JPH03168090A - Production of saccharide fatty acid monoester - Google Patents

Production of saccharide fatty acid monoester

Info

Publication number
JPH03168090A
JPH03168090A JP1307077A JP30707789A JPH03168090A JP H03168090 A JPH03168090 A JP H03168090A JP 1307077 A JP1307077 A JP 1307077A JP 30707789 A JP30707789 A JP 30707789A JP H03168090 A JPH03168090 A JP H03168090A
Authority
JP
Japan
Prior art keywords
fatty acids
fatty acid
lipase
reaction
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1307077A
Other languages
Japanese (ja)
Inventor
Hiroshi Miyake
博 三宅
Masanori Hirano
正徳 平野
Haruhiko Toda
戸田 晴彦
Kyozo Kitano
北野 恭三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lion Corp
Original Assignee
Lion Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lion Corp filed Critical Lion Corp
Priority to JP1307077A priority Critical patent/JPH03168090A/en
Publication of JPH03168090A publication Critical patent/JPH03168090A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To improve yield of saccharide fatty acid monoester by reacting specific saccharides with fatty acids and lipase in the presence of an organic solvent containing no water. CONSTITUTION:1mol saccharides selected from 5-7C monosaccharides having no substituent group, disaccharides consisting of hexose and 4-5C saccharide alcohol is reacted with 1-50mol fatty acids selected from 6-22C (un)saturated fatty acid and ester of the above-mentioned fatty acid and 1-3C lower alcohol in the presence of a heat resistant lipase of 0.1-10000 pts.wt. based on 100 pts.wt. fatty acids in an organic solvent (e.g. 2,4-dimethyl-3-pentanol) containing no water at >=40 deg.C for about 24hr.

Description

【発明の詳細な説明】 産粟圭生社且立見 本発明は、リパーゼを用いた酵素反応で糖類と脂肪酸類
とから糖脂肪酸エステルを製造するに際し、モノエステ
ルを選択的に合或することができる糖脂肪酸モノエステ
ルの製造方法に関する。
[Detailed description of the invention] Published by Keio Sha and Tatemi The present invention is capable of selectively combining monoesters when producing saccharide fatty acid esters from saccharides and fatty acids through an enzymatic reaction using lipase. The present invention relates to a method for producing sugar fatty acid monoester.

従来の技術及び 明が  しようとする従来、リパーゼ
は脂肪又は高級脂肪酸のエステルを加水分解する酵素で
あることが知られているが、リパーゼはまた適当な条件
下で加水分解の逆反応を起こし、エステルを合或したり
、エステル交換反応を行なうことが知られている。
BACKGROUND OF THE INVENTION Previously, it is known that lipase is an enzyme that hydrolyzes esters of fats or higher fatty acids, but lipase also undergoes the reverse reaction of hydrolysis under appropriate conditions. It is known to combine esters and perform transesterification reactions.

しかし、これらの酵素反応を水溶液中で行なうとエステ
ル合成反応の場合は逆反応であるエステルの加水分解が
優先する。また、エステル交換反応の場合も、原料及び
生或物のエステルの加水分解反応が生じ、反応率が低下
する。
However, when these enzymatic reactions are carried out in an aqueous solution, in the case of ester synthesis reactions, the reverse reaction, ester hydrolysis, takes precedence. Furthermore, in the case of transesterification, a hydrolysis reaction of the ester of the raw material and the raw material occurs, resulting in a decrease in the reaction rate.

このため、実質的に水を含まない有機溶媒系での反応が
望まれ、エステルの加水分解を避けるため、水を殆ど含
有しない有機溶媒中でのエステル合或、エステル交換反
応を酵素法で実施することが提案されている(特開昭6
1−268192号公報;同62−10779号公報;
 J.Am. Chem.Soc.,108,5638
(1986);J.Am.Chem.Soc.,110
,584 (1988)) 。この場合、2− 特開昭61−268192号公報の提案では微生物由来
のアルカリ性リパーゼを使用し、特開昭62−1077
9号公報の提案ではキャンデイダ・シリンドラセ(Ca
ndida cylindracea)から変異誘導さ
れるリパーゼを使用している。なお、上掲文献おいては
、いずれも構造の複雑な活性エステルを用いて反応率の
向上を図ることが行なわれている。
Therefore, it is desirable to perform the reaction in an organic solvent system that contains virtually no water, and to avoid hydrolysis of the ester, the esterification or transesterification reaction is carried out using an enzymatic method in an organic solvent that contains almost no water. It is proposed that
Publication No. 1-268192; Publication No. 62-10779;
J. Am. Chem. Soc. ,108,5638
(1986); J. Am. Chem. Soc. ,110
, 584 (1988)). In this case, 2- The proposal of JP-A No. 61-268192 uses alkaline lipase derived from a microorganism, and the proposal of JP-A No. 62-1077
In the proposal of Publication No. 9, Candida cylindrace (Ca.
A lipase mutagenized from ndida cylindracea is used. In the above-mentioned documents, an active ester with a complex structure is used to improve the reaction rate.

