JP2011252619A - Pipe for heat exchange - Google Patents

Pipe for heat exchange Download PDF

Info

Publication number
JP2011252619A
JP2011252619A JP2010124625A JP2010124625A JP2011252619A JP 2011252619 A JP2011252619 A JP 2011252619A JP 2010124625 A JP2010124625 A JP 2010124625A JP 2010124625 A JP2010124625 A JP 2010124625A JP 2011252619 A JP2011252619 A JP 2011252619A
Authority
JP
Japan
Prior art keywords
pipe
heat exchange
fluid
pipes
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010124625A
Other languages
Japanese (ja)
Inventor
Ryoji Kikuzawa
良治 菊澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pla Giken Co Ltd
Original Assignee
Pla Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pla Giken Co Ltd filed Critical Pla Giken Co Ltd
Priority to JP2010124625A priority Critical patent/JP2011252619A/en
Publication of JP2011252619A publication Critical patent/JP2011252619A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/062Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material the heat-exchange apparatus employing tubular conduits
    • F28F21/063Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material the heat-exchange apparatus employing tubular conduits for domestic or space-heating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/08Tubular elements crimped or corrugated in longitudinal section

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To form an internal hole of a pipe for heat exchange so that a pressure loss when fluid for heat exchange flows is minimized and a heat exchange characteristic of the fluid through the pipe for heat exchange is maintained well.SOLUTION: The resin pipe for heat exchange includes a plurality of linear pipes 18 respectively mountable at predetermined parts of a support 5 supported on a frame side 3 of a building 1, and a plurality of connection pipes 20 integrally connecting respective ends of the respective linear pipes 18 with each other and having axial centers 19 bendable circular-arcuately. The fluid 9 for heat exchange sequentially flows in the internal holes 8 of the respective pipes 18, 20. The peripheral wall of the connection pipe 20 is bent in a zigzag shape toward the axial direction and a groove 29 formed on the inner face side of the connection pipe 20 by the bending is in a spiral shape continuously extending around the axis 19 of the connection pipe 20 bent circular-arcuately.

Description

本発明は、内部孔を温水など熱交換用の流体を流動させ、この流体と外部の空気との間で熱交換を可能にするための熱交換用パイプに関するものである。   The present invention relates to a heat exchanging pipe for allowing a heat exchanging fluid such as hot water to flow through an inner hole and enabling heat exchanging between the fluid and external air.

上記熱交換用パイプには、従来、下記特許文献1に示されたものがある。この公報のものによれば、建物の躯体など固定側に容器が支持されている。上記熱交換用パイプは樹脂製で、上記容器内の支持体の所定部位にそれぞれ取り付け可能とされる複数の直線状パイプと、これら各直線状パイプの各端部同士を一体的に連結すると共に、その軸心が円弧状に屈曲可能とされる複数の連結パイプとを備えている。これら各連結パイプには、その屈曲を容易にするため、それぞれベローズが形成されている。   Conventionally, the pipe for heat exchange is disclosed in Patent Document 1 below. According to this publication, a container is supported on a fixed side such as a building frame. The heat exchanging pipe is made of resin, and a plurality of linear pipes that can be respectively attached to predetermined portions of the support in the container and integrally connecting the ends of the linear pipes. And a plurality of connecting pipes whose axial centers can be bent in an arc shape. Each of these connecting pipes is formed with a bellows in order to facilitate bending thereof.

上記支持体への熱交換用パイプの取り付け作業時には、この熱交換用パイプの各連結パイプを屈曲させながら、各直線状パイプを上記支持体の所定部位にそれぞれ取り付ける。ここで、前記したように、各連結パイプには、その屈曲を容易にするためのベローズが形成されているため、上記した支持体への熱交換用パイプの取り付け作業は容易にできると考えられる。   At the time of attaching the heat exchanging pipe to the support, each straight pipe is attached to a predetermined portion of the support while the connecting pipes of the heat exchanging pipe are bent. Here, as described above, since each connection pipe is formed with a bellows for facilitating the bending, it is considered that the heat exchange pipe can be easily attached to the support. .

そして、上記熱交換用パイプの内部孔を、熱交換用の流体を流動させると、この流体と、熱交換用パイプの外部側の流体とがこの熱交換用パイプを介して熱交換され、これにより、上記した外部の流体が暖められ、もしくは冷却されることとなっている。   Then, when a fluid for heat exchange is caused to flow through the inner hole of the heat exchange pipe, the fluid and the fluid on the outside of the heat exchange pipe are heat-exchanged through the heat exchange pipe, As a result, the above-described external fluid is warmed or cooled.

実開平2−133573号公報Japanese Utility Model Publication No. 2-133573

ところで、上記したように熱交換用パイプの各連結パイプにはベローズが形成されたことにより、これら各連結パイプの内面側には、環状溝が軸方向に所定間隔をあけて複数形成されることとなっている。   By the way, as described above, each connection pipe of the heat exchange pipe is formed with a bellows, so that a plurality of annular grooves are formed at predetermined intervals in the axial direction on the inner surface side of each connection pipe. It has become.

このため、上記熱交換用パイプの連結パイプの内部孔を熱交換用の流体が流動するとき、上記各環状溝に入り込んだ流体にはそれぞれ渦が生じがちとなる。よって、上記熱交換用パイプの内部孔を流体が流動する際の圧力損失が過大になるおそれがある。また、上記各環状溝の内底部では流体が滞留しがちとなり、このため、この流体中の不純物により上記各環状溝の内底部にはスケールが溜まりがちとなる。そして、これが生じると、上記熱交換用パイプを介しての流体の熱交換特性が低下して、この熱交換が阻害されるおそれもある。   For this reason, when the fluid for heat exchange flows through the internal holes of the connecting pipe of the heat exchange pipe, vortices tend to be generated in the fluids that have entered the annular grooves. Therefore, there is a possibility that the pressure loss when the fluid flows through the inner hole of the heat exchange pipe becomes excessive. In addition, fluid tends to stay at the inner bottom of each annular groove, and therefore, the scale tends to accumulate at the inner bottom of each annular groove due to impurities in the fluid. If this occurs, the heat exchange characteristics of the fluid through the heat exchange pipe may deteriorate, and this heat exchange may be hindered.

