固定化担体に対し固定化される加水分解酵素量は
通常固定化担体1gに対して0.1〜500■の蛋白質
量、特に加水分解酵素が蛋白質中に2〜50%程度含ま
れている蛋白質を固定化したものが好適である。
Furthermore, the amount of hydrolase immobilized on the immobilization carrier is usually 0.1 to 500 μg of protein per 1 g of the immobilization carrier, and in particular, the amount of hydrolase contained in the protein is about 2 to 50%. Preferably, the protein is immobilized.

本発明において、上記加水分解酵素の使用量は特に限定
されないが、上記脂肪酸類100重量部に対し0.1〜
10000重量部、好ましくは1〜2000重量部の範
囲とすることができる。
In the present invention, the amount of the hydrolytic enzyme used is not particularly limited, but is 0.1 to 100 parts by weight of the fatty acids.
It can be in the range of 10,000 parts by weight, preferably 1 to 2,000 parts by weight.

本発明では、メチルグリコシドと上記脂肪酸類との中性
耐熱性固定化加水分解酵素を用いた酵素反応は実質的に
水を含まない特定の有機溶媒、即ち双極性モーメントが
0.5デバイ(Debye)以上の極性溶媒の存在下で
行なう。このような双極子モーメントが0.5デバイ以
上の有機溶媒の例としては、例えば「化学便覧基礎編改
定2版」の第1404〜1406頁表11.172に記
載されている。
In the present invention, the enzymatic reaction between methyl glycoside and the above-mentioned fatty acids using a neutral thermostable immobilized hydrolase is performed using a specific organic solvent that does not substantially contain water, that is, a dipolar moment of 0.5 Debye (Debye). ) in the presence of the above polar solvents. Examples of such organic solvents having a dipole moment of 0.5 debye or more are described in Table 11.172 on pages 1404 to 1406 of "Chemistry Handbook Basic Edition Revised 2nd Edition".

具体的には、第2級又は第3級アルコールが好ましく、
例えば2,4−ジメチル−3−ペンタノール、2,6−
シメチルー4−ヘプタツール、第3級ブチルアルコール
、第3級アミルアルコール。
Specifically, secondary or tertiary alcohols are preferred;
For example, 2,4-dimethyl-3-pentanol, 2,6-
Cymethyl-4-heptatool, tertiary butyl alcohol, tertiary amyl alcohol.

ジアセトンアルコール、3−メチル−3−ペンタノール
、3−エチル−3−ペンタノール、3−プロピル−3−
ペンタノール、2−メチル−2−ヘキサノール、2−エ
チル−2−ヘキサノール等を使用することができる。更
に、アセトン、メチルエチルケトン等のケトン類、ジメ
チルエーテル。
Diacetone alcohol, 3-methyl-3-pentanol, 3-ethyl-3-pentanol, 3-propyl-3-
Pentanol, 2-methyl-2-hexanol, 2-ethyl-2-hexanol, etc. can be used. Furthermore, ketones such as acetone and methyl ethyl ketone, and dimethyl ether.

ジエチルエーテル、ジオキサン等のエーテル類、クロロ
ホルム、二塩化メチレン等のハロゲン化炭化水素類など
も好適に用いられるほか、ピリジン。
Ethers such as diethyl ether and dioxane, halogenated hydrocarbons such as chloroform and methylene dichloride, etc. are also suitably used, as well as pyridine.

ジメチルホルムアミド、ジメチルアセトアミド。Dimethylformamide, dimethylacetamide.

キノリン等の含窒素溶媒類やジメチルスルホキシド等の
含硫黄溶媒類等を併用することもできる。
Nitrogen-containing solvents such as quinoline, sulfur-containing solvents such as dimethyl sulfoxide, etc. can also be used in combination.

なお、これらの溶媒はその1種を単独で使用してもよく
、2種以上の混合溶媒とし用いてもよい。
Note that these solvents may be used alone or as a mixed solvent of two or more.

上記有機溶媒の使用量は、有機溶媒の種類、脂肪酸又は
そのエステルの炭素鎖長、反応温度等により左右される
が、好ましくは反応系全体の10〜99重量%、特に6
0〜80重量%である。
The amount of the organic solvent used depends on the type of organic solvent, the carbon chain length of the fatty acid or its ester, the reaction temperature, etc., but is preferably 10 to 99% by weight of the entire reaction system, especially 6% by weight of the entire reaction system.
It is 0 to 80% by weight.

