JPH04161230A - Decomposition and removal of nox - Google Patents

Decomposition and removal of nox

Info

Publication number
JPH04161230A
JPH04161230A JP2289983A JP28998390A JPH04161230A JP H04161230 A JPH04161230 A JP H04161230A JP 2289983 A JP2289983 A JP 2289983A JP 28998390 A JP28998390 A JP 28998390A JP H04161230 A JPH04161230 A JP H04161230A
Authority
JP
Japan
Prior art keywords
nox
catalyst
nox decomposition
gas
removal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2289983A
Other languages
Japanese (ja)
Inventor
Shoji Doi
祥司 土肥
Akio Nakashiba
中芝 明雄
Koji Moriya
守家 浩二
Katsutoshi Nakayama
勝利 中山
Shigeru Morikawa
茂 森川
Takashi Kobayashi
孝 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2289983A priority Critical patent/JPH04161230A/en
Publication of JPH04161230A publication Critical patent/JPH04161230A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stably maintain decomposing and removing functions for a long duration by reproducing an NOx decomposition activity of a specified NOx decomposition catalyst by bringing the catalyst into contact with a reducing agent in the case that the NOx decomposition activity of the catalyst is lowered. CONSTITUTION:This NOx decomposition catalyst is so formed as to have the distribution maxima of fine pore diameters at 50-100Angstrom and 500-1000Angstrom and is composed of a porous support consisting of either one or a plurality of gamma-alumina, zirconia, and titanium oxide and either one or a plurality of iridium, platinum, and rhodium carried on the porous support. A combustion discharge gas is processed at an NOx removing part and as the reaction proceeds, the function of the NOx decomposition catalyst A is lowered. This state is detected by an NOx sensor 9 and hydrogen gas g2 is supplied to the NOx decomposition catalyst A from a hydrogen storage part 8. As a result, the NOx decomposition function of the NOx decomposition catalyst A is reproduced and the catalyst exhibits high removal function again.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、細孔径分布が50〜100人及び500〜1
、000人において分布極大を有するように形成され、
且つ、γ−アルミナ、ジルコニア、酸化チタンの一種ま
たは複数種からなる多孔状の担体に、イリジウム、白金
、ロジウムの一種または複数種か担持されたNOx分解
用触媒により処理対象ガス内のNOxを分解除去するN
Oxの分解除去方法に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention has a pore size distribution of 50 to 100 and 500 to 1.
, formed to have a distribution maximum at ,000 people,
In addition, NOx in the gas to be treated is decomposed by a NOx decomposition catalyst in which one or more of iridium, platinum, and rhodium is supported on a porous carrier made of one or more of γ-alumina, zirconia, and titanium oxide. removeN
This invention relates to a method for decomposing and removing Ox.

〔従来の技術〕[Conventional technology]

従来、燃焼排ガス等中に含存されるNOxを除去する手
段として様々な方法か提案されている。その中で、上記
のNOxの分解除去方法は、比較的低温の温度域(10
0°C以下)において使用か可能で、且つ比較的小型の
設備によりNOxの分解除去をおこなうことか可能な方
法として提案されているものである。ここで、この方法
においては、担体の細孔径分布が、NOxの分解除去に
とって重要なファクターであることが、判明している。
Conventionally, various methods have been proposed as means for removing NOx contained in combustion exhaust gas and the like. Among them, the above NOx decomposition and removal method is used in a relatively low temperature range (10
This method has been proposed as a method that can be used at temperatures below 0°C and can decompose and remove NOx using relatively small equipment. In this method, it has been found that the pore size distribution of the carrier is an important factor for the decomposition and removal of NOx.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

