JPH04158192A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPH04158192A
JPH04158192A JP28469090A JP28469090A JPH04158192A JP H04158192 A JPH04158192 A JP H04158192A JP 28469090 A JP28469090 A JP 28469090A JP 28469090 A JP28469090 A JP 28469090A JP H04158192 A JPH04158192 A JP H04158192A
Authority
JP
Japan
Prior art keywords
flow
grooves
groove
heat exchanger
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28469090A
Other languages
Japanese (ja)
Other versions
JP2731624B2 (en
Inventor
Seizou Masukawa
桝川 清慥
▲こう▼田 緑
Midori Kouda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Shindoh Co Ltd
Original Assignee
Mitsubishi Shindoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Shindoh Co Ltd filed Critical Mitsubishi Shindoh Co Ltd
Priority to JP28469090A priority Critical patent/JP2731624B2/en
Publication of JPH04158192A publication Critical patent/JPH04158192A/en
Application granted granted Critical
Publication of JP2731624B2 publication Critical patent/JP2731624B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To prevent a clogging of a gas flow passage caused by a film-like flow from being generated and make a substantial reduction of noise caused by an intermittent opening or closing of the gas flow passage by a method wherein a plurality of flow liquid grooves wider than that of heat transferring groove are formed in a spaced-apart relation in a circumferential direction at an inner surface of each of curved lines in a heat exchanger having bent connection pipes. CONSTITUTION:Cylinders 18 are formed at both ends of a connection pipe 16. Each of linear line portions 10A of a heat transferring pipe 10 is inserted into these cylinders 18 and fixed there. Since a plurality of flow liquid grooves 14 having wider width than that of a helical groove 12 and extending along an axial direction are formed within a curved line part 10B of a heat transferring pipe 10, refrigerant flows along each of the flow liquid grooves 14 having wider width and thus a uniform film-like flow clogging the inside part of the curved line 10B is not formed. A width of each of the flow liquid grooves 14 is wider than that of the helical groove 12 and preferably about 3 to 30% of an inner diameter of the heat transferring pipe 10. A depth of each of the flow liquid grooves 14 is the same or slightly deeper than that of the helical groove 12 and the bottom surface of each of the flow liquid grooves 14 is made flat and smooth. When the film-like flow or the gas flow is intermittently broken, the noise generated during this operation can be substantially reduced.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、空調装置や電気冷蔵庫等に使用される熱交換
装置に係わり、特に、使用時の騒音を低減するための改
良に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a heat exchange device used in an air conditioner, an electric refrigerator, etc., and particularly relates to an improvement for reducing noise during use.

「従来の技術J 第15図は、空調装置や電気冷蔵庫等において一般的に
使用されている熱交換装置を示す部分正面図である。
``Prior Art J'' FIG. 15 is a partial front view showing a heat exchange device commonly used in air conditioners, electric refrigerators, etc.

図中符号1はU字状の伝熱管であり、一対の平行な直線
部IAとこれら直線部IAの一端側をつなぐ曲線部IB
とを有する。
Reference numeral 1 in the figure is a U-shaped heat exchanger tube, which includes a pair of parallel straight parts IA and a curved part IB connecting one end side of these straight parts IA.
and has.

隣接する各伝熱管lの開口端は、短いU字状の接続管2
により接続され、これら伝熱管lおよび接続管2によっ
て、両端が開口する1本の流路が構成されている。また
、伝熱管lの直線部IAには、薄い金属板製の冷却フィ
ン4が垂直かつ一定間隔毎に多数枚固定されている。
The open end of each adjacent heat exchanger tube l is connected to a short U-shaped connecting tube 2.
The heat exchanger tubes 1 and the connecting tubes 2 constitute one flow path with both ends open. Further, a large number of cooling fins 4 made of thin metal plates are fixed vertically to the straight portion IA of the heat transfer tube 1 at regular intervals.

冷却フィン4を固定するには、接続管2を接続する前の
状態で、冷却フィン4に形成されている挿通孔(図示路
)に各伝熱管Iの直線部IAを通す。
To fix the cooling fins 4, the straight portions IA of each heat transfer tube I are passed through the insertion holes (paths shown in the figure) formed in the cooling fins 4 before connecting the connecting tubes 2.

次いで、直線部IAの開口端からそれぞれ拡管プラフを
直線部IA内に押し込み、直線部IAの外径を広げて各
冷却フィン4を固定する。冷却フィン4の固定が完了し
たら、接続管2を固定して製品を得る。
Next, tube expansion plugs are pushed into the straight portions IA from the open ends of the straight portions IA, the outer diameter of the straight portions IA is expanded, and each cooling fin 4 is fixed. After fixing the cooling fins 4, the connecting pipe 2 is fixed to obtain a product.

ところで、従来の熱交換装置では、伝熱管lとして内面
が平滑な金属管を使用していたが、最近では、金属管の
内面に転造加工や引抜加工により螺旋状または直線状の
伝熱溝を多数形成したものか使用され始めている。この
ような伝熱溝付き伝熱管によれば、以下のような効果か
得られる。
By the way, in conventional heat exchange equipment, a metal tube with a smooth inner surface was used as the heat transfer tube l, but recently, spiral or linear heat transfer grooves have been formed on the inner surface of the metal tube by rolling or drawing. It has begun to be used in large numbers. According to such a heat transfer tube with heat transfer grooves, the following effects can be obtained.