本発明は、上記のような事情に注目してなされたもので、本発明の目的は、熱交換用パイプが、複数の直線状パイプと、これら各直線状パイプの各端部同士を一体的に連結すると共に、その軸心が円弧状に屈曲可能とされる複数連結パイプとを備え、これら各連結パイプの屈曲が容易にできるようにした場合において、この熱交換用パイプの内部孔を熱交換用の流体が流動する際の圧力損失が小さく抑制されるようにすると共に、上記熱交換用パイプを介しての流体の熱交換特性が良好に保持されるようにすることである。   The present invention has been made by paying attention to the above-described circumstances, and an object of the present invention is to provide a heat exchange pipe in which a plurality of straight pipes and ends of each straight pipe are integrated. And a plurality of connecting pipes whose axial centers can be bent in an arc shape, and when the connecting pipes can be easily bent, the internal holes of the heat exchanging pipes are heated. The pressure loss when the replacement fluid flows is suppressed to a small level, and the heat exchange characteristics of the fluid through the heat exchange pipe are favorably maintained.

請求項1の発明は、建物1の躯体側3に支持される支持体5の所定部位にそれぞれ取り付け可能とされる複数の直線状パイプ18と、これら各直線状パイプ18の各端部同士を一体的に連結すると共に、その軸心19が円弧状に屈曲可能とされる複数の連結パイプ20とを備え、これら各パイプ18,20の内部孔8を熱交換用の流体9が順次流動するようにした樹脂製の熱交換用パイプにおいて、
上記連結パイプ20の周壁をその軸方向に向かってジグザグ状に屈曲させ、この屈曲により生じたこの連結パイプ20の内面側の溝29が、上記円弧状に屈曲された連結パイプ20の軸心19回りに連続的に延びるスパイラル形状となるようにしたことを特徴とする熱交換用パイプである。
The invention of claim 1 includes a plurality of linear pipes 18 each attachable to a predetermined part of the support 5 supported on the housing side 3 of the building 1, and ends of the respective linear pipes 18. A plurality of connecting pipes 20 that are integrally connected and whose axis 19 can be bent in an arc shape are provided, and the heat exchange fluid 9 sequentially flows through the internal holes 8 of the pipes 18 and 20. In the resin heat exchange pipe
The peripheral wall of the connecting pipe 20 is bent in a zigzag shape in the axial direction, and a groove 29 on the inner surface side of the connecting pipe 20 generated by the bending is an axis 19 of the connecting pipe 20 bent in the arc shape. It is a pipe for heat exchange characterized by having a spiral shape continuously extending around.

請求項2の発明は、上記溝29を互いに平行に延びる複数条にしたことを特徴とする熱交換用パイプである。   The invention of claim 2 is a heat exchange pipe characterized in that the groove 29 is formed in a plurality of strips extending in parallel with each other.

請求項3の発明は、上記ジグザグ状の屈曲により生じた連結パイプ20の内面側の突条36の内径D2を上記熱交換用パイプ7の直線状パイプ18の内径D1にほぼ合致させたことを特徴とする請求項1、もしくは2に記載の熱交換用パイプである。   The invention of claim 3 is that the inner diameter D2 of the protrusion 36 on the inner surface side of the connecting pipe 20 caused by the zigzag bend is substantially matched with the inner diameter D1 of the straight pipe 18 of the heat exchange pipe 7. It is a pipe for heat exchange according to claim 1 or 2 characterized by things.

請求項4の発明は、上記ジグザグ状の屈曲により生じた連結パイプ20の内面側の突条36の内径D2を上記熱交換用パイプ7の直線状パイプ18の内径D1よりも小さくする一方、上記連結パイプ20の外面側の突条37の外径D3を上記直線状パイプ18の外径D4よりも大きくしたことを特徴とする請求項1、もしくは2に記載の熱交換用パイプである。   In the invention of claim 4, the inner diameter D2 of the protrusion 36 on the inner surface side of the connecting pipe 20 caused by the zigzag-shaped bending is made smaller than the inner diameter D1 of the linear pipe 18 of the heat exchange pipe 7, while 3. The heat exchange pipe according to claim 1, wherein an outer diameter D <b> 3 of the protrusion 37 on the outer surface side of the connecting pipe 20 is larger than an outer diameter D <b> 4 of the linear pipe 18.

なお、この項において、上記各用語に付記した符号や図面番号は、本発明の技術的範囲を後述の「実施例」の項や図面の内容に限定解釈するものではない。   In addition, in this section, the reference numerals and drawing numbers appended to the above terms are not intended to limit the technical scope of the present invention to the “Example” section and the contents of the drawings described later.

本発明による効果は、次の如くである。   The effects of the present invention are as follows.