さて、このような方法により比較的低温の温度域におい
て、例えば排ガス中のNOxの分解除去をおこなうこと
かできるのであるが、二の方法で使用されるNOx分解
用触媒(細孔径分布が50〜100人及び500〜I、
 000人において分布極大を有するように形成され、
且つ、γ−アルミナ、ジルコニア、酸化チタンの一種ま
たは複数種からなる多孔状の担体に、イリジウム、白金
、ロジウムの一種または複数種が担持されたもの)の除
去性能は、反応時間の経過とともに、除徐に低下する傾
向があるのを本発明者は発見した。(第3.5.6図参
照) そこて、このNOx分解用の触媒を使用するNOxの分
解除去方法において、本発明の目的は分解除去性能か長
期にわたり安定して維持されるものを提供する点にある
Now, with this method, it is possible to decompose and remove, for example, NOx in exhaust gas in a relatively low temperature range, but the NOx decomposition catalyst used in the second method (with a pore size distribution of 50 to 100 people and 500~I,
formed to have a distribution maximum in 000 people,
In addition, the removal performance of iridium, platinum, or rhodium supported on a porous carrier made of one or more of γ-alumina, zirconia, and titanium oxide increases with the passage of reaction time. The present inventor discovered that there is a tendency for the temperature to decrease gradually. (See Figure 3.5.6) Therefore, in the NOx decomposition and removal method using this NOx decomposition catalyst, the object of the present invention is to provide a method that maintains decomposition and removal performance stably over a long period of time. At the point.

〔課題を解決するための手段〕[Means to solve the problem]

そこで、本発明の特徴構成は前述のNOx分解用触媒に
おいて、そのNOx分解活性か低下した場合に、還元物
と接触させることにより、そのNOx分解活性を再生さ
せる工程を備えたことにあり、その作用・効果は次の通
りである。
Therefore, the characteristic structure of the present invention is that the above-mentioned NOx decomposition catalyst has a step of regenerating its NOx decomposition activity by bringing it into contact with a reducing product when its NOx decomposition activity decreases. The actions and effects are as follows.

〔作 用〕[For production]

このNOx分解用触媒は、反応時間の経過に伴ってNO
xの分解性能か低下するのであるが、このように低下し
た状態において、還元物と接触させると、この触媒の反
応低下の原因となっている付着酸素を、この還元物で除
去することか可能で、結果NOx分解用触媒の活性を再
生させることかできるのである。
This NOx decomposition catalyst releases NOx as the reaction time progresses.
The decomposition performance of As a result, the activity of the NOx decomposition catalyst can be regenerated.

〔発明の効果〕〔Effect of the invention〕

その結果、除去性能か低下した場合でも、繰り返し、そ
の性能を初期状態まで回復できるため、長期間使用でき
る実用的な装置を供給てきるようになった。そして、こ
のNOx分解用触媒の性質(使用温度、使用状態等)に
起因して、使用対象設備の経済性や小型化において有利
で実用価値の高い、−段と高性能な燃焼排ガスのNOx
分解用触媒を使用したNOxの分解除去方法を提供でき
るようになった。
As a result, even if the removal performance deteriorates, it can be repeatedly restored to its initial state, making it possible to supply a practical device that can be used for a long period of time. Due to the properties of this NOx decomposition catalyst (temperature in use, conditions in use, etc.), it is possible to reduce NOx in combustion exhaust gas with higher performance, which is advantageous and has high practical value in terms of economy and miniaturization of the equipment in which it is used.
It is now possible to provide a method for decomposing and removing NOx using a decomposition catalyst.

即ち例えば家庭用などの小型燃焼機器にNOxの分解除
去方法を適応してこのNOx分解用触媒を使用できるよ
うになった。
That is, this NOx decomposition catalyst can now be used in small-sized combustion appliances, such as those for household use, by adapting the NOx decomposition and removal method.