しかしながら、これらの公知の方法は、例えば上掲文献
に記載の方法ではモノエステル含有量を高めるために特
別な基質を用いており、通常の脂肪酸やその低級アルコ
ールエステルでは十分な反応率を与えることができず、
また特開昭61−268192号公報に記載の方法では
モノ体を選択的に得ることはできないもので、上述した
従来の方法ではいずれも通常の脂肪酸やその低級アルコ
ールエステルと糖類とを反応させた場合、十分な反応率
で高いモノエステル含有率を有する糖脂肪酸エステルを
得ることはできないものであった。
However, in these known methods, for example, the method described in the above-mentioned literature uses a special substrate to increase the monoester content, and ordinary fatty acids or their lower alcohol esters cannot give a sufficient reaction rate. I can't do it,
Furthermore, the method described in JP-A No. 61-268192 cannot selectively obtain monomers, and the conventional methods described above all involve reacting ordinary fatty acids or their lower alcohol esters with sugars. In this case, it was not possible to obtain a sugar fatty acid ester having a high monoester content with a sufficient reaction rate.

なお、従来、化学合戒法により酸クロライド等−3− のアシル化剤を使用して糖類のエステル化を行なう方法
(Chem. Pharm. Bull, 2 7 (
 1 1 ) ,2661 (1979))が報告され
ているが、この方法もアシル化剤と糖類とを等モル使用
してもポリエステル体が多量に副生じ、モノエステルを
選択的に得ることができない。
In addition, conventionally, a method of esterifying sugars using a -3-acylating agent such as acid chloride according to a chemical method (Chem. Pharm. Bull, 27 (
1 1), 2661 (1979)), but this method also produces a large amount of polyester as a by-product even if equimolar amounts of acylating agent and saccharide are used, making it impossible to selectively obtain monoester. .

本発明は、上記事情に鑑みなされたもので、効率よくエ
ステル合戒又はエステル交換反応を行なうことができ,
高い反応率でモノエステルを選択的に合或することがで
きる糖脂肪酸モノエステルの製造方法を提供することを
目的とする。
The present invention was made in view of the above circumstances, and enables efficient ester aggregation or transesterification.
The object of the present invention is to provide a method for producing sugar fatty acid monoesters that can selectively synthesize monoesters at a high reaction rate.

を  するための   び 本発明は、上記目的を達或するため、置換基を有しない
炭素数5〜7の単糖類、ヘキソースからなる2糖類及び
炭素数4〜6の糖アルコールより選ばれる糖類と、炭素
数6〜22の飽和及び不飽和脂肪酸並びに該脂肪酸と炭
素数1〜3の低級アルコールとのエステルより選ばれる
脂肪酸類とをリパーゼを用いて実質的に水を含まない有
機溶媒の存在下で糖脂肪酸モノエステルを製造するに際
−4− し、原料糖類1モルに対して原料脂肪酸類を1モルを越
えるモル比で使用するようにしたものである。
In order to achieve the above-mentioned object, the present invention uses a saccharide selected from unsubstituted monosaccharides having 5 to 7 carbon atoms, disaccharides consisting of hexoses, and sugar alcohols having 4 to 6 carbon atoms. , fatty acids selected from saturated and unsaturated fatty acids having 6 to 22 carbon atoms, and esters of the fatty acids and lower alcohols having 1 to 3 carbon atoms, using lipase in the presence of an organic solvent that does not substantially contain water. When producing a sugar fatty acid monoester, the raw fatty acid is used at a molar ratio of more than 1 mole to 1 mole of the raw sugar.

即ち、本発明者は種々検討を行なった結果、このように
脂肪酸類を糖類に対して過剰モル使用することにより、
モノエステルが優先的に得られること、また特に、本出
願人は上記反応系においてリパーゼとして耐熱性固定化
リパーゼを使用することにより、糖脂肪酸モノエステル
を高い合成到達率及び含有率で得る糖脂肪酸モノエステ
ルの製造方法を提供した(特願平1−210495号)
が、この方法において、糖類に対して過剰モルの脂肪酸
類を用いれば,更に短時間のうちにモノエステルのみが
高収率で得られることを知見し、本発明をなすに至った
ものである。
That is, as a result of various studies, the inventors of the present invention found that by using molar excess of fatty acids relative to sugars,
Monoesters can be obtained preferentially, and in particular, the applicant has found that sugar fatty acid monoesters can be obtained with a high synthesis rate and content by using a thermostable immobilized lipase as a lipase in the above reaction system. Provided a method for producing monoester (Japanese Patent Application No. 1-210495)
However, in this method, the inventors discovered that if a molar excess of fatty acids relative to sugars was used, only monoesters could be obtained in higher yields in a shorter time, leading to the present invention. .

以下、本発明につき更に詳しく説明する。The present invention will be explained in more detail below.

本発明において、糖脂肪蒙モノエステルは出発原料とし
て脂肪酸またはそのエステルと糖類とを使用し、リパー
ゼによる酵素反応を利用して製造する。
In the present invention, the sugar-fatty monoester is produced using a fatty acid or its ester and a saccharide as starting materials, and using an enzymatic reaction with lipase.