請求項1の発明は、建物の躯体側に支持される支持体の所定部位にそれぞれ取り付け可能とされる複数の直線状パイプと、これら各直線状パイプの各端部同士を一体的に連結すると共に、その軸心が円弧状に屈曲可能とされる複数の連結パイプとを備え、これら各パイプの内部孔を熱交換用の流体が順次流動するようにした樹脂製の熱交換用パイプにおいて、
上記連結パイプの周壁をその軸方向に向かってジグザグ状に屈曲させ、この屈曲により生じたこの連結パイプの内面側の溝が、上記円弧状に屈曲された連結パイプの軸心回りに連続的に延びるスパイラル形状となるようにしている。
According to the first aspect of the present invention, a plurality of linear pipes each attachable to a predetermined portion of a support supported on the building side of a building, and ends of the respective linear pipes are integrally connected. In addition, in the resin heat exchanging pipe comprising a plurality of connecting pipes whose axis can be bent in an arc shape, the heat exchanging fluid sequentially flows through the internal holes of these pipes,
The peripheral wall of the connection pipe is bent in a zigzag shape in the axial direction, and the groove on the inner surface side of the connection pipe generated by the bending is continuously around the axis of the connection pipe bent in the arc shape. The spiral shape is extended.

ここで、上記支持体への熱交換用パイプの取り付け作業時には、この熱交換用パイプの各連結パイプを屈曲させながら、各直線状パイプを上記支持体の所定部位にそれぞれ取り付けるが、上記したように、各連結パイプにはスパイラル形状の溝が形成されているため、これら各連結パイプの屈曲は容易にでき、これにより、上記した支持体への熱交換用パイプの取り付け作業は容易にできる。   Here, at the time of attaching the heat exchange pipe to the support, each straight pipe is attached to a predetermined portion of the support while bending each connection pipe of the heat exchange pipe. In addition, since each connection pipe is formed with a spiral groove, the connection pipe can be easily bent, and thereby the heat exchanging pipe can be easily attached to the support.

そして、上記した熱交換用パイプの連結パイプの内部孔を熱交換用の流体が流動するとき、この連結パイプの内面側に沿って流動する流体は、その流線が上記した連結パイプの軸心回りに連続的に延びる溝に沿ってスパイラル形状となるよう、この溝内を連続的に流動する。   When the fluid for heat exchange flows through the inner hole of the connecting pipe of the above-described heat exchanging pipe, the fluid flowing along the inner surface side of the connecting pipe has the streamline of the axis of the connecting pipe described above. The inside of the groove flows continuously so as to form a spiral shape along the groove continuously extending around.

このため、上記溝に入り込んだ流体に渦が生じることは抑制され、よって、上記熱交換用パイプの内部孔を流体が流動する際の圧力損失は小さく抑制される。また、上記溝の内底部に流体が滞留することは防止されることから、この流体中の不純物により上記溝の内底部にスケールが溜まることは抑制される。よって、上記熱交換用パイプを介しての流体の放熱など熱交換特性は良好に保持される。   For this reason, it is suppressed that a vortex arises in the fluid which entered the said groove | channel, Therefore, the pressure loss at the time of a fluid flowing through the internal hole of the said heat exchange pipe is suppressed small. Further, since the fluid is prevented from staying at the inner bottom portion of the groove, the accumulation of scale at the inner bottom portion of the groove due to impurities in the fluid is suppressed. Therefore, heat exchange characteristics such as heat radiation of the fluid through the heat exchange pipe are maintained well.

請求項2の発明は、上記溝を互いに平行に延びる複数条にしている。   According to a second aspect of the present invention, the groove is formed into a plurality of strips extending in parallel with each other.

このため、仮に、溝が一条のみである場合に比べて、上記したように溝が複数条である場合には、その各溝のピッチをそれぞれより長くすることができることから、その分、上記連結パイプの内面側に沿って流動する流体は、上記溝内をより円滑に流動する。   For this reason, as compared with the case where there are only one groove, if there are a plurality of grooves as described above, the pitch of each groove can be made longer. The fluid flowing along the inner surface side of the pipe flows more smoothly in the groove.

よって、上記熱交換用パイプの内部孔を流体が流動する際の圧力損失はより小さく抑制される。また、上記溝の内底部に流体が滞留することはより確実に防止されて、上記溝の内底部にスケールが溜まることはより確実に抑制され、このため、熱交換用パイプを介しての流体の熱交換特性はより良好に保持される。   Therefore, the pressure loss when the fluid flows through the inner hole of the heat exchanging pipe is further suppressed. In addition, it is more reliably prevented that the fluid stays in the inner bottom portion of the groove, and the accumulation of scale in the inner bottom portion of the groove is more reliably suppressed. For this reason, the fluid through the heat exchange pipe The heat exchange characteristics of are maintained better.

請求項3の発明は、上記ジグザグ状の屈曲により生じた連結パイプの内面側の突条の内径を上記熱交換用パイプの直線状パイプの内径にほぼ合致させている。   According to a third aspect of the present invention, the inner diameter of the protrusion on the inner surface side of the connecting pipe generated by the zigzag bending is substantially matched with the inner diameter of the straight pipe of the heat exchange pipe.

このため、上記直線状パイプの内部孔と連結パイプの内部孔とを流体が順次流動するとき、この流体は、上記連結パイプの内面側の突条に大きくは邪魔されることなく円滑に流動する。よって、上記熱交換用パイプの内部孔を流体が流動する際の圧力損失はより確実に小さく抑制される。   Therefore, when the fluid sequentially flows through the internal hole of the linear pipe and the internal hole of the connecting pipe, the fluid smoothly flows without being largely disturbed by the protrusion on the inner surface side of the connecting pipe. . Therefore, the pressure loss when the fluid flows through the internal hole of the heat exchange pipe is more reliably suppressed to be small.

請求項4の発明は、上記ジグザグ状の屈曲により生じた連結パイプの内面側の突条の内径を上記熱交換用パイプの直線状パイプの内径よりも小さくする一方、上記連結パイプの外面側の突条の外径を上記直線状パイプの外径よりも大きくしている。   According to a fourth aspect of the present invention, the inner diameter of the protrusion on the inner surface side of the connecting pipe generated by the zigzag-shaped bending is made smaller than the inner diameter of the linear pipe of the heat exchange pipe, The outer diameter of the ridge is made larger than the outer diameter of the straight pipe.