〔実施例〕〔Example〕

本発明によるNOxの分解除去方法の実施例を説明する
。第1図には、本願の方法を燃焼排ガス(gl)中のN
Oxの除去に利用する排ガス処理装置(1)の模式図が
示されている。この装置(1)は、例えば家庭用の給湯
器の排気路(図外)に配設されるのである。さて、この
装置(1)においてはNOxを含有する燃焼排ガス(g
l)は処理ガス流入路(2)より、NOx分解用触媒(
A)(γ−アルミナ、ジルコニア、酸化チタンの一種ま
たは複数種から成る比表面積100〜170rn”/g
の多孔状の担体に、イリジウム、白金、ロジウムの一種
または複数種を0.01〜10重量%の含有率で担持さ
せるものてあって、この担体を、その細孔径分布(細孔
径と細孔容積の相関)か第2図のように50〜100人
及び500〜1,000人において、望ましくは70λ
程度及び700人程度において分布極大を有するように
形成したもの。)か配設されているNOx除去部(3)
に流入してくる。そしてこの部位(3)において、NO
xかN2.02に分解されて、処理ガス流出路(4)よ
り流出されるのである。 ここで、前述の処理ガス流入
路(2)には水素ガス供給路(5)が、水素透過膜(6
)を介して接続されている。そして、この水素透過膜(
6)の処理ガス流入路(2)とは反対側の部位に、水素
吸蔵合金(7)か収納されている水素貯蔵部(8)か設
けられており、この水素貯蔵部(8)から供給される水
素ガス(g2)か前述の処理ガス流入路(2)に供給さ
れる構成か採用されているのである。
An embodiment of the method for decomposing and removing NOx according to the present invention will be described. FIG. 1 shows that the method of the present application is applied to N in combustion exhaust gas (gl).
A schematic diagram of an exhaust gas treatment device (1) used for removing Ox is shown. This device (1) is installed, for example, in the exhaust path (not shown) of a domestic water heater. Now, in this device (1), combustion exhaust gas (g
l) is the NOx decomposition catalyst (
A) (Specific surface area 100 to 170 rn"/g made of one or more of γ-alumina, zirconia, and titanium oxide)
One or more of iridium, platinum, and rhodium is supported on a porous carrier at a content of 0.01 to 10% by weight. For 50 to 100 people and 500 to 1,000 people as shown in Figure 2, preferably 70λ
700 people. ) or NOx removal unit (3)
It flows into. And in this part (3), NO
The processed gas is decomposed into N2.02 and discharged from the processing gas outlet (4). Here, a hydrogen gas supply path (5) is connected to the aforementioned processing gas inflow path (2), and a hydrogen permeable membrane (6) is connected to the hydrogen permeable membrane (6).
) are connected through. And this hydrogen permeable membrane (
A hydrogen storage section (8) containing a hydrogen storage alloy (7) is provided on the opposite side of the processing gas inflow path (2) in 6), and the hydrogen storage section (8) is supplied with hydrogen. A configuration is adopted in which the hydrogen gas (g2) is supplied to the above-mentioned processing gas inflow path (2).

一方、処理ガス流出路(4)には、NOxセンサー(9
)か配設されており、このNOxセンサー(9)の検出
情報により、前述の水素貯蔵部(8)に設けられている
加熱機構(lO)か作動されることにより、水素吸蔵合
金(7)から水素か脱離されるように構成されているの
である。脱離された水素は、処理ガス流入路(2)を通
って、NOx反応部(3)におくられ、NOx分解触媒
(A)を再生させることとなるのである。
On the other hand, a NOx sensor (9) is located in the processing gas outlet path (4).
) is provided, and based on the detection information of this NOx sensor (9), the heating mechanism (lO) provided in the hydrogen storage section (8) is activated, thereby heating the hydrogen storage alloy (7). The structure is such that hydrogen is desorbed from the The desorbed hydrogen passes through the process gas inflow path (2) and is sent to the NOx reaction section (3) to regenerate the NOx decomposition catalyst (A).

以下に、燃焼排ガスの処理状況を簡単に説明する。NO
x除去部(3)で処理された燃焼排ガスは処理ガス流出
路(4)に清浄なガスとして送り出されるのであるが、
この反応とともに、NOx分解用触媒(A>の性能か低
下する。この状態は、NOxセンサー(9)によって検
出され、水素貯蔵部(8)より水素ガス(g2)が、N
Ox分解用触媒(A)に供給されるのである。ここで、
NOx分解用触媒(A)は、NOxに対する分解性能を
再生され、再び高い除去性能を発揮することとなるので
ある。
The processing status of combustion exhaust gas will be briefly explained below. NO
The combustion exhaust gas treated in the x removal section (3) is sent out as clean gas to the treated gas outlet path (4).
Along with this reaction, the performance of the NOx decomposition catalyst (A>) decreases. This state is detected by the NOx sensor (9), and hydrogen gas (g2) is released from the hydrogen storage section (8).
It is supplied to the Ox decomposition catalyst (A). here,
The NOx decomposition catalyst (A) has its NOx decomposition performance regenerated and once again exhibits high removal performance.

〔実験例〕[Experiment example]

本願のNOxの分解除去方法に関連して、発明者らかお
こなった実験結果について以下に説明する。実験例1〜
3は本願のNOx分解用触媒の除去性能に関するもので
あり、実験例4〜6はNOx分解用触媒の再生に関する
実験結果を示している。
The results of experiments conducted by the inventors in connection with the NOx decomposition and removal method of the present application will be described below. Experimental example 1~
3 relates to the removal performance of the NOx decomposition catalyst of the present application, and Experimental Examples 4 to 6 show experimental results regarding regeneration of the NOx decomposition catalyst.