−5− ここで、本発明に使用する脂肪酸は、炭素数6〜22の
飽和もしくは不飽和で直鎖もしくは分岐鎖脂肪酸であり
、このような脂肪酸であれば、水酸基,カルボニル基,
フェニル基等で置換されたものでもよい。具体的には、
脂肪酸としてカプロン酸,ソルビン酸,カプリル酸,カ
ブリン酸,ラウリン酸,ミリスチン酸,パルミトレイン
酸,パルミチン酸,ステアリン酸,イソステアリン酸,
オレイン酸,リノール酸,リノレン酸,エイコサン酸,
ドコサン酸,ドコセン酸,アラキドン酸,リシノレイン
酸,ジヒドロキシステアリン酸等を使用することができ
る。
-5- Here, the fatty acid used in the present invention is a saturated or unsaturated, linear or branched fatty acid having 6 to 22 carbon atoms.
It may also be substituted with a phenyl group or the like. in particular,
Fatty acids include caproic acid, sorbic acid, caprylic acid, cabric acid, lauric acid, myristic acid, palmitoleic acid, palmitic acid, stearic acid, isostearic acid,
Oleic acid, linoleic acid, linolenic acid, eicosanoic acid,
Docosanoic acid, docosenoic acid, arachidonic acid, ricinoleic acid, dihydroxystearic acid, etc. can be used.

更に、脂肪酸のエステルとしては、上記炭素数6〜22
の脂肪酸と炭素数1〜3の低級アルコール、例えばメタ
ノール,エタノール,プロパノールとのエステルを使用
するものであり、具体的にはカプロン酸メチル,カプロ
ン酸エチル,カブリン酸メチル,カブリン酸エチル,ラ
ウリン酸メチル,ラウリン酸エチル,ラウリン酸プロビ
ル,ミリスチン酸メチル,ミリスチン酸エチル,ミリス
一G− チン酸プロビル,パルミチン酸メチル,パルミチン酸エ
チル,パルミチン酸プロビル,ステアリン酸メチル,ス
テアリン酸エチル,ステアリン酸プロビル,オレイン酸
メチル,オレイン酸エチル,オレイン酸プロビル,リノ
ール酸メチル,リノール酸エチル,リノール酸プロビル
,リノレン酸メチル,リノレン酸エチル,リノレン酸プ
ロビル,エイコサン酸メチル,アラキドン酸メチル,ド
コサン酸メチル,ドコセン酸メチル等が例示される。
Furthermore, as the fatty acid ester, the above-mentioned carbon number 6-22
It uses esters of fatty acids and lower alcohols having 1 to 3 carbon atoms, such as methanol, ethanol, and propanol, specifically methyl caproate, ethyl caproate, methyl caproate, ethyl caproate, and lauric acid. Methyl, ethyl laurate, provil laurate, methyl myristate, ethyl myristate, provil monog-tate, methyl palmitate, ethyl palmitate, provil palmitate, methyl stearate, ethyl stearate, provil stearate, Methyl oleate, ethyl oleate, probyl oleate, methyl linoleate, ethyl linoleate, probyl linoleate, methyl linolenate, ethyl linoleate, probyl linolenate, methyl eicosanoate, methyl arachidonate, methyl docosanoate, docosenoic acid Examples include methyl.

また、本発明で用いる糖類は、置換基を有しない炭素数
5〜7の単糖類,ヘキソースからなる2糖類及び炭素数
4〜6の糖アルコールより選ばれる1種又は2種以上で
ある。
Furthermore, the saccharide used in the present invention is one or more selected from unsubstituted monosaccharides having 5 to 7 carbon atoms, disaccharides consisting of hexoses, and sugar alcohols having 4 to 6 carbon atoms.

ここで、単糖類としては、炭素数5の単糖として、アラ
ビノース,リボース,キシロース,リキソース,キシル
ロース,リブロース,2−デオキシリボース等が挙げら
れ、炭素数6の単糖として、グルコース,ガラクトース
,フラクトース,マンノース,ソルボース,タロース,
2−デオキシグルコース,6−デオキシガラクトース,
6−デオ−7一 キシマンノース,2−デオキシガラクトース等が挙げら
れ、炭素数7の単糖として、アロヘプッロース,セドヘ
プツロース,マンノヘプツロース,グルコヘプッロース
等が挙げられる。
Here, examples of monosaccharides having 5 carbon atoms include arabinose, ribose, xylose, lyxose, xylulose, ribulose, 2-deoxyribose, etc., and monosaccharides having 6 carbon atoms such as glucose, galactose, fructose, etc. , mannose, sorbose, talose,
2-deoxyglucose, 6-deoxygalactose,
Examples of the monosaccharide having 7 carbon atoms include 6-deo-7-xymannose and 2-deoxygalactose, and examples of the monosaccharide having 7 carbon atoms include alohepulose, sedoheptulose, mannoheptulose, and glucoheptulose.

また、ヘキソースからなる2糖類としては、マルトース
,シュクロース,ソホロース等が挙げられる。
In addition, examples of disaccharides consisting of hexose include maltose, sucrose, sophorose, and the like.