■ この伝熱管を凝縮管として使用した場合には、凝縮
管内を流れる熱媒体の蒸気を伝熱溝の間の突条部により
乱流にし、さらに突条部を凝縮核として熱媒蒸気の凝縮
効果を高め、液化を促進する。
■ When this heat transfer tube is used as a condensing tube, the heat medium vapor flowing inside the condensing tube is made into a turbulent flow by the ridges between the heat transfer grooves, and the ridges are used as condensation nuclei to condense the heat medium vapor. Enhances effectiveness and promotes liquefaction.

また、凝縮しfコ熱媒液体を、伝熱溝内における表面張
力によって効率的に伝熱管の長平方向に流し、還流効果
を増す。
Further, the condensed heat medium liquid is efficiently flowed in the longitudinal direction of the heat transfer tube due to the surface tension within the heat transfer groove, thereby increasing the reflux effect.

■ 蒸発管として使用した場合には、伝熱溝のエツジが
気泡を発するための蒸発部となり、沸騰を促進して、伝
熱管内に供給される熱媒液体の気化効率か向上する。ま
fコ、伝熱溝内における表面張力によって、熱媒液体か
伝熱管の長平方向に流れ、伝熱管の内面に均一に分散さ
れる。
(2) When used as an evaporation tube, the edges of the heat transfer grooves act as evaporation sections for generating bubbles, promoting boiling and improving the vaporization efficiency of the heat medium liquid supplied into the heat transfer tube. Due to the surface tension within the heat transfer groove, the heat transfer liquid flows in the longitudinal direction of the heat transfer tube and is uniformly dispersed on the inner surface of the heat transfer tube.

−発明か解決しようとする課題− ところで、このような伝熱溝か形成されf口伝熱管を使
用した熱交換装置では、内面平滑の伝熱管ではあまり問
題にならなかっL新たな騒音問題か生しることが判明し
た。この種の伝熱溝付きの伝熱管を、特に冷媒の蒸発部
として使用した場合には、伝熱管1の内部を流れる冷媒
か曲線部IBで意外に大きな流液音を発生し、装置全体
としては無視てきない騒音量に達するのである。
-Problem to be solved by the invention- By the way, in a heat exchange device using an F-neck heat exchanger tube with such heat transfer grooves formed, a new noise problem may arise, which is not a problem with a heat exchanger tube with a smooth inner surface. It turned out that. When this type of heat transfer tube with heat transfer grooves is used, especially as a refrigerant evaporation section, the refrigerant flowing inside the heat transfer tube 1 may generate unexpectedly loud flowing sound at the curved section IB, which may cause problems in the entire device. The amount of noise reaches a level that cannot be ignored.

そこで、本発明者らは騒音発生のメカニズムについて詳
細な検討を試み、次のような知見を得るに至った。
Therefore, the present inventors conducted a detailed study on the mechanism of noise generation and came to the following findings.

第16図はその説明図である。なお、この図では伝熱管
lの内面溝を略しである。直線部IA内を流れる冷媒は
、曲線NIHにさしかかると伝熱溝の影響により幅の広
がった流れとなる。そして、この幅の広い流れが曲線部
IBの内周側壁面に沿って流れ落ち、伝熱管I内を仕切
る暮秋の液流6か形成される。一方、伝熱管1内を冷媒
とともに流れる冷媒蒸気は、暮秋の液流6に一旦阻まれ
たうえ、断続的に液流6を破って下流側へと流れ、その
際に音を発生する。この騒音か各曲線部IBで断続的に
発生するため、装置全体では無視しえない騒音量になる
のである。
FIG. 16 is an explanatory diagram thereof. Note that the inner groove of the heat exchanger tube 1 is omitted in this figure. When the refrigerant flowing in the straight portion IA reaches the curve NIH, the flow becomes wider due to the influence of the heat transfer groove. Then, this wide flow flows down along the inner circumferential wall surface of the curved portion IB, forming a late autumn liquid flow 6 that partitions the inside of the heat exchanger tube I. On the other hand, the refrigerant vapor flowing together with the refrigerant in the heat transfer tube 1 is once blocked by the liquid flow 6 in late autumn, and then intermittently breaks the liquid flow 6 and flows downstream, generating sound at that time. Since this noise is generated intermittently at each curved portion IB, the amount of noise in the entire device cannot be ignored.

「課題を解決するための手段」 本発明は上記課題を解決するためになされf;もので、
伝熱管の曲線部の内面に、この曲線部の軸線方向へ延び
、伝熱溝よりも幅の大きい流液溝を周方向に間隔をあけ
て複数本形成したことを特徴とする。
"Means for Solving the Problems" The present invention was made to solve the above problems;
The heat transfer tube is characterized in that a plurality of liquid flow grooves extending in the axial direction of the curved portion and having a width larger than the heat transfer grooves are formed at intervals in the circumferential direction on the inner surface of the curved portion of the heat transfer tube.