(1)実験例1〜3について説明する。これらの実験は
、NOx分解用触媒の担体の細孔径分布を適当に設定す
ることにより、しばしは、これらの触媒の作用時に問題
となる雰囲気中の0□の存在(実験例1、酸素濃度を3
例に分けて実験している。)に対して、触媒かその除去
性能を低下させることなく働くことを確認し、さらに、
比較的低温の領域(実験例1(反応温度30°C)、実
験例2(反応温度100°C未満)、実験例3(反応温
度、30°C))で、NOxに対して同様にこの触媒が
、有効に働くことを確認するための実験である。
(1) Experimental Examples 1 to 3 will be explained. In these experiments, by appropriately setting the pore size distribution of the carrier of the catalyst for NOx decomposition, the presence of 0□ in the atmosphere, which is often a problem when these catalysts work (Experiment Example 1, the oxygen concentration 3
I am experimenting with examples. ), the catalyst was confirmed to work without deteriorating its removal performance, and furthermore,
In relatively low temperature regions (Experimental Example 1 (reaction temperature 30°C), Experimental Example 2 (reaction temperature less than 100°C), Experimental Example 3 (reaction temperature 30°C)), this method was applied similarly to NOx. This is an experiment to confirm that the catalyst works effectively.

実験例1、酸素濃度を変化させた場合の本触媒によるN
Ox減少率の変化 (第3図参照) NOx濃度5.000ppmのNOx含有ガスの酸素濃
度を変化させ、反応温度30°C,SVl、0OO(h
−’)でNOx含有ガスを従来及び本発明のNOx除去
用触媒で処理し、NOx減少率の時間的変化を調へた。
Experimental example 1, N by this catalyst when changing oxygen concentration
Change in Oxygen reduction rate (see Figure 3) The oxygen concentration of the NOx-containing gas with a NOx concentration of 5.000 ppm was changed, and the reaction temperature was 30°C, SVl, 0OO (h
-'), NOx-containing gases were treated with the conventional and present NOx removal catalysts, and temporal changes in the NOx reduction rate were investigated.

その結果、従来の触媒(細孔径分布を調整しないもの)
は1時間以内に、最も低い酸素濃度(1,2%)で失活
したが、本発明の触媒は酸素濃度が高くても比較的長時
間にわたり十分なNOx分解性能を発揮した。
As a result, conventional catalysts (those that do not adjust the pore size distribution)
was deactivated within 1 hour at the lowest oxygen concentration (1.2%), but the catalyst of the present invention exhibited sufficient NOx decomposition performance for a relatively long time even at high oxygen concentrations.

実験例2、反応温度を変化させた場合の本触媒によるN
Ox減少率の変化 (第4図参照) NOx濃度5. OOppmのNOx含有ガスを、SV
I、 000(h−’ )て本発明のNOx除去用触媒
で処理し、温度変化に伴うNOx減少率の変化を調べた
Experimental example 2, N by this catalyst when changing the reaction temperature
Change in Ox reduction rate (see Figure 4) NOx concentration 5. 0ppm of NOx-containing gas is
I, 000 (h-') was treated with the NOx removal catalyst of the present invention, and changes in the NOx reduction rate with temperature changes were investigated.

その結果、室温程度(30〜70°C)で十分なNOx
分解性能が得られた。
As a result, sufficient NOx is produced at around room temperature (30 to 70°C).
Decomposition performance was obtained.

実験例3、窒素ガスが混在する場合の本触媒のNOx除
去率の変化 (図面なし) NOx 11度5.00ppm、 N 2濃度50%、
残量かHeのガスを対象にして、反応温度30°C,S
Vl、 000(h−”)で従来及び本発明のNOx除
去用触媒(表面積120m/g)で処理した。
Experimental Example 3: Change in NOx removal rate of this catalyst when nitrogen gas is mixed (no drawing) NOx 11 degrees 5.00 ppm, N2 concentration 50%,
Targeting the remaining amount of He gas, the reaction temperature was 30°C, S.
Vl, 000 (h-'') and treated with the conventional and present NOx removal catalysts (surface area 120 m/g).