このため、上記構造の連結パイプによれば、その軸方向各部の平均的な内径(もしくは外径)は、上記直線状パイプの内径(もしくは直線状パイプの外径)にほぼ合致するため、上記連結パイプの軸方向における各部肉厚を上記直線状パイプの肉厚にほぼ等しくさせることができる。よって、上記連結パイプには溝が形成されてはいるが、この連結パイプには上記流体からの圧力に対し所定の強度が確保される。   For this reason, according to the connecting pipe having the above structure, the average inner diameter (or outer diameter) of each part in the axial direction substantially matches the inner diameter of the linear pipe (or the outer diameter of the linear pipe). The thickness of each part in the axial direction of the connecting pipe can be made substantially equal to the thickness of the straight pipe. Therefore, although the groove is formed in the connection pipe, the connection pipe is ensured to have a predetermined strength against the pressure from the fluid.

図2の部分拡大部分断面図である。FIG. 3 is a partial enlarged partial sectional view of FIG. 2. 熱交換用パイプを支持体に取り付けた平面図である。It is the top view which attached the pipe for heat exchange to the support body. 図2のIII−III線矢視断面図である。FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2. 熱交換用パイプの形成方法の説明図である。It is explanatory drawing of the formation method of the pipe for heat exchange.

本発明の熱交換用パイプに関し、熱交換用パイプが、複数の直線状パイプと、これら各直線状パイプの各端部同士を一体的に連結すると共に、その軸心が円弧状に屈曲可能とされる複数連結パイプとを備え、これら各連結パイプの屈曲が容易にできるようにした場合において、この熱交換用パイプの内部孔を熱交換用の流体が流動する際の圧力損失が小さく抑制されるようにすると共に、上記熱交換用パイプを介しての流体の熱交換特性が良好に保持されるようにする、という目的を実現するため、本発明を実施するための形態は、次の如くである。   Regarding the heat exchange pipe of the present invention, the heat exchange pipe integrally connects a plurality of straight pipes and ends of each straight pipe, and its axis can be bent in an arc shape. In the case where each of the connecting pipes can be easily bent, the pressure loss when the fluid for heat exchange flows through the inner hole of the heat exchanging pipe is suppressed to be small. In order to achieve the object of maintaining good heat exchange characteristics of the fluid through the heat exchange pipe, the form for carrying out the present invention is as follows: It is.

即ち、樹脂製の熱交換用パイプは、建物の躯体側に支持される支持体の所定部位にそれぞれ取り付け可能とされる複数の直線状パイプと、これら各直線状パイプの各端部同士を一体的に連結すると共に、その軸心が円弧状に屈曲可能とされる複数の連結パイプとを備え、これら各パイプの内部孔を熱交換用の流体が順次流動することとされる。上記連結パイプの周壁がその軸方向に向かってジグザグ状に屈曲させられ、この屈曲により生じたこの連結パイプの内面側の溝が、上記円弧状に屈曲された連結パイプの軸心回りに連続的に延びるスパイラル形状となるようにしている。   That is, the resin heat exchange pipe is formed by integrating a plurality of linear pipes that can be attached to predetermined portions of the support body supported on the building side of the building, and the ends of each linear pipe. And a plurality of connecting pipes whose axial centers can be bent in a circular arc shape, and fluid for heat exchange sequentially flows through the internal holes of these pipes. The peripheral wall of the connecting pipe is bent in a zigzag shape in the axial direction, and the groove on the inner surface side of the connecting pipe generated by the bending is continuously around the axis of the connecting pipe bent in the arc shape. It is made to become the spiral shape extended to.

本発明をより詳細に説明するために、その実施例を添付の図に従って説明する。   In order to explain the present invention in more detail, an embodiment thereof will be described with reference to the accompanying drawings.

図1〜3において、符号1は建物で、この建物1には、その内部空間(室内)の空気を温度調整する空調装置2が設けられている。この空調装置2は、建物1の躯体側3である天井に、ねじなどの固着具4により取り付けられる複数の支持体5と、これら各支持体5にそれぞれ着脱可能に取り付けられる樹脂製の熱交換用パイプ7と、これら各熱交換用パイプ7の内部孔8を、熱交換用の流体9である温水を流動させる流体加圧供給装置10とを備えている。   1-3, the code | symbol 1 is a building and this building 1 is provided with the air conditioner 2 which adjusts the temperature of the air of the interior space (room | chamber interior). The air conditioner 2 includes a plurality of supports 5 attached to the ceiling, which is the housing side 3 of the building 1, by screws 4 or the like, and resin heat exchanges detachably attached to the supports 5. And a fluid pressurizing and supplying device 10 for flowing hot water, which is a fluid 9 for heat exchange, through the internal holes 8 of the heat exchange pipes 7.

上記支持体5は天井に沿って複数設けられる。これら各支持体5は、天井に沿って水平に延びるアルミ等の金属製パネル14と、このパネル14の上面に取り付けられ、この上面に沿って長く延びると共に互いに並設され、上記熱交換用パイプ7を係脱可能に係止する複数の係止具15とを備えている。   A plurality of the supports 5 are provided along the ceiling. Each of the supports 5 is attached to a top surface of the panel 14 made of a metal such as aluminum that extends horizontally along the ceiling, extends long along the top surface, and is juxtaposed with each other. And a plurality of locking tools 15 for detachably locking 7.

上記熱交換用パイプ7は、上記支持体5の所定部位に係止具15によりそれぞれ係止されて取り付け可能とされる複数の直線状パイプ18と、これら各直線状パイプ18の各端部同士を一体的に連結すると共にその軸心19が円弧状に屈曲可能とされる複数の連結パイプ20とを備えている。   The heat exchanging pipe 7 includes a plurality of linear pipes 18 that can be attached to a predetermined portion of the support 5 by a locking tool 15, and ends of the linear pipes 18. And a plurality of connecting pipes 20 whose axis 19 can be bent in an arc shape.