なお、伝熱管の内面に形成される前記伝熱溝は、互いに
一定角度で交差する2種の螺旋溝から構成されていても
よい。
Note that the heat transfer groove formed on the inner surface of the heat transfer tube may be composed of two types of spiral grooves that intersect with each other at a certain angle.

「作 用」 本発明の熱交換装置では、伝熱管の曲線部内において、
伝熱溝とともにそれよりも幅の広い流液溝か複数形成さ
れているfこめ、冷媒は主に流液溝のそれぞれに沿って
分かれて流れ、伝熱管内を寒く−様な暮秋の流れを形成
することがない。
"Function" In the heat exchange device of the present invention, within the curved part of the heat exchanger tube,
In addition to the heat transfer grooves, there are also multiple liquid flow grooves that are wider than the heat transfer grooves, and the refrigerant mainly flows separately along each of the flow grooves, creating a cold late autumn flow inside the heat transfer tube. It never forms.

したがって、暮秋の流れに起因するガス流路の閉塞か生
しず、ガス流路の断続的な開閉に伴う騒音が大幅Jこ低
減できる。
Therefore, the gas flow path is not blocked due to the late autumn flow, and the noise caused by the intermittent opening and closing of the gas flow path can be significantly reduced.

「実施例」 第1図ないし第4図は、本発明に係わる熱交換装置の一
実施例を示す図である。
Embodiment FIGS. 1 to 4 are diagrams showing an embodiment of a heat exchange device according to the present invention.

この熱交換装置は、一対の平行な直線部10Aおよび曲
線部10Bからなる複数の伝熱管10と、これら伝熱管
10の隣接する端部を接続するU字状の接続管16(第
3図参照)と、各直線部10Aに垂直に固定された多数
の冷却フィン(図示略)から主構成されている。
This heat exchange device includes a plurality of heat exchanger tubes 10 consisting of a pair of parallel straight portions 10A and curved portions 10B, and a U-shaped connecting tube 16 (see FIG. 3) that connects adjacent ends of these heat exchanger tubes 10. ) and a large number of cooling fins (not shown) fixed perpendicularly to each straight section 10A.

伝熱管10の内面には、第1図および第2図に示すよう
に、直線部10Aおよび曲線部10Bの全長に互って、
互いに平行な細かい螺旋状の螺旋溝(伝熱溝)12か多
数形成されている。これら螺旋溝12の寸法は伝熱管I
Oの内径によっても異なるが、例えば外径10JIJI
程度の汎用伝熱管Iこ適用する場合には、溝底幅か0.
15〜0.30am、好ましくは0.20〜0.25z
x、Nさか0.10〜0.30xm、好ましくは016
〜0.2011とされる。この範囲であれば、伝熱性能
か最も高くなる。
As shown in FIGS. 1 and 2, on the inner surface of the heat exchanger tube 10, there are
A large number of fine spiral grooves (heat transfer grooves) 12 parallel to each other are formed. The dimensions of these spiral grooves 12 are as follows:
Although it varies depending on the inner diameter of O, for example, the outer diameter is 10JIJI.
When applying a general-purpose heat exchanger tube of about 100 yen, the groove bottom width should be 0.
15-0.30am, preferably 0.20-0.25z
x, N height 0.10-0.30xm, preferably 016
~0.2011. Within this range, the heat transfer performance will be the highest.

また、伝熱管lOの内面には、直線部10Aおよび曲線
部JOBの全長に亙って、伝熱管IOの軸線方向に延び
る流液溝14か周方向等間隔をあけて複数(この例では
4本)形成されている。これら流液溝14の本数は伝熱
管10の内径に応じて決定されるへきて、実際には4〜
8程度か好適である。
In addition, on the inner surface of the heat exchanger tube IO, there are a plurality of liquid flow grooves 14 extending in the axial direction of the heat exchanger tube IO at equal intervals in the circumferential direction over the entire length of the straight portion 10A and the curved portion JOB. book) is formed. The number of these liquid flow grooves 14 is determined according to the inner diameter of the heat transfer tube 10, and in reality, it is 4 to 4.
Approximately 8 or so is suitable.

流液溝14の幅は螺旋溝12よりも大きく、好ましくは
伝熱管IOの内径の3〜30%とされる。
The width of the liquid flow groove 14 is larger than that of the spiral groove 12, and is preferably 3 to 30% of the inner diameter of the heat exchanger tube IO.

3%未満ではこの流液溝14を流れる冷媒量が減り、効
果が薄れる。また30%より大では流液溝14が広すぎ
、冷媒の流れが広がって、暮秋の流れが形成されるおそ
れが生じる。
If it is less than 3%, the amount of refrigerant flowing through this liquid flow groove 14 will be reduced, and the effect will be weakened. Moreover, if it is larger than 30%, the liquid flow groove 14 will be too wide, and the flow of the refrigerant will spread, creating a risk that a late autumn flow will be formed.

流液溝14の深さは、螺旋溝12と同等または若干深い
程度とされ、流液溝14の底面は平滑となっている。
The depth of the liquid flow groove 14 is equal to or slightly deeper than the spiral groove 12, and the bottom surface of the liquid flow groove 14 is smooth.