その結果、従来の触媒によるNOx除去率は10%であ
ったが、本発明の触媒によるNOx除去率は99.9%
であった。
As a result, the NOx removal rate with the conventional catalyst was 10%, but the NOx removal rate with the catalyst of the present invention was 99.9%.
Met.

(2)次に実験例4〜6について説明する。これらの実
験は上述のNOx分解用触媒が、その反応の時間経過と
ともにその活性を失い、処理対象ガスにおけるNOx減
少率が低下した場合に、この触媒に還元物としての還元
ガスを接触させることにより、その活性か再生されるこ
とを確認するためのものである。
(2) Next, Experimental Examples 4 to 6 will be explained. These experiments were conducted when the NOx decomposition catalyst described above loses its activity over time and the NOx reduction rate in the gas to be treated decreases. , to make sure that it is active or regenerated.

実験例4は、還元物を変化(CH,、H2ガス)させた
場合にいずれの場合も、再生か可能なことを確認するた
めのものであり、実験例5は、異なった活性低下状態に
ある触媒を再生する場合の確認をするものであり、さら
に、実験例6は、本願とは異なった細孔径分布(従来の
触媒)を有する触媒において、同様な再生現象か得られ
るかどうかを確認するためのものである。
Experimental Example 4 is to confirm that regeneration is possible in any case when the reduced product is changed (CH, H2 gas), and Experimental Example 5 is to confirm that regeneration is possible in different states of decreased activity. This is to confirm the case of regenerating a certain catalyst, and furthermore, Experimental Example 6 is to confirm whether a similar regeneration phenomenon can be obtained with a catalyst having a pore size distribution (conventional catalyst) different from that of the present application. It is for the purpose of

実験例4 還元ガスによる触媒のNOx減少率の再生変
化 (第5図参照) NOx濃度]、 000ppmのNOx含有ガスをSV
l、000(h−’) 、反応温度30°Cて本発明の
NOx除去用触媒で処理し、長時間(100及び130
分時)経過後、NOx減少率か低下した場合に、還元ガ
スを接触させ、その減少率の変化を調へた。
Experimental Example 4 Regeneration change in the NOx reduction rate of the catalyst due to reducing gas (see Figure 5) NOx concentration], 000 ppm NOx containing gas
l, 000 (h-'), treated with the NOx removal catalyst of the present invention at a reaction temperature of 30°C, and for a long time (100 and 130
If the NOx reduction rate decreased after 30 minutes (hours) had elapsed, reducing gas was brought into contact and changes in the reduction rate were observed.

その結果、還元ガス(CH,及びH2ガス)により十分
な除去性能の回復効果(100%まで回復)が得られた
As a result, sufficient removal performance recovery effect (recovery to 100%) was obtained by the reducing gas (CH and H2 gas).

実験例5  NOx減少率の異なる場合の再生効果 (第6図参照) NOx濃度500ppmのNOx含有ガスをSVl、0
00(h−’) 、反応温度30°Cて本発明のNOx
除去用触媒で処理し、長時間経過後(4、]3.21.
60時間)、NOx減少率か低下した場合に、水素を還
元ガスとして接触させ、除去性能の変化を調べた。そし
て、この操作を繰り返した。 その結果、繰り返し、還
元ガスに接触させることにより十分な除去性能の回復効
果か得られた。
Experimental Example 5 Regeneration effect with different NOx reduction rates (see Figure 6) NOx-containing gas with NOx concentration of 500 ppm was
00(h-'), reaction temperature 30°C, NOx of the present invention
After treatment with a removal catalyst and after a long period of time (4,] 3.21.
60 hours), when the NOx reduction rate decreased, hydrogen was brought into contact as a reducing gas and changes in removal performance were investigated. Then, this operation was repeated. As a result, a sufficient recovery effect of removal performance was obtained by repeatedly bringing the material into contact with reducing gas.