より具体的には、上記熱交換用パイプ7は、その径方向の内部側から外部側に向かって順次重ね合わされる第1〜第5パイプ22〜26を有して多重パイプ構造とされている。上記第1、第5パイプ22,26は耐熱性に優れた架橋ポリエチレン製とされ、第2、第4パイプ23,25は上記熱交換用パイプ7の径方向で隣り合う各パイプ同士を互いに面接触状に接着させるための無水フタル酸グラフトポリマー製などの接着性樹脂とされ、第3パイプ24は空気の透過を阻止する性質に優れたポリビニルアルコール製とされている。また、上記熱交換用パイプ7の直線状パイプ18の内径D1は10〜25mmで、直線状パイプ18の肉厚は1.0〜2.5mmである。また、この直線状パイプ18の長さは1300〜1500mm程度であり、連結パイプ20の軸心19の屈曲半径Rは40〜60mmである。   More specifically, the heat exchanging pipe 7 has first to fifth pipes 22 to 26 that are sequentially stacked from the radially inner side to the outer side to form a multiple pipe structure. . The first and fifth pipes 22 and 26 are made of crosslinked polyethylene having excellent heat resistance, and the second and fourth pipes 23 and 25 face each other adjacent to each other in the radial direction of the heat exchange pipe 7. It is made of an adhesive resin such as a phthalic anhydride graft polymer for adhesion in a contact state, and the third pipe 24 is made of polyvinyl alcohol having an excellent property of blocking air permeation. Moreover, the internal diameter D1 of the linear pipe 18 of the said heat exchange pipe 7 is 10-25 mm, and the thickness of the linear pipe 18 is 1.0-2.5 mm. The length of the straight pipe 18 is about 1300 to 1500 mm, and the bending radius R of the axis 19 of the connecting pipe 20 is 40 to 60 mm.

前記流体9の温度は15〜40℃であり、好ましくは16〜33℃である。また、上記熱交換用パイプ7の内部孔8における流体9の流速は15〜20m/sec程度とされる。   The temperature of the fluid 9 is 15 to 40 ° C., preferably 16 to 33 ° C. The flow rate of the fluid 9 in the internal hole 8 of the heat exchange pipe 7 is about 15 to 20 m / sec.

そして、上記熱交換用パイプ7の各直線状パイプ18と各連結パイプ20の内部孔8を、順次、上記流体加圧供給装置10により流体9を流動させると、この流体9と、上記パネル14とが上記熱交換用パイプ7を介して熱交換され、これにより、上記パネル14が暖められ、もしくは冷やされる。そして、このパネル14からの遠赤外線による輻射熱により、建物1の内部空間(室内)の空気が暖められ、もしくは冷やされる。   Then, when the fluid 9 is caused to flow through the straight pipes 18 of the heat exchanging pipe 7 and the internal holes 8 of the connecting pipes 20 by the fluid pressure supply device 10 in sequence, the fluid 9 and the panel 14 Are exchanged through the heat exchange pipe 7, whereby the panel 14 is warmed or cooled. Then, the air in the internal space (indoor) of the building 1 is warmed or cooled by the radiant heat generated by the far infrared rays from the panel 14.

上記連結パイプ20の周壁はその軸方向に向かってジグザグ状に屈曲させられている。そして、この屈曲により生じた連結パイプ20の内面側の溝29は、前記のように円弧状に屈曲された連結パイプ20の軸心19回りに連続的に延びるスパイラル形状とされている。なお、上記ジグザグ状とは、厳密にZ字形状が連続するものに限定されるのではなく、波形状を含む概念である。   The peripheral wall of the connecting pipe 20 is bent in a zigzag shape in the axial direction. And the groove | channel 29 by the side of the inner surface of the connection pipe 20 produced by this bending is made into the spiral shape extended continuously around the axial center 19 of the connection pipe 20 bent in circular arc shape as mentioned above. The zigzag shape is not strictly limited to a continuous Z shape, but is a concept including a wave shape.

図4において、上記熱交換用パイプ7は、押出成形機により、次のように形成される。即ち、まず、押出成形機により、内、外径がそれぞれ一定の中間品パイプ(上記連結パイプ20を長くしたものに相当する)が連続的に直線状に押し出し形成される。次に、上記熱交換用パイプ7の各連結パイプ20に相当する上記中間品パイプの各部分が、割り金型32,33によって順次挟まれて加熱される。次に、吸引ポンプ34による負圧により、上記割り金型32,33の内面に向けて上記中間品パイプの各部分が熱可塑状態で順次吸引され、これにより、上記したスパイラル形状の溝29が形成された連結パイプ20が形成される。   In FIG. 4, the heat exchanging pipe 7 is formed by an extruder as follows. That is, first, an intermediate product pipe (corresponding to the length of the connecting pipe 20) having a constant inner and outer diameter is continuously extruded and formed by an extruder. Next, each part of the intermediate product pipe corresponding to each connection pipe 20 of the heat exchange pipe 7 is sequentially sandwiched and heated by the split molds 32 and 33. Next, due to the negative pressure by the suction pump 34, each part of the intermediate product pipe is sequentially sucked in the thermoplastic state toward the inner surfaces of the split molds 32, 33, whereby the spiral groove 29 described above is formed. The formed connecting pipe 20 is formed.

上記構成によれば、連結パイプ20の周壁をその軸方向に向かってジグザグ状に屈曲させ、この屈曲により生じたこの連結パイプ20の内面側の溝29が、上記円弧状に屈曲された連結パイプ20の軸心19回りに連続的に延びるスパイラル形状となるようにしている。   According to the above configuration, the peripheral wall of the connecting pipe 20 is bent in a zigzag shape in the axial direction, and the groove 29 on the inner surface side of the connecting pipe 20 generated by the bending is bent in the arc shape. A spiral shape continuously extending around 20 axis centers 19 is formed.