更に、糖アルコールとしては、エリスリトール,リビト
ール,キシリトール,アリトール,ソルビトール,マン
ニトール,ガラクチトール等が挙げられる。
Furthermore, examples of the sugar alcohol include erythritol, ribitol, xylitol, allitol, sorbitol, mannitol, galactitol, and the like.

この場合、本発明は上記脂肪酸類と糖類とを反応させる
に際し、糖類1モルに対し脂肪酸類を1モルを越えるモ
ル比、好ましくは糖類1モルに対し脂肪酸類をlモルを
越え50モル以下の範囲、より好ましくは1.5〜20
モル、特に2〜8モルの範囲で使用するもので、これに
より糖脂肪酸モノエステルを選択的に得ることができる
In this case, when reacting the fatty acids and sugars, the present invention provides a molar ratio of more than 1 mole of fatty acids per mole of sugars, preferably more than 1 mole of fatty acids and less than 50 moles of fatty acids per mole of sugars. range, more preferably 1.5-20
It is used in a molar amount, particularly in a range of 2 to 8 molar, and thereby sugar fatty acid monoester can be selectively obtained.

本発明の酵素反応で使用するリパーゼは,従来よりこの
種の酵素反応に用いられるいずれのりパ−8− ーゼを用いてもよく、例えば上述した微生物由来のアル
カリ性リパーゼやキャンデイダ・シリンドラセから変異
誘導されるリパーゼ等を挙げることができるが、モノエ
ステルを得る点から特願平1−210495号で示した
固定化した耐熱性リパーゼを用いることが推奨される。
The lipase used in the enzymatic reaction of the present invention may be any lipase conventionally used in this type of enzymatic reaction, such as the above-mentioned alkaline lipase derived from microorganisms or mutagenic lipase derived from Candida cylindracea. For example, from the viewpoint of obtaining a monoester, it is recommended to use the immobilized heat-stable lipase disclosed in Japanese Patent Application No. 1-210495.

ここで、耐熱性リパーゼとしてはリパーゼ粉末50■を
0.4成のリン酸バッファ一(0.1M,pH7)に溶
解し、70℃で30分間加熱した後の残存活性が40%
以上、好ましくは80%以上、更に好ましくは95%以
上の耐熱性を有するものであれば種々のものを使用でき
、例えばキャンディダ・アンタークティカ(Candi
da antarctica)由来の耐熱性リパーゼ(
s p−382,NOVO社製)、ムコール・マイハイ
(Mucor miehei)由来の耐熱性リパーゼ(
Liρozyme, N O VO社製)などが好適に
用いられるが、勿論これらに限られるものではない。
Here, as a heat-stable lipase, 50 μg of lipase powder was dissolved in 0.4% phosphate buffer (0.1 M, pH 7), and the residual activity after heating at 70°C for 30 minutes was 40%.
Various materials can be used as long as they have a heat resistance of preferably 80% or more, more preferably 95% or more, such as Candida antarctica (Candi antarctica).
thermostable lipase (
sp-382, manufactured by NOVO), thermostable lipase derived from Mucor miehei (
Liρozyme (manufactured by N.O.V.O.) and the like are preferably used, but are of course not limited to these.

なお、これらの耐熱性リパーゼは精製品でも粗製品でも
よく、更に耐熱性リパーゼを生或する菌ー9一 体(処理菌体、休止もしくは静止菌体)の乾燥品を使用
することもできる。
Note that these heat-stable lipases may be purified products or crude products, and furthermore, dried products of microorganisms (treated microbial cells, resting or stationary microbial cells) that produce heat-stable lipases can also be used.

また、上記耐熱性リパーゼの固定化方法としては、担体
結合法、架橋法、包括法のうちいずれの方法を採用して
もよいが、特に担体結合法が好適に採用できる。
Further, as a method for immobilizing the thermostable lipase, any of the carrier binding method, crosslinking method, and entrapping method may be employed, and the carrier binding method is particularly preferably employed.

この場合、固定化担体として具体的には、活性炭,多孔
性ガラス,酸性白土,漂白土,カオリナイト,アルミナ
,シリカゲル.ベントナイト,ヒドロキシアパタイト,
リン酸カルシウム,金属酸化物等の無機物質、デンプン
,グルテン等の天然高分子化合物、ポリエチレン,ポリ
プロピレン,フェノールホルマリン樹脂,アクリル樹脂
,アニオン交換樹脂,カチオン交換樹脂等の合或高分子
物質などを挙げることができるが、本発明では特に物理
的形態として多孔性を有する合或高分子物質、例えば多
孔性ポリエチレン,多孔性ポリプロピレン,多孔性フェ
ノールホルマリン樹脂,多孔性アクリル樹脂が最も好ま
しく用いられる。なお、本発明では、酵素の活性発現を
阻害しないものでー10 あれば上記以外の種々の固定化担体を使用しても何ら差
し支えない。
In this case, specific examples of the immobilization carrier include activated carbon, porous glass, acid clay, bleaching clay, kaolinite, alumina, and silica gel. bentonite, hydroxyapatite,
Examples include inorganic substances such as calcium phosphate and metal oxides, natural polymeric compounds such as starch and gluten, and synthetic polymeric substances such as polyethylene, polypropylene, phenol-formalin resin, acrylic resin, anion exchange resin, and cation exchange resin. However, in the present invention, polymeric materials having porosity in physical form, such as porous polyethylene, porous polypropylene, porous phenol-formalin resin, and porous acrylic resin, are most preferably used. In the present invention, there is no problem in using various immobilization carriers other than those mentioned above, as long as they do not inhibit the expression of enzyme activity.