実験例6 細孔径分布を調整しないIrAl2O3の再
生実験 (第7図参照) 実験例5と比較を行うために、細孔径分布を本発明とは
違えた担体(IrA1203)を用いた触媒を調整し、
NOx濃度1100ppの燃焼排ガスをSVl、 00
0(h−’)、反応温度80°C130°Cて処理し、
水素を還元ガスとして接触させ、除去性能の変化を調へ
た。第6図と比較して、各再生段階における実験データ
を分割して第7図に示した。即ち、再生段階において、
反応時間を0時として表記するとともに、各NOx除去
段階の順が、RUNl、RUN2、RUN3.RUN4
として分割記載した。
Experimental Example 6 IrAl2O3 regeneration experiment without adjusting the pore size distribution (see Figure 7) In order to make a comparison with Experimental Example 5, a catalyst was prepared using a support (IrA1203) with a pore size distribution different from that of the present invention. ,
Combustion exhaust gas with a NOx concentration of 1100pp is SVl, 00
0(h-'), treated at a reaction temperature of 80°C and 130°C,
Hydrogen was contacted as a reducing gas to examine changes in removal performance. In comparison with FIG. 6, the experimental data at each regeneration stage is divided and shown in FIG. That is, in the regeneration stage,
The reaction time is expressed as 0 o'clock, and the order of each NOx removal stage is RUN1, RUN2, RUN3 . RUN4
It was divided and described as follows.

ここで、実験はこの順に時間経過を追いなからおこなっ
た。また、各再生は、11000ppの水素ガスにより
各60分間おこなうこととした。さらに、RUNl、R
UN2の各除去段階における反応温度は80°Cとし、
RUN3゜RUN4の各除去段階における反応温度は3
0°Cとした。
Here, the experiment was conducted in this order over time. Further, each regeneration was performed for 60 minutes using 11,000 pp of hydrogen gas. Furthermore, RUNl, R
The reaction temperature at each stage of UN2 removal was 80°C;
The reaction temperature in each removal stage of RUN3°RUN4 is 3
The temperature was set to 0°C.

結果について説明すると、NOxの減少率をみると、R
UNIに示す初期段階の除去性能は1時間あまりで低下
をし始め、その後の還元処理によっても、活性の維持か
できないことかわかった。すなわち、細孔径分布の条件
を満足しないものに対しては、還元ガスによる再生処理
をおこなっても再生効果は非常に低い。
To explain the results, looking at the reduction rate of NOx, R
It was found that the initial stage removal performance indicated by UNI began to decline after about one hour, and that the activity could only be maintained even with subsequent reduction treatment. That is, for those that do not satisfy the pore size distribution conditions, the regeneration effect is very low even if the regeneration treatment is performed using a reducing gas.

尚、本願の触媒を得るための工程について説明する。担
体の細孔径分布を50〜100人及び500〜1.00
0人において分布極大を有するようにするには、アルミ
ナ担体の場合について例示すると、第8図に示すように
なる。
Incidentally, the steps for obtaining the catalyst of the present application will be explained. The pore size distribution of the carrier is 50-100 and 500-1.00.
In order to have a distribution maximum in 0 people, an example of the case of an alumina carrier is shown in FIG. 8.

つまり、硝酸アルミニウムなとのアルミニウム塩水溶液
をアンモニア添加によりゲル化して、含水率10〜15
%に脱水し、適量の添加剤を脱水物に混入して、その混
合物を100℃以下で乾燥し、乾燥物を400〜700
°Cて焼成して、添加物の蒸発により細孔を形成する。
In other words, an aluminum salt aqueous solution such as aluminum nitrate is gelled by adding ammonia, and the water content is 10 to 15.
%, mix an appropriate amount of additives into the dehydrated product, dry the mixture at 100°C or less, and dry the dried product to 400-700°C.
C. to form pores by evaporation of the additives.

ここて、添加物の種類及び添加量の選定か細孔径分布の
調整のポイントである。さて、細孔径分布の確認は、水
銀を細孔に圧入して、入り込む圧力から細孔径を算出す
る水銀圧入式ポロシメータ等で行なった。
Here, the key points are selection of the type and amount of additives and adjustment of the pore size distribution. The pore size distribution was confirmed using a mercury injection porosimeter, etc., which injects mercury into the pores and calculates the pore size from the pressure of the mercury.

〔別実施例〕[Another example]

本願の別実施例について以下に説明する。 Another embodiment of the present application will be described below.

(イ)前述の実施例においては、還元ガスとしてH2、
CH4ガスの例を示したが、これらのガスの他、COl
その他炭化水素等の還元ガス、或いは還元性の流体を接
触させることも可能で、これらを総称して還元物と称す
る。
(b) In the above embodiment, H2 as the reducing gas,
Although the example of CH4 gas is shown, in addition to these gases, COl
It is also possible to bring other reducing gases such as hydrocarbons or reducing fluids into contact, and these are collectively referred to as reduced products.