ここで、上記支持体5への熱交換用パイプ7の取り付け作業時には、この熱交換用パイプ7の各連結パイプ20を屈曲させながら、各直線状パイプ18を上記支持体5の所定部位における係止具15にそれぞれ係止させて取り付けるが、上記したように、各連結パイプ20にはスパイラル形状の溝29が形成されているため、これら各連結パイプ20の屈曲は容易にでき、これにより、上記した支持体5への熱交換用パイプ7の取り付け作業は容易にできる。   Here, at the time of attaching the heat exchanging pipe 7 to the support 5, the straight pipes 18 are engaged with the predetermined portions of the support 5 while bending the connecting pipes 20 of the heat exchanging pipe 7. Each of the connecting pipes 20 is formed with a spiral groove 29 as described above, so that the connecting pipes 20 can be easily bent. The above-described heat exchanging pipe 7 can be easily attached to the support 5.

そして、上記した熱交換用パイプ7の連結パイプ20の内部孔8を熱交換用の流体9が流動するとき、この連結パイプ20の内面側に沿って流動する流体9は、その流線が上記した連結パイプ20の軸心19回りに連続的に延びる溝29に沿ってスパイラル形状となるよう、この溝29内を連続的に流動する。   When the fluid 9 for heat exchange flows through the inner hole 8 of the connection pipe 20 of the heat exchange pipe 7 described above, the stream line of the fluid 9 flowing along the inner surface side of the connection pipe 20 has the flow line described above. The inside of this groove | channel 29 is continuously flowed so that it may become a spiral shape along the groove | channel 29 continuously extended around the axial center 19 of the connecting pipe 20.

このため、上記溝29に入り込んだ流体9に渦が生じることは抑制され、よって、上記熱交換用パイプ7の内部孔8を流体9が流動する際の圧力損失は小さく抑制される。また、上記溝29の内底部に流体9が滞留することは防止されることから、この流体9中の不純物により上記溝29の内底部にスケールが溜まることは抑制される。よって、上記熱交換用パイプ7を介しての流体9の放熱など熱交換特性(より具体的には、上記パネル14への伝熱特性)は良好に保持される。   For this reason, it is suppressed that a vortex arises in the fluid 9 which entered the said groove | channel 29, Therefore, the pressure loss at the time of the fluid 9 flowing through the internal hole 8 of the said heat exchange pipe 7 is suppressed small. Further, since the fluid 9 is prevented from staying at the inner bottom portion of the groove 29, the accumulation of scale at the inner bottom portion of the groove 29 due to impurities in the fluid 9 is suppressed. Therefore, heat exchange characteristics such as heat dissipation of the fluid 9 through the heat exchange pipe 7 (more specifically, heat transfer characteristics to the panel 14) are maintained well.

また、上記溝29は互いに平行に延びる複数条とされている。   The groove 29 has a plurality of strips extending in parallel with each other.

このため、仮に、溝29が一条のみである場合に比べて、上記したように溝29が複数条である場合には、その各溝29のピッチをそれぞれより長くすることができることから、その分、上記連結パイプ20の内面側に沿って流動する流体9は、上記溝29内をより円滑に流動する。   For this reason, as compared with the case where the groove 29 has only one line, if the groove 29 has a plurality of lines as described above, the pitch of each groove 29 can be made longer. The fluid 9 that flows along the inner surface side of the connecting pipe 20 flows more smoothly in the groove 29.

よって、上記熱交換用パイプ7の内部孔8を流体9が流動する際の圧力損失はより小さく抑制される。また、上記溝29の内底部に流体9が滞留することはより確実に防止されて、上記溝29の内底部にスケールが溜まることはより確実に抑制され、このため、熱交換用パイプ7を介しての流体9の熱交換特性はより良好に保持される。   Therefore, the pressure loss when the fluid 9 flows through the internal hole 8 of the heat exchanging pipe 7 is further suppressed. Further, the fluid 9 is more reliably prevented from staying in the inner bottom portion of the groove 29, and the scale is more reliably prevented from accumulating in the inner bottom portion of the groove 29. The heat exchange characteristics of the fluid 9 are more favorably maintained.

また、前記ジグザグ状の屈曲により生じた連結パイプ20の内面側の突条36の内径D2が上記熱交換用パイプ7の直線状パイプ18の内径D1にほぼ合致させられている。   Further, the inner diameter D2 of the ridge 36 on the inner surface side of the connecting pipe 20 generated by the zigzag bending is substantially matched with the inner diameter D1 of the straight pipe 18 of the heat exchange pipe 7.

このため、上記直線状パイプ18の内部孔8と連結パイプ20の内部孔8とを流体9が順次流動するとき、この流体9は、上記連結パイプ20の内面側の突条36に大きくは邪魔されることなく円滑に流動する。よって、上記熱交換用パイプ7の内部孔8を流体9が流動とする際の圧力損失はより確実に小さく抑制される。   For this reason, when the fluid 9 sequentially flows through the inner hole 8 of the straight pipe 18 and the inner hole 8 of the connecting pipe 20, the fluid 9 largely interferes with the protrusion 36 on the inner surface side of the connecting pipe 20. It flows smoothly without being done. Therefore, the pressure loss when the fluid 9 flows through the internal hole 8 of the heat exchanging pipe 7 is more reliably suppressed to be small.