更に、固定化担体に対し固定化されるリパーゼ量は通常
固定化担体1gに対して0.1〜500■の蛋白質量、
特にリパーゼが蛋白質中に2〜50%程度含まれている
蛋白質を固定化したものが好適である。
Furthermore, the amount of lipase immobilized on the immobilization carrier is usually 0.1 to 500 μg of protein per gram of the immobilization carrier;
Particularly suitable is one in which a protein containing about 2 to 50% lipase is immobilized.

本発明において、リパーゼの使用量は特に限定されない
が、上記脂肪酸又はそのエステルl00重量部に対し0
.1〜10000重量部、好ましくは1〜2000重量
部の範囲とすることができる。
In the present invention, the amount of lipase used is not particularly limited, but 0 parts by weight per 100 parts by weight of the above fatty acid or ester thereof.
.. It can range from 1 to 10,000 parts by weight, preferably from 1 to 2,000 parts by weight.

本発明では、上記脂肪酸又はそのエステルと糖類とのリ
パーゼを用いた酵素反応は実質的に水を含まない有機溶
媒の存在下で行なう。
In the present invention, the enzymatic reaction between the fatty acid or its ester and saccharide using lipase is carried out in the presence of an organic solvent substantially free of water.

有機溶媒としては、第2級又は第3級アルコールが好ま
しく、例えば2,4−ジメチル−3−ペンタノール,2
,6−ジメチル−4−ヘプタノール,第3級ブチルアル
コール,第3級アミルアルコール,ジアセトンアルコー
ル,3−メチルー3一ペンタノール,3−エチル−3−
ペンタノール,3−プロビル−3−ペンタノール,2−
メチル−2−ヘキサノール,2−エチル−2−ヘキサノ
ール等を使用することができる。また、ベンゼン,トル
エン,キシレン,フェノール等の芳香族炭化水素類、ア
セトン,メチルエチルケトン等のケトン類、ジメチルエ
ーテル,ジエチルエーテル,ジオキサン等のエーテル類
、n−ヘキサン,n−オクタン,イソオクタン等の脂肪
族炭化水素類、シクロペンタン,シクロヘキサン等の脂
環式炭化水素類、四塩化炭素,クロロホルム,二塩化メ
チレン等のハロゲン化炭化水素類なども好適に用いられ
るほか、糖類の良溶媒であるピリジン,ジメチルホルム
アミド,ジメチルアセトアミド,キノリン等の含窒素溶
媒類やジメチルスルホキシド等の含硫黄溶媒類などを使
用することもできる。なお、これらの溶媒はその1種を
単独で使用してもよく、2種以上の混合溶媒として用い
てもよい。
The organic solvent is preferably a secondary or tertiary alcohol, such as 2,4-dimethyl-3-pentanol, 2
, 6-dimethyl-4-heptanol, tertiary butyl alcohol, tertiary amyl alcohol, diacetone alcohol, 3-methyl-3-pentanol, 3-ethyl-3-
Pentanol, 3-propyl-3-pentanol, 2-
Methyl-2-hexanol, 2-ethyl-2-hexanol, etc. can be used. Also, aromatic hydrocarbons such as benzene, toluene, xylene, and phenol, ketones such as acetone and methyl ethyl ketone, ethers such as dimethyl ether, diethyl ether, and dioxane, and aliphatic carbons such as n-hexane, n-octane, and isooctane. Hydrogens, alicyclic hydrocarbons such as cyclopentane and cyclohexane, and halogenated hydrocarbons such as carbon tetrachloride, chloroform and methylene dichloride are also preferably used, as well as pyridine and dimethylformamide, which are good solvents for sugars. , dimethylacetamide, quinoline, and other nitrogen-containing solvents; and dimethyl sulfoxide and other sulfur-containing solvents. Note that these solvents may be used alone or as a mixed solvent of two or more.

上記有機溶媒の使用量は、有機溶媒の種類、脂肪酸又は
そのエステルの炭素鋲長、反応温度等により左右される
が、好ましくは反応系全体の10〜99重量%、特に6
0〜80重量%である。
The amount of the organic solvent used depends on the type of organic solvent, the carbon rivet length of the fatty acid or its ester, the reaction temperature, etc., but is preferably 10 to 99% by weight of the entire reaction system, especially 6% by weight of the entire reaction system.
It is 0 to 80% by weight.