このような伝熱管IOを製造するには、大別して2通り
の方法かある。1つは、金属管の内面に引き抜き加工等
により螺旋溝12を形成した後、さらに引き抜き加工に
より金属管の内面に直線状の流液溝14を形成する。こ
れにより、流液溝14を形成した部分では螺旋溝12か
潰される。
There are roughly two methods for manufacturing such a heat exchanger tube IO. One method is to form a spiral groove 12 on the inner surface of a metal tube by drawing or the like, and then form a linear liquid flow groove 14 on the inner surface of the metal tube by further drawing. As a result, the spiral groove 12 is crushed in the portion where the liquid flow groove 14 is formed.

もう一つは、電縫加工を用いる方法である。すなわち、
一定幅て長尺の平らな金属板条材の表面に、板条材の長
手方向に対して傾斜し几多数の平行溝を圧延により形成
した後、この板条材の表面に、長手方向に延びる流液溝
14を形成する。そして、この板条材を電縫管装置にか
けて、管状に丸めたうえ、突き合わせ縁を溶接して伝熱
管を製造する。
The other method is to use electric resistance stitching. That is,
After forming a large number of parallel grooves on the surface of a long, flat metal plate with a constant width by rolling, the grooves are inclined with respect to the longitudinal direction of the plate. An extending liquid flow groove 14 is formed. Then, this plate material is passed through an electric resistance welding tube device, rolled into a tube shape, and the butted edges are welded to produce a heat exchanger tube.

いずれの場合も、得られた真っ直ぐな伝熱管を成形装置
にかけてU字状に曲げ、図示のような伝熱管IOとする
In either case, the obtained straight heat exchanger tube is bent into a U-shape by applying it to a forming device to form a heat exchanger tube IO as shown in the figure.

一方、第3図および第4図は、接続管I6を示すもので
、この実施例では、接続管16の内部にも4本の流液溝
20が形成されている。螺旋溝は形成されていない。流
液溝20の寸法等は前記流液溝14と同様でよい。
On the other hand, FIGS. 3 and 4 show the connecting pipe I6, and in this embodiment, four liquid flow grooves 20 are also formed inside the connecting pipe 16. No spiral grooves are formed. The dimensions of the liquid flow groove 20 may be the same as those of the liquid flow groove 14 described above.

接続管16の両端には拡径した筒部18か形成され、こ
れら筒部I8内に伝熱管10の各直線部10Aがそれぞ
れ挿入され、ろう付は等の手段により固定されている。
Cylindrical portions 18 with enlarged diameters are formed at both ends of the connecting tube 16, and the straight portions 10A of the heat transfer tubes 10 are respectively inserted into these cylindrical portions I8 and fixed by means such as brazing.

上記構成からなる熱交換装置によれば、伝熱管IOの曲
線部10B内に、螺旋溝12よりも幅か広く、しかも軸
線方向に沿って延びる流液溝I4が複数形成されている
ため、冷媒は幅の広い流液溝14のそれぞれに沿って分
かれて流れ、曲線部10B内を塞ぐ−様な暮秋の流れを
形成することがない。したがって、上記暮秋の流れによ
るガス流路の閉塞が生じず、暮秋の流れにより進行を阻
止されたガス流が暮秋の流れを断続的に突破する際に生
じる騒音が大幅に低減できる。
According to the heat exchange device having the above configuration, a plurality of flow grooves I4 which are wider than the spiral grooves 12 and extend along the axial direction are formed in the curved portion 10B of the heat exchanger tube IO, so that the refrigerant The liquid flows separately along each of the wide liquid flow grooves 14, and does not form a late autumn flow that blocks the inside of the curved portion 10B. Therefore, the gas flow path is not blocked by the late autumn flow, and the noise generated when the gas flow blocked by the late autumn flow intermittently breaks through the late autumn flow can be significantly reduced.

また、この例では、直線部10Aの内部にも流液溝14
が形成されているため、螺旋溝I2による伝熱性能向上
効果を確保しつつ、直線部10A内での冷媒の軸線方向
への輸送性を高めることかでき、その分、熱交換効率が
高められる。
In addition, in this example, a liquid flow groove 14 is also provided inside the straight portion 10A.
is formed, it is possible to improve the transportability of the refrigerant in the axial direction within the straight portion 10A while ensuring the heat transfer performance improvement effect of the spiral groove I2, and the heat exchange efficiency is increased accordingly. .

さらに、この例では、接続管16の内面にも流液溝20
か形成されているから、接続管16内においても暮秋の
液流によるガス流路閉塞が防止でき、その分の騒音が低
減できる。
Furthermore, in this example, a flow groove 20 is also provided on the inner surface of the connecting pipe 16.
Since this is formed, it is possible to prevent the gas flow path from being blocked by the late autumn liquid flow even within the connecting pipe 16, and the noise can be reduced accordingly.

次に、第5図および第6図は、本発明の第2実施例を示
す図である。
Next, FIGS. 5 and 6 are diagrams showing a second embodiment of the present invention.

この第2実施例の熱交換装置は、伝熱管10の内面に、
互いに交差する螺旋状の主溝22および副溝24をそれ
ぞれ多数形成したうえ、これら交差する溝22.24 
 の上から流液溝14を形成したことを特徴とする。他
の構成は第1実施例と同様である。
In the heat exchange device of this second embodiment, on the inner surface of the heat exchanger tube 10,
In addition to forming a large number of spiral main grooves 22 and sub-grooves 24 that intersect with each other, these grooves 22 and 24 that intersect with each other are formed.
It is characterized in that a liquid flow groove 14 is formed from above. The other configurations are the same as in the first embodiment.