メチルグリコシドと脂肪酸類とを加水分解酵素を用いて
酵素反応させる際、反応条件は適宜調整し得、低温でも
反応は進行するが、反応速度を速めるため、40℃以上
、特に50〜120℃の温度で反応させることが好まし
く、この温度条件で反応を行なうと24時間程度で反応
を完結することができる。なお、かかる高温の反応でも
中性耐熱性固定化加水分解酵素の使用により酵素失活が
ないものである。
When methyl glycoside and fatty acids are subjected to an enzymatic reaction using a hydrolase, the reaction conditions can be adjusted as appropriate, and the reaction proceeds even at low temperatures, but in order to accelerate the reaction rate, it is necessary to It is preferable to carry out the reaction at a certain temperature, and if the reaction is carried out at this temperature condition, the reaction can be completed in about 24 hours. In addition, even in such a high temperature reaction, there is no enzyme deactivation due to the use of a neutral heat-resistant immobilized hydrolase.

更に、本発明方法によりメチルグリコシド脂肪酸モノエ
ステルを製造する際は、例えば加水分解酵素をカラムに
充填して基質液を通す方法(充填カラム式)、基質液と
加水分解酵素を反応槽に導入し、撹拌、振盪により反応
を行なう方法(回分式)、前記回分式で反応を連続的に
行なう方法(連続撹拌槽式)等を採用して行なうことが
できる。
Furthermore, when producing methyl glycoside fatty acid monoester by the method of the present invention, for example, a method of filling a column with a hydrolase and passing a substrate solution (packed column method), a method of introducing a substrate solution and a hydrolase into a reaction tank, etc. The reaction can be carried out by employing a method in which the reaction is carried out by stirring or shaking (batch method), a method in which the reaction is carried out continuously in the batch method (continuous stirring tank method), or the like.

この場合、本発明法では、澄素を失活させることなく反
応を実施し得るため、長時間の連続反応や繰返し回分反
応を支障なく行なうことができるので、工業的に極めて
有利である。
In this case, the method of the present invention is extremely advantageous industrially because the reaction can be carried out without deactivating the purified substance, so long-term continuous reactions and repeated batch reactions can be carried out without any problems.

また、本発明方法では、酵素反応により水又は炭素数1
〜3の低級アルコールが副生するが、この場合、この副
生物の系中濃度が0.5重量%以下、特に0.1重量%
以下となるように副生物を除去することが効率良く反応
を進めるために好ましい。これら副生物を除去する方法
としては、例えばゼオライト、モレキュラーシーブス、
芒硝等を反応系外及び/又は反応系内で用いて吸着除去
する方法、乾燥空気や不活性ガスを反応槽中に導入して
気体中に蒸発させて除去するか、あるいは反応槽内を減
圧にし、蒸発させて反応槽外に排出する方法等が挙げら
れ、これら除去方法を前述の酵素反応装置と適宜組み合
わせると効率良く合成反応を行なうことができる。
In addition, in the method of the present invention, water or carbon number 1
~3 lower alcohol is produced as a by-product, but in this case, the concentration of this by-product in the system is 0.5% by weight or less, especially 0.1% by weight.
In order to proceed with the reaction efficiently, it is preferable to remove by-products as follows. Methods for removing these byproducts include, for example, zeolite, molecular sieves,
A method of adsorbing and removing Glauber's salt, etc. using outside and/or inside the reaction system, introducing dry air or inert gas into the reaction tank and removing it by evaporation into gas, or reducing the pressure inside the reaction tank. For example, the removal method may be evaporated, evaporated, and discharged out of the reaction tank.If these removal methods are appropriately combined with the above-mentioned enzyme reaction apparatus, the synthesis reaction can be carried out efficiently.

なお、得られた反応混合物は常法に従って精製し得、ま
た、反応混合物中に含まれる未反応脂肪酸類はこれを分
離1回収し、再使用することができる。
Note that the obtained reaction mixture can be purified according to a conventional method, and unreacted fatty acids contained in the reaction mixture can be separated and recovered for reuse.

このようにして得られたメチルグリコシド脂肪酸モノエ
ステルは優れた界面活性剤であり、食品、化粧品、医薬
品等の広範な分野に乳化剤などとして使用される。
The methyl glycoside fatty acid monoester thus obtained is an excellent surfactant and is used as an emulsifier in a wide range of fields such as foods, cosmetics, and pharmaceuticals.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、メチルグリコシド脂肪酸モノエステル
をジエステル等の多置換体の副生を抑制して効率よく得
ることができる。
According to the present invention, methyl glycoside fatty acid monoester can be efficiently obtained while suppressing the by-product of polysubstituted products such as diesters.

以下、実施例と比較例を示して本発明を具体的に説明す
るが、本発明は下記実施例に制限されるものではない。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples, but the present invention is not limited to the Examples below.