上記脂肪酸又はそのエステルと糖類とをリパーゼを用い
て酵素反応させる際、反応条件は適宜調整し得、低温で
も反応は進行するが、特に耐熱性固定化リパーゼを使用
する場合、反応速度を速めるため、40℃以上、特に6
0〜120℃の温度で反応させることが好ましく、この
温度条件で反応を行なうと24時間程度で反応を完結す
ることができる。この場合、糖類はその利用効率を高め
る点から上記有機溶媒に60℃以上の温度で溶解して使
用することが好ましい。なお、かかる高温の反応でも耐
熱性固定化リパーゼの使用により酵素失活がないもので
ある。
When enzymatically reacting the fatty acids or their esters with saccharides using lipase, the reaction conditions can be adjusted as appropriate, and the reaction proceeds even at low temperatures, but in particular when using a heat-resistant immobilized lipase, the reaction rate can be accelerated. , 40℃ or higher, especially 6
It is preferable to carry out the reaction at a temperature of 0 to 120°C, and if the reaction is carried out under this temperature condition, the reaction can be completed in about 24 hours. In this case, the saccharide is preferably used after being dissolved in the organic solvent at a temperature of 60° C. or higher in order to increase its utilization efficiency. In addition, even in such a high temperature reaction, there is no enzyme deactivation due to the use of heat-resistant immobilized lipase.

更に、本発明方法により糖脂肪酸モノエステルを製造す
る際は、例えばリパーゼをカラムに充填して基質液を通
す方法(充填力ラム式)、基質液とリパーゼを反応槽に
導入し、撹拌、振盪により反応を行なう方法(回分式)
、前記回分式で反応を連続的に行なう方法(連続撹拌槽
式)等を採用−13 して行なうことができる。
Furthermore, when producing a sugar fatty acid monoester by the method of the present invention, for example, a method of filling a column with lipase and passing a substrate liquid through it (packing force ram method), introducing a substrate liquid and lipase into a reaction tank, stirring, shaking, etc. (batch method)
The reaction can be carried out by employing the above-mentioned batch method (continuous stirring tank method), etc., in which the reaction is carried out continuously.

また、本発明方法では、酵素反応により水又は炭素数■
〜3の低級アルコールが副生ずるが、この場合、この副
生物の系中濃度が0.5重量%以下、特に0.1重量%
以下となるように副生物を除去することが効率良く反応
を進めるために好ましい。これら副生物を除去する方法
としては、例えばゼオライト,モレキュラーシーブス,
芒硝等を反応系外及び/又は反応系内で用いて吸着除去
する方法、乾燥空気や不活性ガスを反応槽中に導入して
気体中に蒸発させて除去するか、あるいは反応槽内を減
圧にし、蒸発させて反応槽外に排出する方法等が挙げら
れ、これら除去方法を前述の酵素反応装置と適宜組み合
わせると効率良く合戒反応を行なうことができる。
In addition, in the method of the present invention, water or carbon number ■
~3 lower alcohol is produced as a by-product, but in this case, the concentration of this by-product in the system is 0.5% by weight or less, particularly 0.1% by weight.
In order to proceed with the reaction efficiently, it is preferable to remove by-products as follows. Methods for removing these byproducts include, for example, zeolite, molecular sieves,
A method of adsorbing and removing Glauber's salt, etc. using outside and/or inside the reaction system, introducing dry air or inert gas into the reaction tank and removing it by evaporation into gas, or reducing the pressure inside the reaction tank. For example, the removal method may be evaporated, evaporated, and discharged out of the reaction tank. If these removal methods are appropriately combined with the above-mentioned enzyme reaction apparatus, the reaction can be carried out efficiently.

なお、本発明は上述したように糖類エモルに対して1モ
ルを越える脂肪酸類を使用するであるが、反応混合物中
に含まれる未反応脂肪酸類はこれを分離、回収し、再使
用することができる。
In addition, although the present invention uses more than 1 mole of fatty acids per saccharide emole as described above, unreacted fatty acids contained in the reaction mixture can be separated, recovered, and reused. can.

この場合、脂肪酸類を分離、回収する方法としては、反
応混合物を上記脂肪酸類を溶解し、糖脂肪酸エステルが
不溶な有機溶媒で処理して、脂肪酸類と糖脂肪酸エステ
ルとを分離する方法が好適に採用される。
In this case, a suitable method for separating and recovering the fatty acids is to dissolve the fatty acids in the reaction mixture, treat the reaction mixture with an organic solvent in which the saccharide fatty acid ester is insoluble, and separate the fatty acid and the saccharide fatty acid ester. will be adopted.

ここで、脂肪酸類を溶解し糖脂肪酸エステルが不溶な有
機溶媒としては、n−ペンタン、n−ヘキサン、n−へ
ブタン、2−メチルへブタン、nオクタン、イソオクタ
ン等の飽和炭化水素類、2−ヘキセン、2−オクテン等
の不飽和炭化水素類、ベンゼン、トルエン、キシレン等
の芳香族炭化水素類、アセトン、メチルエチルケトン等
のケトン類などを挙げることができる。これらの溶媒に
脂肪酸類を移行して回収することが好ましい。
Here, examples of organic solvents that dissolve fatty acids and insoluble sugar fatty acid esters include saturated hydrocarbons such as n-pentane, n-hexane, n-hebutane, 2-methylhebutane, n-octane, and isooctane; Examples include unsaturated hydrocarbons such as -hexene and 2-octene, aromatic hydrocarbons such as benzene, toluene and xylene, and ketones such as acetone and methyl ethyl ketone. It is preferable to transfer fatty acids to these solvents and recover them.