第6図ないし第11図に示すように、各主溝22と副溝
24との交差部同士の間では、各主溝22の開口幅が狭
められ、それぞれ細長い開口部を有する管状部26とな
っている。
As shown in FIGS. 6 to 11, the opening width of each main groove 22 is narrowed between the intersections of each main groove 22 and the sub groove 24, and a tubular portion 26 having an elongated opening is formed. It has become.

金属管lは、銅、銅合金やアルミニウム等の従来から使
用されている材質で成形され、肉厚や径等は用途に応し
て決めろれる。まfコ、この例では第5図に示すように
、伝熱管IOの内面に、軸方向へ延びる平坦な帯状の溶
接部28が形成されている。これは後述するように、こ
の伝熱管10か電縫加工によって製造されるたtてあり
、この溶接部28も、効果は劣るか流液溝14と同様の
作用を果たす。
The metal tube 1 is made of a conventionally used material such as copper, copper alloy, or aluminum, and its wall thickness, diameter, etc. can be determined depending on the application. In this example, as shown in FIG. 5, a flat belt-shaped welded portion 28 extending in the axial direction is formed on the inner surface of the heat exchanger tube IO. As will be described later, this heat exchanger tube 10 is manufactured by electric resistance welding, and this welded portion 28 also performs the same function as the liquid flow groove 14, although the effect is inferior.

主溝22の断面形状は、変形前の状態ではU字状である
。このようにU字形に近いほうか、主溝22の開口幅を
狭めて管状に形成し易い。通常の伝熱管の場合、主溝2
2の好ましい寸法範囲は以下の通りである。
The cross-sectional shape of the main groove 22 is U-shaped before deformation. In this way, it is easier to form the main groove 22 into a tubular shape by narrowing the opening width of the main groove 22, which is closer to the U-shape. In the case of normal heat exchanger tubes, main groove 2
The preferred size range for No. 2 is as follows.

主溝22の深さ。0.2〜0.3xy、1主溝22の幅
:02〜05■、 主溝22のピッチ、0,4〜1.5x肩、主溝22の底
部の断面角度 75゛以上。
Depth of main groove 22. 0.2~0.3xy, width of 1 main groove 22: 02~05■, pitch of main groove 22, 0.4~1.5x shoulder, cross-sectional angle of bottom of main groove 22 75° or more.

一方、副溝24は断面V字状に形成されている。On the other hand, the sub-groove 24 is formed to have a V-shaped cross section.

副溝24のピッチは、主溝22のピッチと同等でよいが
、必ずしも等しい必要はない。副溝24の寸法は、通常
の伝熱管の場合、以下の範囲であることか好ましし)。
The pitch of the sub-grooves 24 may be equal to the pitch of the main grooves 22, but does not necessarily have to be equal. In the case of a normal heat exchanger tube, the dimensions of the sub-groove 24 are preferably within the following range).

副溝24の深さ、005〜0.31次、ピッチ 0.1
−1.5im、 〜′字の断面角変は45〜90°程度。
Depth of sub-groove 24, 005 to 0.31st order, pitch 0.1
-1.5im, the cross-sectional angle change of ~' character is about 45 to 90 degrees.

なお、主溝22と副溝24との交差角度はlO〜60°
、特に30〜40°であること力?望ましい。10〜6
0°の範囲を外れると、管状部26の形成が困難になる
。また、主溝22は伝熱管lOの軸方向に対して30゛
以内であることか望ましし)。これより犬では伝熱管I
Oの軸方向への熱媒液体の流通か悪くなる。
Note that the intersection angle between the main groove 22 and the sub groove 24 is lO~60°.
, especially the force that is 30-40°? desirable. 10-6
Outside the 0° range, it becomes difficult to form the tubular portion 26. Moreover, it is desirable that the main groove 22 is within 30 degrees with respect to the axial direction of the heat exchanger tube IO). From this, in dogs, heat transfer tube I
The flow of the heat medium liquid in the axial direction of O becomes poor.

次に第12図は、この伝熱管の製造方法を示す図である
。まず、伝熱管となる板条材lOを、第10−ルR1お
よび第20−ルR2により連続的に圧延し、第10−ル
R1により主溝22を、第20−ルR2により副溝24
を順次形成した後、さらに第30−ルR3により流液溝
14を形成する。
Next, FIG. 12 is a diagram showing a method of manufacturing this heat exchanger tube. First, the plate material lO that will become the heat exchanger tube is continuously rolled by the 10th rule R1 and the 20th rule R2, the main groove 22 is formed by the 10th rule R1, and the minor groove 24 is
After sequentially forming the grooves 14, the flow grooves 14 are further formed using the 30th rule R3.

第10−ルR1の外周面には、第13図に示すように、
主溝22を形成するための断面コ字状の突条30かロー
ルR1の周方向に対して一定角度傾斜して多数形成され
ている。
As shown in FIG. 13, on the outer peripheral surface of No. 10-R1,
A large number of protrusions 30 having a U-shaped cross section for forming the main grooves 22 are formed so as to be inclined at a certain angle with respect to the circumferential direction of the roll R1.