〔実施例1〕 メチルグルコジッドIg (5,2mモル)、オレイン
酸6g (21,3mモル)、中性耐熱性固定化リパー
ゼ〔キャンデダ・アンタークチイカ由来の耐熱性リパー
ゼをアクリル樹脂に固定化したも)(固定化リパーゼ5
p−882,NoVO社)〕1100mg脱メタノール
剤としてモレキュラーシーブス5A2g、第3級ブチル
アルコール15m1を50m1容三角フラスコに採り、
60”Cにて24時間往復振盪し、エステル化反応を行
なった。
[Example 1] Methyl glucodide Ig (5.2 mmol), oleic acid 6 g (21.3 mmol), neutral heat-stable immobilized lipase [heat-stable lipase derived from Candeda antarctica immobilized on acrylic resin Shimo) (immobilized lipase 5
p-882, NoVO Co.)] 1100mg As a demethanol agent, 2g of Molecular Sieves 5A and 15ml of tertiary butyl alcohol were placed in a 50ml Erlenmeyer flask.
The mixture was shaken reciprocally at 60"C for 24 hours to carry out an esterification reaction.

反応後、反応液を濾過し、酵素を回収し、濾液をロータ
リーエバポレーターにて濃縮し、溶媒を除去した。この
残渣をカラムクロマトグラフィーで分離すると、メチル
−6−0−オイレルグルコシッドが96%の収率で得ら
れた。また、モノエステルとジエステルとの生成比率は
99.510.5であった。
After the reaction, the reaction solution was filtered to recover the enzyme, and the filtrate was concentrated using a rotary evaporator to remove the solvent. When this residue was separated by column chromatography, methyl-6-0-euler glucoside was obtained with a yield of 96%. Moreover, the production ratio of monoester and diester was 99.510.5.

〔実施例2〕 メチルグルコジッド19.4g (0,1モル)とn−
デカン酸メチル93.0g (0,5モル)をアミルア
ルコール150gに加え、次いで中性耐熱性固定化リパ
ーゼ〔リポザイム(NOVO社製)〕2gを加え、更に
脱メタノール剤としてモレキュラーシーブスSA30g
を添加した後、40”Cで24時間反応させた。
[Example 2] 19.4 g (0.1 mol) of methyl glucodide and n-
93.0 g (0.5 mol) of methyl decanoate was added to 150 g of amyl alcohol, then 2 g of neutral heat-resistant immobilized lipase [Lipozyme (manufactured by NOVO)] was added, and 30 g of Molecular Sieves SA was added as a demethanol agent.
was added, and the mixture was reacted at 40"C for 24 hours.

反応後、反応液を常法によりアセチル化し、ガスクロマ
トグラフィーで分析したところ、メチル−6−0−デカ
ノイルグルコジッドが96%の収率、99.5%の選択
率で得られたことが確認された。
After the reaction, the reaction solution was acetylated by a conventional method and analyzed by gas chromatography, which showed that methyl-6-0-decanoyl glucodide was obtained with a yield of 96% and a selectivity of 99.5%. confirmed.

〔実施例3〕 メチルグルコジッド19.4g (0,1モル)とn−
デカン酸50.5g (0,3モル)を120gのジア
セトンアルコールに加え、次いで中性耐熱性固定化リパ
ーゼs p −382を加えた後、40℃、減圧下(3
0mmHg)で24時間反応させた。
[Example 3] 19.4 g (0.1 mol) of methyl glucodide and n-
50.5 g (0.3 mol) of decanoic acid was added to 120 g of diacetone alcohol, followed by addition of neutral thermostable immobilized lipase sp-382, and then at 40 °C under reduced pressure (3
0 mmHg) for 24 hours.

反応後、反応液を常法によりアセチル化し、ガスクロマ
トグラフィーで分析したところ、メチル−6−0−デカ
ノイルグルコジッドが97%の収率、99.3%の選択
率で得られたことが確認された。
After the reaction, the reaction solution was acetylated by a conventional method and analyzed by gas chromatography, which showed that methyl-6-0-decanoyl glucodide was obtained in a yield of 97% and a selectivity of 99.3%. confirmed.

〔比較例〕[Comparative example]

中性耐熱性固定化リパーゼの代わりにアルカリ製すパー
ゼPL−679粉末100mgを用いた以外は実施例1
と同様にしてエステル化反応を行なった。
Example 1 except that 100 mg of alkaline pase PL-679 powder was used instead of the neutral heat-resistant immobilized lipase.
Esterification reaction was carried out in the same manner as above.