(ロ)その還元ガスを供給する方法は、ボンベによる供
給、天然ガス等、都市ガスによる供給、化石燃料の燃焼
により発生する排ガスの供給等、何てあっても良い。
(b) The reducing gas may be supplied by any method such as supplying by cylinder, supplying by natural gas or other city gas, supplying by exhaust gas generated by combustion of fossil fuels, etc.

(ハ)さらに、本願の方法の用途は、給湯器の他、調理
器具、暖房器、乾燥器、ボイラ、エンジン、加熱炉、発
電所等の家庭用や業務用の燃焼機器における燃焼排ガス
のNOx除去、その他いかなるものでも良い。
(C) Furthermore, the method of the present application is applicable to NOx of combustion exhaust gas in household and commercial combustion equipment such as water heaters, cooking appliances, space heaters, dryers, boilers, engines, heating furnaces, power plants, etc. Removal or anything else is fine.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係るNOxの分解除去方法の実施例及び
実験例を示し、第1図は本方法を適応する排ガス処理装
置の模式図、第2図はNOx分解用触媒における担体の
細孔径分布を説明する図、第3図、第4図はNOx分解
用触媒の除去性能を示す図、第5図、第6図はNOx分
解用触媒の再生状態を示す図、第7図は担体の細孔径分
布を異ならせた場合の再生状態を示す図、第8図はNO
x分解用触媒の製造工程を例示する工程図である。
The drawings show examples and experimental examples of the method for decomposing and removing NOx according to the present invention, and FIG. 1 is a schematic diagram of an exhaust gas treatment device to which this method is applied, and FIG. 2 shows the pore size distribution of the carrier in the catalyst for NOx decomposition. Figures 3 and 4 are diagrams showing the removal performance of the NOx decomposition catalyst, Figures 5 and 6 are diagrams showing the regeneration state of the NOx decomposition catalyst, and Figure 7 is a diagram showing the fineness of the carrier. Figure 8 shows the regeneration state when the pore size distribution is different.
It is a process diagram which illustrates the manufacturing process of the x decomposition catalyst.

Claims (1)

【特許請求の範囲】 1、細孔径分布が50〜100Å及び500〜1,00
0Åにおいて分布極大を有するように形成され、且つ、
γ−アルミナ、ジルコニア、酸化チタンの一種または複
数種からなる多孔状の担体に、イリジウム、白金、ロジ
ウムの一種または複数種が担持されたNOx分解用触媒
により処理対象ガス内のNOxを分解除去するNOxの
分解除去方法であって、 前記NOx分解用触媒において、そのNOx分解活性が
低下した場合に、還元物と接触させることにより、その
NOx分解活性を再生させる工程を備えたNOxの分解
除去方法。2、前記還元物が、H_2、CH_4、CO
ガスの一種もしくは複数種からなる請求項1記載のNO
xの分解除去方法。 3、前記還元物がH_2ガスであり、水素吸蔵合金から
これを前記NOx分解用触媒に供給、接触させるもので
ある請求項1記載のNOxの分解除去方法。
[Claims] 1. Pore size distribution is 50 to 100 Å and 500 to 1,00 Å.
formed to have a distribution maximum at 0 Å, and
NOx in the gas to be treated is decomposed and removed using a NOx decomposition catalyst in which one or more of iridium, platinum, and rhodium is supported on a porous carrier made of one or more of γ-alumina, zirconia, and titanium oxide. A method for decomposing and removing NOx, the method comprising the step of regenerating the NOx decomposing activity of the NOx decomposing catalyst by bringing it into contact with a reducing product when its NOx decomposing activity decreases. . 2. The reduced product is H_2, CH_4, CO
NO according to claim 1, comprising one or more gases.
How to decompose and remove x. 3. The NOx decomposition and removal method according to claim 1, wherein the reduced product is H_2 gas, which is supplied from a hydrogen storage alloy to the NOx decomposition catalyst and brought into contact with it.
JP2289983A 1990-10-25 1990-10-25 Decomposition and removal of nox Pending JPH04161230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2289983A JPH04161230A (en) 1990-10-25 1990-10-25 Decomposition and removal of nox

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2289983A JPH04161230A (en) 1990-10-25 1990-10-25 Decomposition and removal of nox

Publications (1)