一方、第20−ルR2の外周面には、第14図に示すよ
うに断面V字状の突条32が多数平行に形成されている
。これら突条32はロールR2の周方向に対して第10
−ルR1とは逆の方向に傾斜している。
On the other hand, as shown in FIG. 14, a large number of parallel protrusions 32 having a V-shaped cross section are formed on the outer peripheral surface of the 20th rule R2. These protrusions 32 are 10th in the circumferential direction of the roll R2.
- It is inclined in the opposite direction to R1.

なお、第20−ルR2の突条32の間は、第14図ウニ
点鎖線34て示すように曲面状としてもよい。こうすれ
ば副溝24の形成時に、曲面34に沿って主溝22の側
壁部が円滑に変形し、主溝22の開口幅を狭める効果が
増す。まf二、各突条32の先端には、符号36に示す
ように幅の狭い平坦部を形成してもよい。
Note that the space between the protrusions 32 of the 20th rule R2 may be curved as shown by the dotted chain line 34 in FIG. In this way, when forming the sub-groove 24, the side wall portion of the main groove 22 is smoothly deformed along the curved surface 34, increasing the effect of narrowing the opening width of the main groove 22. Second, a narrow flat portion may be formed at the tip of each protrusion 32, as shown by reference numeral 36.

第30−ルR3の外周面には、その周方向に向けて複数
の突条が形成されており、この第30−ルR3で板条材
10を圧延することにより、流液溝14か形成される。
A plurality of protrusions are formed on the outer circumferential surface of the 30th rule R3 in the circumferential direction, and by rolling the strip material 10 with this 30th rule R3, a liquid flow groove 14 is formed. be done.

3段階に圧延か終わったら、溝形成面を内面側に向けた
状態て板条材10を電縫装置に導入し、多段階に成形ロ
ールの間を通して、板条材lOを幅方向に丸め、最終的
に板条材lOの両側縁部を溶接して円管形に成形する。
After rolling in three stages, the strip material 10 is introduced into the electric resistance welding machine with the grooved surface facing the inner surface, passed between forming rolls in multiple stages, and the strip material 10 is rolled in the width direction. Finally, both side edges of the plate material IO are welded and formed into a circular tube shape.

その後、必要に応じて管の外周面の溶接部を整形したう
え、ロール状に巻きとるか所定の長さで切断し、U字状
に曲げて伝熱管IOを得る。なお、伝熱管10の製造方
法は上記方法に限定されず、引き抜き加工等により成形
してもよい。
Thereafter, the welded portion on the outer circumferential surface of the tube is shaped as necessary, and then the tube is wound into a roll or cut to a predetermined length and bent into a U-shape to obtain a heat exchanger tube IO. Note that the method for manufacturing the heat exchanger tube 10 is not limited to the above method, and may be formed by drawing or the like.

このような伝熱管IOを使用した場合には、交差する溝
22・、24 によって冷媒の輸送力がいっそう増すた
め、曲線部10B内で冷媒が曲線部lOBの内面に沿っ
て一様に広がる傾向が、単一螺旋溝の場合に比してさら
に増す。このため、単純な螺旋溝を形成した伝熱管に比
して、曲線部IO已に沿って暮秋の流れが生じやすく、
騒音の問題か一層顕著になることが考えられる。
When such a heat exchanger tube IO is used, the intersecting grooves 22, 24 further increase the refrigerant transport power, so the refrigerant tends to spread uniformly along the inner surface of the curved portion 10B within the curved portion 10B. is further increased compared to the case of a single spiral groove. For this reason, compared to a heat exchanger tube with a simple spiral groove, late autumn flow is more likely to occur along the curved part IO.
It is thought that the noise problem will become even more pronounced.

しかし、この実施例では、流液溝!4が曲線部10Bの
内面に形成されているから、交差溝22゜24に沿って
広がる冷媒が各流液溝14にそれぞれ流れ込み、各流液
溝14に沿って複数の流れに分かれて曲線部JOBを通
過する。しfニかって、曲線部10B内のカス流路を閉
塞させる暮秋の流れが生じにくく、この液流に起因する
騒音か低減できる。
However, in this example, the liquid groove! 4 is formed on the inner surface of the curved portion 10B, the refrigerant spreading along the intersecting grooves 22 and 24 flows into each liquid flow groove 14, and is divided into a plurality of flows along each liquid flow groove 14 and flows out of the curved portion. Pass JOB. As a result, late fall flows that block the liquid flow path in the curved portion 10B are less likely to occur, and noise caused by this liquid flow can be reduced.

また、この実施例では、各主溝22に開口幅か相対的に
狭い管状部26か多数形成されているため、特にこの伝
熱管を熱交換器等の蒸発部に使用した場合には、内面平
滑な伝熱管の場合や、単純溝付きの伝熱管の場合に比し
て、各管状部26の内部に気泡か発生しやすい。この1
こめ、これら気泡が核となって蒸発を促進し、例えばフ
ロン等の熱媒液体の気化効率が格段に高められる。
In addition, in this embodiment, since each main groove 22 is formed with a large number of tubular portions 26 having relatively narrow opening widths, the inner surface Air bubbles are more likely to occur inside each tubular portion 26 than in the case of a smooth heat exchanger tube or a simply grooved heat exchanger tube. This one
As a result, these bubbles act as nuclei and promote evaporation, thereby significantly increasing the vaporization efficiency of heat transfer liquid such as fluorocarbon.