上記有機溶媒による処理は、反応系よりリパーゼもしく
は未反応グルコースを除去した後、反応混合物中の有機
溶媒を留去し或いは場合によって留去せずにそのまま行
なうことができ、処理方法としては洗浄法、抽出法、カ
ラム法、再結晶法等の適宜な方法が単独で又は組み合わ
せて採用される。なお、使用する有機溶媒の量も適宜選
定されるが、通常反応混合物の固形分に対し2〜50倍
量(重量比)である。また、処理は室温でも十分である
が、加温した有機溶媒を使用することができ、有機溶媒
の還流温度での処理も可能である。
The above-mentioned treatment with an organic solvent can be carried out by removing lipase or unreacted glucose from the reaction system and then distilling off the organic solvent in the reaction mixture, or in some cases, it can be carried out as it is without distilling it off. , an extraction method, a column method, a recrystallization method, and the like may be employed alone or in combination. The amount of the organic solvent used is also appropriately selected, but is usually 2 to 50 times the solid content of the reaction mixture (weight ratio). Although the treatment can be carried out at room temperature, a heated organic solvent can be used, and the treatment can also be carried out at the reflux temperature of the organic solvent.

このように有機溶媒で処理することにより分離された脂
肪酸類は、これを回収し、上記反応に再使用することが
できる。
The fatty acids thus separated by treatment with an organic solvent can be recovered and reused in the above reaction.

また、脂肪酸類が分離された糖脂肪酸エステルは、その
ままでも十分使用可能であるが、目的により再結晶法、
カラム法、晶析法等の方法により精製することができる
。この場合、その精製は脂肪酸類が分離されているので
容易に行なうことができる。
Sugar fatty acid esters from which fatty acids have been separated can be used as is, but depending on the purpose, recrystallization,
It can be purified by methods such as column methods and crystallization methods. In this case, the purification can be easily carried out since the fatty acids have been separated.

なお、リパーゼ、また反応混合物中の糖類は室温又はそ
れ以下の温度で析出するので、これらは炉過により容易
に分離、除去することができる。
Note that since lipase and saccharides in the reaction mixture precipitate at room temperature or lower temperatures, they can be easily separated and removed by filtration.

従って、上記有機溶媒処理の前に反応混合物を冷却、炉
過し、リパーゼや糖類を分離することが好ましい。なお
、このように分離された固定化リパーゼや糖類はそのま
ま再使用することができる。
Therefore, it is preferable to cool and filter the reaction mixture to separate lipase and saccharides before the organic solvent treatment. Note that the immobilized lipase and saccharide thus separated can be reused as they are.

また、糖類は反応混合物を水で処理することにより、糖
類を水相に移行させ、分離、回収することができるので
、この方法を採用し、或いは上記した炉過法と組み合わ
せて糖類を反応混合物から除去しておくことができる。
In addition, by treating the reaction mixture with water, the saccharides can be transferred to the aqueous phase and separated and recovered, so this method can be adopted or combined with the above-mentioned filtration method to transfer the saccharides to the reaction mixture. It can be removed from

見映夏羞果 本発明によれば、糖類に対し過剰モルの脂肪酸類を用い
たことにより、リパーゼによる酵素反応により糖脂肪酸
モノエステルを高生或率でしかも選択的に得ることがで
き、また反応の効率化が図られるものである。 以下、
実施例と比較例を示して本発明を具体的に説明するが、
本発明は下記実施例に制限されるものではない。
According to the present invention, by using a molar excess of fatty acids with respect to sugars, sugar fatty acid monoesters can be obtained selectively at a high yield through an enzymatic reaction using lipase. This will improve efficiency. below,
The present invention will be specifically explained by showing examples and comparative examples, but
The present invention is not limited to the following examples.

〔実施例工〕[Example work]

グルコース100g(0.56モル)とカブリン酸メチ
ル515g (2.78モル)との混合物に第3級ブチ
ルアルコール2.5氾を加え、更にキャンデダ・アンタ
ークティヵ由来の耐熱性リパーゼをアクリル樹脂に固定
化したもの(固定化リパーゼs p − 3 8 2 
, NOVO社)Logを加えた後、−17ー 脱メタノール剤としてモレキュラーシーブス5A500
gを用い、24時間撹拌下に加熱還流した。
Add 2.5 g of tertiary butyl alcohol to a mixture of 100 g (0.56 mol) of glucose and 515 g (2.78 mol) of methyl cabrate, and further immobilize heat-stable lipase derived from Candeda antarctica to acrylic resin. (immobilized lipase sp-382
, NOVO) Log was added, and then Molecular Sieves 5A500 was added as a -17-demethanol agent.
The mixture was heated to reflux with stirring for 24 hours.