Publication Number Publication Date
JPH04161230A true JPH04161230A (en) 1992-06-04

Family

ID=17750262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2289983A Pending JPH04161230A (en) 1990-10-25 1990-10-25 Decomposition and removal of nox

Country Status (1)

Country Link
JP (1) JPH04161230A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006070540A1 (en) * 2004-12-27 2006-07-06 Ibiden Co., Ltd. Ceramic honeycomb structure
JP2010214326A (en) * 2009-03-18 2010-09-30 Mitsui Eng & Shipbuild Co Ltd Detoxification system and detoxification method of rhodium catalyst
WO2012132683A1 (en) * 2011-03-29 2012-10-04 三菱重工業株式会社 Method for removing arsenic compound, method for recycling nox removal catalyst, and nox removal catalyst

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006070540A1 (en) * 2004-12-27 2006-07-06 Ibiden Co., Ltd. Ceramic honeycomb structure
JPWO2006070540A1 (en) * 2004-12-27 2008-06-12 イビデン株式会社 Ceramic honeycomb structure
US8192517B2 (en) 2004-12-27 2012-06-05 Ibiden Co., Ltd. Ceramic honeycomb structural body
JP5191657B2 (en) * 2004-12-27 2013-05-08 イビデン株式会社 Ceramic honeycomb structure
JP2010214326A (en) * 2009-03-18 2010-09-30 Mitsui Eng & Shipbuild Co Ltd Detoxification system and detoxification method of rhodium catalyst
WO2012132683A1 (en) * 2011-03-29 2012-10-04 三菱重工業株式会社 Method for removing arsenic compound, method for recycling nox removal catalyst, and nox removal catalyst
JPWO2012132683A1 (en) * 2011-03-29 2014-07-24 三菱重工業株式会社 Arsenic compound removal method, denitration catalyst regeneration method, and denitration catalyst
US9114391B2 (en) 2011-03-29 2015-08-25 Mitsubishi Hitachi Power Systems, Ltd. Method for removing arsenic compound, method for regenerating NOx removal catalyst, and NOx removal catalyst
US9399213B2 (en) 2011-03-29 2016-07-26 Mitsubishi Hitachi Power Systems, Ltd. Apparatus for removing arsenic compound

Similar Documents

Publication Publication Date Title
Heisig et al. Decomposition of ozone using carbon-supported metal oxide catalysts
US8438842B2 (en) Exhaust gas purification device
US6852200B2 (en) Non-thermal plasma reactor gas treatment system
JPS6034737A (en) Production of catalyst for treating exhaust gas of internal combustion engine
JPH04161230A (en) Decomposition and removal of nox
JP2004188388A (en) Filter for cleaning diesel exhaust gas and its production method
JP2001187319A (en) Method and device for cleaning gas
JP2001113134A (en) Method for cleaning waste gas containing nox
JPH04171022A (en) Waste gas cleaning method
JP4114581B2 (en) Exhaust purification device
JPH0647282A (en) Catalyst for low temperature denitrification of flue gas, its production and method for low temperature denitrification of flue gas
JP3338167B2 (en) Method for removing CO from lean combustion gas engine exhaust gas
JP3298873B2 (en) NOx removal method
JPS5820307B2 (en) Catalyst for vehicle exhaust gas purification
JP3165719B2 (en) Adsorbent regeneration method
JPH03293035A (en) Catalyst for removal of nox
JP3324777B2 (en) Method for treating nitrogen oxide-containing gas
KR102243907B1 (en) Ir-based catalyst improved in nox reduction performance by the carbon monoxide and hydrogen gas treatment, nox reduction apparatus and reduction method improved in performance by treatment of carbon monoxide and hydrogen gas
KR102223431B1 (en) Ir-based catalyst improved in nox reduction performance by the hydrogen gas and oxygen gas treatment, nox reduction apparatus and reduction method improved in performance by treatment of hydrogen gas and oxygen gas
RU2123381C1 (en) Method of regenerating mixture of air purification unit or artificial breathing gas medium
JPS5841893B2 (en) Hiengasu Shiyorihouhou
JPH06319948A (en) Apparatus for treating exhaust gas
JP3273353B2 (en) Dry desulfurization method of sulfuric acid plant exhaust gas
JP2002011323A (en) Denitration apparatus and method
JPH0490852A (en) Waste gas cleaning catalyst