また、管状部26が断続的に設けられているので、各主
溝22内に流れ込んた熱媒液体は、管状部26の内面か
ら表面張力を受け、毛細管現象により主溝22に沿って
速やかに輸送される。このため、熱媒液体の輸送効率が
、単純溝付き伝熱管の場合に比して向上する。
In addition, since the tubular portions 26 are provided intermittently, the heat medium liquid that has flowed into each main groove 22 receives surface tension from the inner surface of the tubular portion 26 and quickly moves along the main groove 22 due to capillarity. transported. Therefore, the transport efficiency of the heat medium liquid is improved compared to the case of a simple grooved heat exchanger tube.

さらに、単純溝付き伝熱管に比して伝熱管10の内面積
が増すうえ、谷溝22.24  のエツジが鋭利に戸る
にめ表面活性か高い。し几かつて、この点から乙帖媒蒸
気の凝縮を促進し、液化効率か高められるという初点を
有する。
Furthermore, the inner area of the heat exchanger tube 10 is increased compared to a simple grooved heat exchanger tube, and the edges of the grooves 22 and 24 are sharp, so that the surface activity is high. From this point on, the condensation of the medium vapor can be promoted and the liquefaction efficiency can be increased.

なお、上記各実施例では、伝熱管の形状か断面円形てあ
っにか、本発明は円形に限らず、断面楕円形や偏平管状
等としても実施可能である。まに、冷却フィンの形状等
は任意に変更してよいし、場合によっては冷却フィンを
設けない構成し可能である。
In each of the above embodiments, the shape of the heat transfer tube is not limited to a circular cross section, but the present invention can be implemented with an elliptical cross section, a flat tubular shape, etc. However, the shape etc. of the cooling fins may be changed arbitrarily, and depending on the case, it is possible to configure the cooling fins without providing them.

まに、曲線部10Bの内面にのみ流液溝14を形成した
構成も可能であるし、接続管の内部には流液溝を設けな
くてもよい。
However, it is also possible to form the liquid flow groove 14 only on the inner surface of the curved portion 10B, and there is no need to provide the liquid flow groove inside the connecting pipe.

一発明の効果、1 以上説明したように、本発明に係わる熱交換装置によれ
ば、伝熱管の曲線部内に、伝熱溝よりも幅が広く、しか
も軸線方向に沿って延びる流液溝か複数形成されている
ため、冷媒は幅の広い流液溝のそれぞれに沿って分かれ
て流れ、曲線部内を寒く暮秋の流れを形成することがな
い。したかつて、上記暮秋の流れによるガス流路の閉塞
か生じず、暮秋の流れにより進行を阻止されたガス流か
暮秋の流れを断続的に突破する際に生しる騒音が大幅に
低減できる。
Effects of the Invention, 1 As explained above, according to the heat exchange device according to the present invention, there is a flowing liquid groove in the curved portion of the heat transfer tube that is wider than the heat transfer groove and further extends along the axial direction. Since a plurality of grooves are formed, the refrigerant flows separately along each of the wide flow grooves, and does not form a cold flow inside the curved portion. However, the gas flow path is not blocked by the late autumn flow, and the noise generated when the gas flow blocked by the late autumn flow intermittently breaks through the late autumn flow can be significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の第1実施例の熱交換装置
の伝熱管を示す縦断面図および■−■線視線面断面図3
図および第4図は、同実施例の接続管を示す縦断面図お
よび■−IV線視断固視断面図図は本発明の第2実施例
における伝熱管の縦断面図、第6図は同伝熱管の内面の
性状を示す拡大図、第7図ないし第11図は、それぞれ
第6図中のA−A−E−E線断面図、第12図は第2実
施例の伝熱管の製造方法を示す説明図、第13図および
第14図は、同製造方法に使用される成形ロールの説明
図である。 一方、第15図は一般的な熱交換装置を示す正面図、第
16図は従来技術の問題点を示す伝熱管の縦断面図であ
る。 lO・・・伝熱管、IOA・・・直線部、IOB・・曲
線部、12・・螺旋溝(伝熱溝)、14 流液溝、16
・接続管、20 流液溝、22.24  交差する溝(
伝熱溝)、26・・管状部、28・溶接部。
FIG. 1 and FIG. 2 are a vertical cross-sectional view showing a heat exchanger tube of a heat exchange device according to a first embodiment of the present invention, and a cross-sectional view along the line ■-■.
Figures 4 and 4 are a vertical cross-sectional view and a perspective cross-sectional view taken along the line ■-IV of the same embodiment, respectively. An enlarged view showing the properties of the inner surface of the heat exchanger tube, FIGS. 7 to 11 are sectional views taken along the line A-A-E-E in FIG. 6, and FIG. 12 is a diagram showing the manufacturing of the heat exchanger tube of the second embodiment Explanatory drawings showing the method, FIG. 13 and FIG. 14 are explanatory drawings of forming rolls used in the manufacturing method. On the other hand, FIG. 15 is a front view showing a general heat exchange device, and FIG. 16 is a longitudinal sectional view of a heat exchanger tube showing problems in the prior art. lO... Heat transfer tube, IOA... Straight section, IOB... Curved section, 12... Spiral groove (heat transfer groove), 14 Liquid flow groove, 16
・Connection pipe, 20 Flow groove, 22.24 Intersecting groove (
heat transfer groove), 26... tubular section, 28. welded section.