次に、反応液0.5mQを5rrl1のスクリュー管に
採り、ピリジン2.5milを加え、更に内部標準物質
としてn−テトラデカン10lI!lを加え、十分に混
合した後、炉過し、炉液1社にアセチル化剤として無水
酢酸1mQを添加し、60℃で30分間反応させた。
Next, 0.5 mQ of the reaction solution was placed in a 5 ml screw tube, 2.5 ml of pyridine was added, and 10 ml of n-tetradecane was added as an internal standard substance. 1 was added thereto, mixed thoroughly, filtered, and reacted at 60° C. for 30 minutes. 1 mQ of acetic anhydride was added as an acetylating agent to the furnace solution.

反応液IIIftをガスクロマトグラフィーにより分析
し、生成するグルコース脂肪酸エステルの重量パーセン
トを測定した。
The reaction solution IIIft was analyzed by gas chromatography to measure the weight percent of the produced glucose fatty acid ester.

その結果、グルコースモノ力プリン酸エステルが98%
の純度、95%の生或率で得られた。
As a result, 98% glucose monopurate ester
It was obtained with a purity of 95% and a yield of 95%.

〔実施例2〜8〕 第1表に示す原料を使用し、同表の条件で実施例1と同
様にして糖脂肪酸エステルを製造した。
[Examples 2 to 8] Sugar fatty acid esters were produced in the same manner as in Example 1 using the raw materials shown in Table 1 and under the conditions shown in the table.

結果を同表に示す。The results are shown in the same table.

Claims (1)

【特許請求の範囲】[Claims] 1、置換基を有しない炭素数5〜7の単糖類、ヘキソー
スからなる2糖類及び炭素数4〜6の糖アルコールより
選ばれる糖類と、炭素数6〜22の飽和及び不飽和脂肪
酸並びに該脂肪酸と炭素数1〜3の低級アルコールとの
エステルより選ばれる脂肪酸類とをリパーゼを用いて実
質的に水を含まない有機溶媒の存在下で糖脂肪酸モノエ
ステルを製造するに際し、原料糖類1モルに対して原料
脂肪酸類を1モルを越えるモル比で使用することを特徴
とする糖脂肪酸モノエステルの製造方法。
1. Saccharides selected from unsubstituted monosaccharides with 5 to 7 carbon atoms, disaccharides consisting of hexoses, and sugar alcohols with 4 to 6 carbon atoms, saturated and unsaturated fatty acids with 6 to 22 carbon atoms, and the fatty acids and fatty acids selected from esters of lower alcohols having 1 to 3 carbon atoms per mole of raw sugar when producing sugar fatty acid monoester using lipase in the presence of an organic solvent that does not substantially contain water. A method for producing a sugar fatty acid monoester, characterized in that raw fatty acids are used at a molar ratio of more than 1 mole.
JP1307077A 1989-11-27 1989-11-27 Production of saccharide fatty acid monoester Pending JPH03168090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1307077A JPH03168090A (en) 1989-11-27 1989-11-27 Production of saccharide fatty acid monoester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1307077A JPH03168090A (en) 1989-11-27 1989-11-27 Production of saccharide fatty acid monoester

Publications (1)

Publication Number Publication Date
JPH03168090A true JPH03168090A (en) 1991-07-19

Family

ID=17964760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1307077A Pending JPH03168090A (en) 1989-11-27 1989-11-27 Production of saccharide fatty acid monoester

Country Status (1)

Country Link
JP (1) JPH03168090A (en)

Similar Documents

Publication Publication Date Title
EP0413307A1 (en) Process for producing saccharide fatty acid monoesters
Otto et al. Synthesis of aromatic n-alkyl-glucoside esters in a coupled β-glucosidase and lipase reaction
JPH0536032B2 (en)
CN1293713A (en) Improved processes for synthesis and purification of nondigestible fats
JPH03168090A (en) Production of saccharide fatty acid monoester
JPH03168091A (en) Production of saccharide fatty acid monoester
EP0571421B1 (en) Enzymatic reverse hydrolysis of hydrophilic substrates - preparation of amphiphilic compounds
JPH03168093A (en) Purification of sugar-fatty acid ester
JPH03168094A (en) Purification of sugar-fatty acid ester
EP0507323B1 (en) Process for preparing fatty acid esters of saccharides
JPH03168092A (en) Production of saccharide fatty acid monoester
JPH0416194A (en) Production of ester mixture
JPH09173091A (en) Production of saccharide fatty acid ester
JPH0376593A (en) Production of saccharide mono-fatty acid ester
JPH0416195A (en) Production of methylglycoside monoester of fatty acid
JPH0343092A (en) Production of polyol monofatty acid ester
JPH07163381A (en) Production of diglycerin-1,2-diester
JPH05112592A (en) Production of saccharide's fatty acid monoester
JPH0416196A (en) Production of alkylglycoside monoester of fatty acid
JPH09168395A (en) Production of saccharide fatty acid ester
JPH05148285A (en) Production of saccharides fatty acid ester
EP0945516B1 (en) Process for the selective preparation of partially acylated derivatives of monosaccharides and polyols
JP2898747B2 (en) Method for producing optically active hydroxyester and method for producing and purifying optically active 5-membered lactone
JP4644433B2 (en) Method for producing novel D-allose fatty acid ester
JP5358802B2 (en) Process for producing novel rare sugar fatty acid diesters