反応液を実施例1と同様に操作して得られた残渣にクロ
ロホルム20m1を加え、溶解した後、不溶物を遠心分
離にて除去した。この上澄液をカラムクロマトグラフィ
ーで分離すると、メチル−6−0−オレイルグルコジッ
ドが得られていることが確認されたが、その収量は25
8mgで、収率が低い(11%)ものであった。
The reaction solution was operated in the same manner as in Example 1, and 20 ml of chloroform was added to the resulting residue to dissolve it, and then insoluble materials were removed by centrifugation. When this supernatant was separated by column chromatography, it was confirmed that methyl-6-0-oleyl glucodide was obtained, but the yield was 25
8 mg, and the yield was low (11%).

出願人  ラ イ オ ン 株式会社Applicant: Laion Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1、炭素数5〜7の単糖類及びヘキソースからなる2糖
類より選ばれる糖類のメチルグリコシドと、炭素数6〜
22の飽和及び不飽和脂肪酸並びに該脂肪酸と炭素数1
〜3の低級アルコールとのエステルから選ばれる脂肪酸
類とを、中性耐熱性固定化加水分解酵素を用いて双極子
モーメントが0.5デバイ以上の電気特性を有する実質
的に水を含まない有機溶媒中で反応させることを特徴と
するメチルグリコシド脂肪酸モノエステルの製造法。
1. Methyl glycoside of a sugar selected from monosaccharides with 5 to 7 carbon atoms and disaccharides consisting of hexoses, and methyl glycosides with 6 to 7 carbon atoms.
22 saturated and unsaturated fatty acids and the fatty acids with 1 carbon number
A substantially water-free organic compound having electrical properties with a dipole moment of 0.5 debye or more is prepared by using a neutral heat-resistant immobilized hydrolase to convert fatty acids selected from esters with lower alcohols of A method for producing a methyl glycoside fatty acid monoester, which comprises reacting in a solvent.
JP11632790A 1990-05-02 1990-05-02 Production of methylglycoside monoester of fatty acid Pending JPH0416195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11632790A JPH0416195A (en) 1990-05-02 1990-05-02 Production of methylglycoside monoester of fatty acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11632790A JPH0416195A (en) 1990-05-02 1990-05-02 Production of methylglycoside monoester of fatty acid

Publications (1)

Publication Number Publication Date
JPH0416195A true JPH0416195A (en) 1992-01-21

Family

ID=14684231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11632790A Pending JPH0416195A (en) 1990-05-02 1990-05-02 Production of methylglycoside monoester of fatty acid

Country Status (1)

Country Link
JP (1) JPH0416195A (en)

Similar Documents

Publication Publication Date Title
US5854030A (en) Sugar-based polymers
Otto et al. Synthesis of aromatic n-alkyl-glucoside esters in a coupled β-glucosidase and lipase reaction
EP0413307A1 (en) Process for producing saccharide fatty acid monoesters
JPH0416195A (en) Production of methylglycoside monoester of fatty acid
JPS63112993A (en) Production of saccharide or sugarlcohol fatty acid ester by enzymatic method
EP0507323B1 (en) Process for preparing fatty acid esters of saccharides
EP0571421B1 (en) Enzymatic reverse hydrolysis of hydrophilic substrates - preparation of amphiphilic compounds
JPH0416194A (en) Production of ester mixture
JPH0416196A (en) Production of alkylglycoside monoester of fatty acid
JPH05112592A (en) Production of saccharide's fatty acid monoester
EP0748388B1 (en) Process for preparing fatty acid esters of alkyl glycosides
JPH03168091A (en) Production of saccharide fatty acid monoester
JPH05148285A (en) Production of saccharides fatty acid ester
Fujimoto et al. Syntheses of α-D-glucosyl-D-fructoses by use of a reversed hydrolysis activity of α-glucosidase
JP4644433B2 (en) Method for producing novel D-allose fatty acid ester
JPH09173091A (en) Production of saccharide fatty acid ester
JPH03168090A (en) Production of saccharide fatty acid monoester
JPH03168094A (en) Purification of sugar-fatty acid ester
JP5358802B2 (en) Process for producing novel rare sugar fatty acid diesters
EP0945516B1 (en) Process for the selective preparation of partially acylated derivatives of monosaccharides and polyols
JPH0343092A (en) Production of polyol monofatty acid ester
JPH03168093A (en) Purification of sugar-fatty acid ester
JPH0670789A (en) Production of glyceroglycolipid
JPH03168092A (en) Production of saccharide fatty acid monoester
JPH05176783A (en) Production of ester of saccharides of fatty acid