また、図1,4中、二点鎖線で示すように、上記ジグザグ状の屈曲により生じた連結パイプ20の内面側の突条36の内径D2が上記熱交換用パイプ7の直線状パイプ18の内径D1よりも小さくされる一方、上記連結パイプ20の外面側の突条37の外径D3が上記直線状パイプ18の外径D4よりも大きくされている。   1 and 4, the inner diameter D2 of the protrusion 36 on the inner surface side of the connecting pipe 20 caused by the zigzag bend is formed by the straight pipe 18 of the heat exchange pipe 7 as indicated by a two-dot chain line. While being smaller than the inner diameter D1, the outer diameter D3 of the protrusion 37 on the outer surface side of the connecting pipe 20 is larger than the outer diameter D4 of the linear pipe 18.

ここで、上記構造の連結パイプ20を形成する場合には、前記割り金型32,33により前記中間品パイプの各部分が押圧されながら挟まれて、径方向で、一旦少し熱可塑状態で収縮させられる。そして、次に、吸引ポンプ34による負圧により、上記割り金型32,33の内面に向けて上記中間品パイプの各部分が、順次吸引され、これにより、上記構造の連結パイプ20が形成される。   Here, when the connection pipe 20 having the above structure is formed, each part of the intermediate pipe is sandwiched while being pressed by the split dies 32 and 33, and once contracted in a slightly thermoplastic state in the radial direction. Be made. Then, each part of the intermediate product pipe is sequentially sucked toward the inner surfaces of the split molds 32 and 33 by the negative pressure by the suction pump 34, thereby forming the connection pipe 20 having the above structure. The

そして、上記構造の連結パイプ20によれば、その軸方向各部の平均的な内径(もしくは外径)は、上記直線状パイプ18の内径D1(もしくは直線状パイプ18の外径D4)にほぼ合致するため、上記連結パイプ20の軸方向における各部肉厚を上記直線状パイプ18の肉厚にほぼ等しくさせることができる。よって、上記連結パイプ20には溝29が形成されてはいるが、この連結パイプ20には上記流体9からの圧力に対し所定の強度が確保される。   According to the connecting pipe 20 having the above structure, the average inner diameter (or outer diameter) of each part in the axial direction substantially matches the inner diameter D1 of the linear pipe 18 (or the outer diameter D4 of the linear pipe 18). Therefore, the thickness of each part in the axial direction of the connecting pipe 20 can be made substantially equal to the thickness of the straight pipe 18. Therefore, although the groove 29 is formed in the connection pipe 20, the connection pipe 20 has a predetermined strength against the pressure from the fluid 9.

なお、以上は図示の例によるが、躯体側3は壁や床であってもよい。また、上記支持体5は枠体であってもよい。また、熱交換用パイプ7は支持体5よりも室内側に位置していてもよい。また、上記流体9は冷水であってもよい。また、上記溝29は1条や3条以上であってもよい。   Although the above is based on the illustrated example, the housing side 3 may be a wall or a floor. Further, the support 5 may be a frame. Further, the heat exchange pipe 7 may be located on the indoor side of the support 5. The fluid 9 may be cold water. Further, the groove 29 may be one or three or more.

1 建物
2 空調装置
3 躯体側
5 支持体
7 熱交換用パイプ
8 内部孔
9 流体
10 流体加圧供給装置
18 直線状パイプ
19 軸心
20 連結パイプ
29 溝
36 突条
37 突条
D1 直線状パイプの内径
D2 連結パイプの内面側の突条の内径
D3 連結パイプの外面側の突条の外径
D4 直線状パイプの外径
R 屈曲半径
DESCRIPTION OF SYMBOLS 1 Building 2 Air conditioner 3 Housing side 5 Support body 7 Heat exchange pipe 8 Internal hole 9 Fluid 10 Fluid pressurizing supply device 18 Straight pipe 19 Axis 20 Connection pipe 29 Groove 36 Projection 37 Projection 37 Projection D1 Inner diameter D2 Inner diameter of connecting pipe inner surface D3 Outer diameter of connecting pipe outer surface D4 Outer diameter of straight pipe R Bending radius

Claims (4)

建物の躯体側に支持される支持体の所定部位にそれぞれ取り付け可能とされる複数の直線状パイプと、これら各直線状パイプの各端部同士を一体的に連結すると共に、その軸心が円弧状に屈曲可能とされる複数の連結パイプとを備え、これら各パイプの内部孔を熱交換用の流体が順次流動するようにした樹脂製の熱交換用パイプにおいて、
上記連結パイプの周壁をその軸方向に向かってジグザグ状に屈曲させ、この屈曲により生じたこの連結パイプの内面側の溝が、上記円弧状に屈曲された連結パイプの軸心回りに連続的に延びるスパイラル形状となるようにしたことを特徴とする熱交換用パイプ。
A plurality of linear pipes that can be respectively attached to predetermined parts of a support supported on the building side of the building, and ends of the respective linear pipes are integrally connected to each other, and the axis is circular. In a resin heat exchange pipe comprising a plurality of connecting pipes that can be bent in an arc shape, and a fluid for heat exchange flowing sequentially through the internal holes of each of these pipes,
The peripheral wall of the connection pipe is bent in a zigzag shape in the axial direction, and the groove on the inner surface side of the connection pipe generated by the bending is continuously around the axis of the connection pipe bent in the arc shape. A heat exchange pipe characterized by having a spiral shape extending.
上記溝を互いに平行に延びる複数条にしたことを特徴とする熱交換用パイプ。   A pipe for heat exchange, wherein the groove is formed into a plurality of strips extending in parallel with each other. 上記ジグザグ状の屈曲により生じた連結パイプの内面側の突条の内径を上記熱交換用パイプの直線状パイプの内径にほぼ合致させたことを特徴とする請求項1、もしくは2に記載の熱交換用パイプ。   The heat according to claim 1 or 2, wherein the inner diameter of the protrusion on the inner surface side of the connecting pipe generated by the zigzag bend substantially matches the inner diameter of the straight pipe of the heat exchange pipe. Replacement pipe. 上記ジグザグ状の屈曲により生じた連結パイプの内面側の突条の内径を上記熱交換用パイプの直線状パイプの内径よりも小さくする一方、上記連結パイプの外面側の突条の外径を上記直線状パイプの外径よりも大きくしたことを特徴とする請求項1、もしくは2に記載の熱交換用パイプ。   The inner diameter of the protrusion on the inner surface side of the connecting pipe generated by the zigzag bend is made smaller than the inner diameter of the straight pipe of the heat exchange pipe, while the outer diameter of the protrusion on the outer surface side of the connecting pipe is 3. The heat exchange pipe according to claim 1, wherein the heat exchange pipe is larger than an outer diameter of the straight pipe.
JP2010124625A 2010-05-31 2010-05-31 Pipe for heat exchange Pending JP2011252619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010124625A JP2011252619A (en) 2010-05-31 2010-05-31 Pipe for heat exchange

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010124625A JP2011252619A (en) 2010-05-31 2010-05-31 Pipe for heat exchange

Publications (1)

Publication Number Publication Date
JP2011252619A true JP2011252619A (en) 2011-12-15

Family

ID=45416695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010124625A Pending JP2011252619A (en) 2010-05-31 2010-05-31 Pipe for heat exchange

Country Status (1)

Country Link
JP (1) JP2011252619A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016099075A (en) * 2014-11-25 2016-05-30 株式会社ノーリツ Double pipe heat exchanger and heat pump type heat source machine including the same
CN107920476A (en) * 2015-07-21 2018-04-17 D·克施根斯 Cooling and condensing unit for greenhouse

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02133573U (en) * 1989-03-31 1990-11-06
JPH04158192A (en) * 1990-10-23 1992-06-01 Mitsubishi Shindoh Co Ltd Heat exchanger
JPH04122986U (en) * 1991-04-11 1992-11-05 東洋ラジエーター株式会社 Air conditioning heat exchanger
JPH09101091A (en) * 1995-08-02 1997-04-15 Higashihara Kogyosho:Kk Heat exchanging pipe
JP2008215733A (en) * 2007-03-05 2008-09-18 Kobelco & Materials Copper Tube Inc Fin and tube type heat exchanger
JP2009092095A (en) * 2007-10-04 2009-04-30 Toyox Co Ltd Gas barrier property synthetic resin pipe and heating/cooling panel
JP2009174826A (en) * 2008-01-28 2009-08-06 Toyox Co Ltd Cooling/heating panel for ceiling

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02133573U (en) * 1989-03-31 1990-11-06
JPH04158192A (en) * 1990-10-23 1992-06-01 Mitsubishi Shindoh Co Ltd Heat exchanger
JPH04122986U (en) * 1991-04-11 1992-11-05 東洋ラジエーター株式会社 Air conditioning heat exchanger
JPH09101091A (en) * 1995-08-02 1997-04-15 Higashihara Kogyosho:Kk Heat exchanging pipe
JP2008215733A (en) * 2007-03-05 2008-09-18 Kobelco & Materials Copper Tube Inc Fin and tube type heat exchanger
JP2009092095A (en) * 2007-10-04 2009-04-30 Toyox Co Ltd Gas barrier property synthetic resin pipe and heating/cooling panel
JP2009174826A (en) * 2008-01-28 2009-08-06 Toyox Co Ltd Cooling/heating panel for ceiling

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016099075A (en) * 2014-11-25 2016-05-30 株式会社ノーリツ Double pipe heat exchanger and heat pump type heat source machine including the same
CN107920476A (en) * 2015-07-21 2018-04-17 D·克施根斯 Cooling and condensing unit for greenhouse
US10881053B2 (en) 2015-07-21 2021-01-05 Daniel Kerschgens Cooling and condensation device for a greenhouse

Similar Documents

Publication Publication Date Title
EP2725308B1 (en) Heat exchanger and method for manufacturing such
US20040007278A1 (en) Flexible conduit and method for forming the same
US20140261241A1 (en) Heat exchanger and body therefore, and a method for forming a heat exchanger body
US11703286B2 (en) Fluid coolers, heat exchangers, seal assemblies and systems including fluid coolers or heat exchangers and related methods
US11791698B2 (en) Blow-off ring
CZ2011583A3 (en) Countercurrent cylindrical recuperative heat-exchange apparatus with multiple-threaded helically wound heat transfer surfaces intended particularly for ventilation installations
CN103629952A (en) Tubular heat exchanger, method for manufacturing tubular heat exchanger and heat exchange equipment
CN108475967A (en) With cooling fluid power static pressure close-coupled unit
JP2011252619A (en) Pipe for heat exchange
US20110146952A1 (en) A heat exchanger
JP2009216309A (en) Heat exchanger
US20190086005A1 (en) Fastening system for a pipe passing through a panel of an air handling unit, and air handling unit comprising such a system
US3850230A (en) Heat-exchanger
CN110765645B (en) Design method of built-in coil type compressed air heat exchange system
CN106574768A (en) Heat sink for forced convection cooler
CN103278033B (en) High-effect energy-saving heat-exchanger
JP2005147567A (en) Double pipe type heat exchanger
JP2005147570A (en) Double pipe type heat exchanger
JP2007218461A (en) Double tube type heat exchanger
CN207649173U (en) A kind of microchannel tubing heat exchanger
JP2005077035A (en) Corrosion resisting heat transfer tube
TWM497910U (en) Arc heat dissipation module
CN216692571U (en) Chemical industry is with inside and outside anticorrosive carborundum heat exchanger seal structure
JP2005147566A (en) Double pipe type heat exchanger
JP2005299850A (en) Integrated double-pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140702