Claims (2)

【特許請求の範囲】[Claims] (1)一対の平行な直線部およびこれら直線部の一端側
同士をつなぐ曲線部とからなり、その内面には多数の伝
熱溝が形成された複数の伝熱管と、隣接する前記各伝熱
管の開口端同士をそれぞれ接続して連続した流路を形成
する、屈曲した接続管とを具備する熱交換装置において
、 前記各曲線部の内面には、この曲線部の軸線方向へ延び
、前記伝熱溝よりも幅の大きい流液溝が周方向に間隔を
あけて複数本形成されていることを特徴とする熱交換装
置。
(1) A plurality of heat exchanger tubes consisting of a pair of parallel straight parts and a curved part connecting one end of these straight parts, each of which has a large number of heat transfer grooves formed on its inner surface, and each of the adjacent heat exchanger tubes. In a heat exchange device comprising bent connecting pipes that connect the open ends of the pipes to each other to form a continuous flow path, the inner surface of each curved part has a pipe extending in the axial direction of the curved part, A heat exchange device characterized in that a plurality of fluid flow grooves having a width larger than the heat grooves are formed at intervals in the circumferential direction.
(2)前記伝熱溝は、互いに交差する2種の螺旋溝によ
って構成されていることを特徴とする請求項1記載の熱
交換装置。
(2) The heat exchange device according to claim 1, wherein the heat transfer groove is constituted by two types of spiral grooves that intersect with each other.
JP28469090A 1990-10-23 1990-10-23 Heat exchange equipment Expired - Fee Related JP2731624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28469090A JP2731624B2 (en) 1990-10-23 1990-10-23 Heat exchange equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28469090A JP2731624B2 (en) 1990-10-23 1990-10-23 Heat exchange equipment

Publications (2)

Publication Number Publication Date
JPH04158192A true JPH04158192A (en) 1992-06-01
JP2731624B2 JP2731624B2 (en) 1998-03-25

Family

ID=17681718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28469090A Expired - Fee Related JP2731624B2 (en) 1990-10-23 1990-10-23 Heat exchange equipment

Country Status (1)

Country Link
JP (1) JP2731624B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5915467A (en) * 1997-01-17 1999-06-29 Kabushiki Kaisha Kobe Seiko Sho Heat transfer tube with grooves in inner surface of tube
JP2011252619A (en) * 2010-05-31 2011-12-15 Pura Giken:Kk Pipe for heat exchange

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5915467A (en) * 1997-01-17 1999-06-29 Kabushiki Kaisha Kobe Seiko Sho Heat transfer tube with grooves in inner surface of tube
JP2011252619A (en) * 2010-05-31 2011-12-15 Pura Giken:Kk Pipe for heat exchange

Also Published As

Publication number Publication date
JP2731624B2 (en) 1998-03-25

Similar Documents

Publication Publication Date Title
KR100245383B1 (en) Pipe with crossing groove and manufacture thereof
JP2730824B2 (en) Heat transfer tube with inner groove and method of manufacturing the same
JP4065785B2 (en) Improved heat transfer tube with grooved inner surface
JP6172950B2 (en) Double tube for heat exchanger
US3662582A (en) Heat-exchange tubing and method of making it
US20110094258A1 (en) Heat exchanger and air conditioner provided with heat exchanger
WO2008007694A1 (en) Fin-and-tube type heat exchanger, and its return bend pipe
US6298909B1 (en) Heat exchange tube having a grooved inner surface
JPH08128793A (en) Heat transfer tube with internal fins and manufacture thereof
JPH109789A (en) Heat exchanger tube
WO2013084508A1 (en) Fin tube-type heat exchanger
JP2002267381A (en) Heat exchanger pipe for liquid and gaseous medium
JP2016102643A (en) Heat exchanger
JP2008190858A (en) Leakage detecting tube
JP2003247788A (en) Heat exchanger and manufacturing method thereof
JPH04158192A (en) Heat exchanger
JP2701956B2 (en) ERW pipe for heat transfer
JP2010091266A (en) Twisted tube type heat exchanger
JP2005030619A (en) Double tube, and double tube type heat exchanger using it
JPH11325754A (en) Heat-exchanger and u-shaped pipe for heat-exchanger
JP4632487B2 (en) Internal grooved heat transfer tube and manufacturing method thereof
JPS6115092A (en) Heat transfer tube for use in heat exchanger
JP2701957B2 (en) Manufacturing method of ERW pipe for heat transfer
JP4020678B2 (en) Internal grooved heat transfer tube and manufacturing method thereof
JP2758567B2 (en) Heat transfer tube with internal groove

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees