JPH04157338A - Method and instrument for measuring refractive index of multilayer plane wave guide path - Google Patents
Method and instrument for measuring refractive index of multilayer plane wave guide pathInfo
- Publication number
- JPH04157338A JPH04157338A JP27923590A JP27923590A JPH04157338A JP H04157338 A JPH04157338 A JP H04157338A JP 27923590 A JP27923590 A JP 27923590A JP 27923590 A JP27923590 A JP 27923590A JP H04157338 A JPH04157338 A JP H04157338A
- Authority
- JP
- Japan
- Prior art keywords
- refractive index
- waveguide
- prism
- light
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 8
- 230000003287 optical effect Effects 0.000 claims description 19
- 238000012545 processing Methods 0.000 claims description 3
- 238000012806 monitoring device Methods 0.000 claims 1
- 238000003825 pressing Methods 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 19
- 238000010586 diagram Methods 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000005253 cladding Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
概要
多層平面導波路の屈折率測定方法及び測定装置に関し、
多層平面導波路の屈折率測定を可能にすることを目的と
し、
測定方法にあっては、最外層の導波路に密着させたプリ
ズムを介して多層平面導波路内に光を導入し、屈折率を
測定すべき各層の導波路端部からそれぞれ出射する光の
強度と上記プリズムへの入射角との関係から上記各層に
対する臨界角をそれぞれ求め、該臨界角から上記各層の
屈折率を算出するようにして構成する。[Detailed Description of the Invention] Summary The present invention relates to a method and apparatus for measuring the refractive index of a multilayer planar waveguide. Light is introduced into the multilayer planar waveguide through a prism that is in close contact with the waveguide, and the refractive index is measured from the relationship between the intensity of the light emitted from the waveguide end of each layer and the angle of incidence on the prism. The configuration is such that the critical angle for each of the layers is determined, and the refractive index of each layer is calculated from the critical angle.
産業上の利用分野
本発明は多層平面導波路の屈折率測定方法及び測定装置
に関する。INDUSTRIAL APPLICATION FIELD The present invention relates to a method and apparatus for measuring the refractive index of a multilayer planar waveguide.
光通信又は光伝送の分野においては、送信機、受信機及
び伝送路以外に、光スィッチ及び光カプラ等の種々の光
デバイスが用いられる。光デバイスの形態の一つとして
、導波路型のものをあげることができる。導波路型光デ
バイスは、例えばシリコンウェハ上に石英ガラスからな
る光導波路を設け、この光導波路内に光ビームを閉じ込
めた状態で制御するように構成されており、構造上小型
化が容易で、ブレーナ技術等を用いて量産することがで
きるという利点の他、電界や磁界を効果的に印加するこ
とができ消費電力を飛躍的に軽減することが可能である
という利点を有している。このような導波路型光デバイ
スを製造するに際して、また研究するに際して、光導波
路の屈折率の正確な測定が要求される。In the field of optical communication or optical transmission, in addition to transmitters, receivers, and transmission lines, various optical devices such as optical switches and optical couplers are used. One type of optical device is a waveguide type. A waveguide type optical device is configured such that an optical waveguide made of quartz glass is provided on a silicon wafer, and a light beam is controlled while being confined within the optical waveguide, and is easy to miniaturize due to its structure. In addition to the advantage that it can be mass-produced using brainer technology or the like, it also has the advantage that electric and magnetic fields can be effectively applied and power consumption can be dramatically reduced. When manufacturing and researching such waveguide type optical devices, accurate measurement of the refractive index of the optical waveguide is required.
従来の技術
従来の平面導波路の屈折率測定方法を第5図により説明
する。第5図(a)に示されるように、シリコンウェハ
等からなる基板2a上に石英ガラス等からなる導波路2
bを形成してなる平面導波路2の膜用折率を測定するに
際しては、まず、導波路2bにプリズム4を密着させて
おき、このプリズム4を介して光を導波路2bに導入し
、導波路2bの端部から出射する光強度を光検知器6に
より検知し得るようにしておく。そして、プリズム4へ
の入射角θを0°から徐々に大きくしていくと、ある入
射角θ。で光検知器6により検知される光強度が零にな
るので、この入射角を臨界角とする。2. Description of the Related Art A conventional method for measuring the refractive index of a planar waveguide will be explained with reference to FIG. As shown in FIG. 5(a), a waveguide 2 made of quartz glass or the like is placed on a substrate 2a made of a silicon wafer or the like.
When measuring the film refractive index of the planar waveguide 2 formed by forming the waveguide 2b, first, a prism 4 is brought into close contact with the waveguide 2b, and light is introduced into the waveguide 2b via the prism 4. The light intensity emitted from the end of the waveguide 2b is made to be detectable by the photodetector 6. Then, when the incident angle θ to the prism 4 is gradually increased from 0°, a certain incident angle θ is reached. Since the light intensity detected by the photodetector 6 becomes zero at this angle, this angle of incidence is defined as the critical angle.
プリズム4の屈折率をnp 、導波路2bの屈折率をn
。(no <np )とすると、導波路の屈折率は臨界
角θ。を用いて次にように表される。The refractive index of the prism 4 is np, and the refractive index of the waveguide 2b is n
. (no < np ), the refractive index of the waveguide is the critical angle θ. It is expressed as follows using .
no = np 5in(αo +π/4)a、 =
5irr’(sin oo/ np )発明が解決しよ
うとする課題
ところで、導波路型光デバイスを作成する場合、一般に
は、シリコンウェハ上にタララドガラスとコアガラスの
2層を一度に堆積してからパターン・エツチングして光
導波路を形成し、その上に最終クラッドガラスを被覆す
るようにしている。このため、ウェハ上に形成された少
なくとも2層の平面導波路の屈折率測定を可能にするこ
とが、高品質な導波路型光部品を提供する上で要求され
る。no = np 5in(αo +π/4)a, =
5irr' (sin oo/np) Problems to be Solved by the Invention By the way, when creating a waveguide type optical device, generally, two layers of Talarado glass and core glass are deposited on a silicon wafer at once, and then patterned and The optical waveguide is etched and a final cladding glass is applied thereon. Therefore, in order to provide high-quality waveguide type optical components, it is required to be able to measure the refractive index of at least two layers of planar waveguides formed on a wafer.
しかしながら、第5図により説明した従来方法による場
合、単層の平面導波路の屈折率を測定し得るのみである
ので、この方法を多層平面導波路に適用した場合には、
最外層の導波路の屈折率しか測定することができず、不
都合が生じる。However, when using the conventional method explained with reference to FIG. 5, it is only possible to measure the refractive index of a single-layer planar waveguide, so when this method is applied to a multilayer planar waveguide,
Only the refractive index of the outermost layer of the waveguide can be measured, which is inconvenient.
本発明はこのような事情に鑑みて創作されたもので、多
層平面導波路の屈折率測定を可能にすることを目的とし
ている。The present invention was created in view of the above circumstances, and an object of the present invention is to enable measurement of the refractive index of a multilayer planar waveguide.
課題を解決するための手段
本発明の多層平面導波路の屈折率測定方法は、最外層の
導波路に密着させたプリズムを介して多層平面導波路内
に光を導入し、屈折率を測定すべき各層の導波路端部か
らそれぞれ出射する光の強度と上記プリズムへの入射角
との関係から上記各層に対する臨界角をそれぞれ求め、
該臨界角から上記各層の屈折率を算出するようにしたも
のである。Means for Solving the Problems The method for measuring the refractive index of a multilayer planar waveguide of the present invention involves introducing light into the multilayer planar waveguide through a prism that is brought into close contact with the outermost layer waveguide, and measuring the refractive index. The critical angle for each layer is determined from the relationship between the intensity of light emitted from the waveguide end of each layer and the angle of incidence on the prism, and
The refractive index of each layer is calculated from the critical angle.
本発明の多層平面導波路の屈折率測定装置は、多層平面
導波路を載置するテーブルと、上記多層平面導波路の最
外層に密着するプリズムと、該プリズムを介して上記多
層平面導波路に光を入射させる光源装置と、上記プリズ
ムへの入射角を測定するための入射角測定器と、屈折率
を測定すべき各層の導波路端部からそれぞれ出射する光
を検出するモニタ装置とを備えて構成される。The refractive index measuring device for a multilayer planar waveguide of the present invention includes a table on which the multilayer planar waveguide is placed, a prism that is in close contact with the outermost layer of the multilayer planar waveguide, and a refractive index measuring device for measuring the refractive index of the multilayer planar waveguide through the prism. It is equipped with a light source device for making light incident, an incident angle measuring device for measuring the angle of incidence on the prism, and a monitor device for detecting the light emitted from the waveguide end of each layer whose refractive index is to be measured. It consists of
作 用 第1図及び第2図は本発明の原理説明図である。For production FIG. 1 and FIG. 2 are diagrams explaining the principle of the present invention.
平面導波路2において、2aはシリコンウェハ等からな
る基板であり、この基板2a上には導波路20.2bが
この順に形成されている。4は最外層の導波路2bに密
着しているプリズムであり、6A、6Bはそれぞれ導波
路2b、2cの端部から出射する光の強度を検出する光
検知器である。In the planar waveguide 2, 2a is a substrate made of a silicon wafer or the like, and waveguides 20.2b are formed in this order on this substrate 2a. A prism 4 is in close contact with the outermost waveguide 2b, and 6A and 6B are photodetectors that detect the intensity of light emitted from the ends of the waveguides 2b and 2c, respectively.
プリズム4への入射角θをα°から徐々に増大させたと
きの光検知器6A、6Bの検出光強度と入射角との関係
を第2図に示す。まず、第1の臨界角θ、で光検知器6
Bの検出光強度が零となり、θ1 よりも大きい第2の
臨界角θ2で光検知器6Aの検出光強度が零になる。導
波路20.2bの屈折率をそれぞれnl + n2
とし、プリズム4の屈折率をn、とすると、nl +
”2 はnp と臨界角を用いて次のように表される
。尚、各屈折率は、n、 <1. <np を満足す
る。FIG. 2 shows the relationship between the intensity of light detected by the photodetectors 6A and 6B and the angle of incidence when the angle of incidence θ on the prism 4 is gradually increased from α°. First, at the first critical angle θ, the photodetector 6
The intensity of the light detected by the photodetector 6A becomes zero at the second critical angle θ2, which is larger than θ1. The refractive index of the waveguide 20.2b is nl + n2, respectively.
and the refractive index of the prism 4 is n, then nl +
2 is expressed as follows using np and the critical angle. Each refractive index satisfies n, <1. <np.
nl =np 5in(α+ +π/4)n、 =n、
5in(cr、十π/4)但しα1.α2は次の式を
満足する。nl =np 5in(α+ +π/4)n, =n,
5in (cr, 1π/4) However, α1. α2 satisfies the following formula.
a、 = 5irr’(sinθ、 /nP)a2=
5irr’(sinθ、/n、)このように本発明方法
によると、屈折率を測定すべき各層の導波路端部からそ
れぞれ出射する光の強度を検出するようにし、各層に対
する臨界角をそれぞれ求めるようにしているので、多層
平面導波路の屈折率測定が可能になる。a, = 5irr'(sinθ, /nP)a2=
5irr' (sin θ, /n,) Thus, according to the method of the present invention, the intensity of light emitted from the waveguide end of each layer whose refractive index is to be measured is detected, and the critical angle for each layer is determined. This makes it possible to measure the refractive index of a multilayer planar waveguide.
実 施 例 以下本発明の詳細な説明する。Example The present invention will be explained in detail below.
第3Eは本発明の第1実施例を示す多層平面導波路の屈
折率測定装置の説明図である。8は多層平面導波路2を
載置するテーブルであり、10はプリズム4を多層平面
導波路2の最外層の導波路2bに密着するための押圧手
段である。12はプリズム4への入射角を測定するため
の入射角測定器であり、この測定器は回転テーブルを備
え、この回転テーブルには光源装置14の光出力部14
aが固定されている。光出力部14aからはコリメート
された例えばHe−Neレーザ光が出射され、この光の
プリズム4への入射角は回転テーブルを用いた角度測定
によって測定される。3E is an explanatory diagram of a refractive index measuring device for a multilayer planar waveguide showing the first embodiment of the present invention. 8 is a table on which the multilayer planar waveguide 2 is placed, and 10 is a pressing means for bringing the prism 4 into close contact with the outermost layer waveguide 2b of the multilayer planar waveguide 2. Reference numeral 12 denotes an incident angle measuring device for measuring the incident angle to the prism 4, and this measuring device is equipped with a rotary table, and the light output section 14 of the light source device 14 is mounted on the rotary table.
a is fixed. For example, collimated He--Ne laser light is emitted from the light output section 14a, and the angle of incidence of this light on the prism 4 is measured by angle measurement using a rotary table.
多層平面導波路2の各層の導波路端部からそれぞれ出射
する光を検出するモニタ装置は、この実施例では、光入
力部16.17が各層の導波路端部にそれぞれ対向して
設けられた光パワーメータ18.20を備えている。光
パワーメータ18゜20は各導波路2b、2cの端部か
ら出射する光の強度を検出し、これにより、第2図に示
したような光強度と入射角の関係を知ることができ、臨
界角測定が可能になる。In this embodiment, the monitor device that detects the light emitted from the waveguide ends of each layer of the multilayer planar waveguide 2 is provided with optical input sections 16 and 17 facing the waveguide ends of each layer. It is equipped with an optical power meter 18.20. The optical power meter 18° 20 detects the intensity of the light emitted from the end of each waveguide 2b, 2c, and thereby the relationship between the light intensity and the incident angle as shown in FIG. 2 can be determined. Critical angle measurement becomes possible.
第4図は本発明の第2実施例を示す多層平面導波路の屈
折率測定装置の説明図である。この実施例が前実施例と
異なる点は、モニタ装置の構成が異なるところにある。FIG. 4 is an explanatory diagram of a refractive index measuring device for a multilayer planar waveguide showing a second embodiment of the present invention. This embodiment differs from the previous embodiment in that the configuration of the monitor device is different.
即ち、本実施例では、モニタ装置は、多層平面導波12
の端部に対向して設けられたテレビカメラ22と、この
テレビカメラ22からの画像情報に基づき各層の導波路
端部から光が出射しているか否かを検知する画像処理装
置26とを含んで構成されている。24はテレビカメラ
のモニタ装置である。この実施例によると、プリズムへ
の入射角を0°から徐々に増大させていくときに、目視
或いは画像処理により各層からの出射光の有無を検出す
ることができるので、これにより各層についての臨界角
を求めることができ、屈折率測定が可能にな゛る。That is, in this embodiment, the monitor device includes a multilayer planar waveguide 12.
, and an image processing device 26 that detects whether light is emitted from the waveguide end of each layer based on image information from the television camera 22. It consists of 24 is a monitor device for a television camera. According to this embodiment, when the incident angle to the prism is gradually increased from 0°, it is possible to detect the presence or absence of light emitted from each layer by visual inspection or image processing. The angle can be determined, making it possible to measure the refractive index.
例えば、np=2+ θ、=3.607°、θ。For example, np=2+ θ,=3.607°, θ.
=4.027°である場合、クラッドに相当する導波路
2C及びコアに相当する導波路2bの屈折率はそれぞれ
1.45’8及び1.463となる。=4.027°, the refractive indices of the waveguide 2C corresponding to the cladding and the waveguide 2b corresponding to the core are 1.45'8 and 1.463, respectively.
発明の詳細
な説明したように、本発明によると、多層平面導波路の
屈折率測定が可能になるという効果を奏する。DETAILED DESCRIPTION OF THE INVENTION As described in detail, the present invention has the effect of making it possible to measure the refractive index of a multilayer planar waveguide.
第1図及び第2図は本発明の原理説明図、第3図は本発
明の第1実施例を示す多層平面導波路の屈折率測定装置
の説明図、
第4図は本発明の第2実施例を示す多層平面導波路の屈
折率測定装置の説明図、
第5図は従来技術の説明図である。
2・・・多層平面導波路、
4・・・プリズム。1 and 2 are explanatory diagrams of the principle of the present invention, FIG. 3 is an explanatory diagram of a refractive index measuring device for a multilayer planar waveguide showing the first embodiment of the present invention, and FIG. 4 is a diagram illustrating the second embodiment of the present invention. FIG. 5 is an explanatory diagram of a refractive index measuring device for a multilayer planar waveguide showing an embodiment. FIG. 5 is an explanatory diagram of a conventional technique. 2... Multilayer planar waveguide, 4... Prism.
Claims (1)
の導波路に密着させたプリズム(4)を介して多層平面
導波路内に光を導入し、 屈折率を測定すべき各層の導波路端部からそれぞれ出射
する光の強度と上記プリズム(4)への入射角との関係
から上記各層に対する臨界角をそれぞれ求め、該臨界角
から上記各層の屈折率を算出することを特徴とする多層
平面導波路の屈折率測定方法。 2、多層平面導波路(2)を載置するテーブル(8)と
、 上記多層平面導波路(2)の最外層に密着するプリズム
(4)と、 該プリズム(4)を介して上記多層平面導波路(2)に
光を入射させる光源装置(14)と、 上記プリズム(4)への入射角を測定するための入射角
測定器(12)と、 屈折率を測定すべき各層の導波路端部からそれぞれ出射
する光を検出するモニタ装置とを備えたことを特徴とす
る多層平面導波路の屈折率測定装置。 3、上記モニタ装置は、光入力部が屈折率を測定すべき
各層の導波路端部にそれぞれ対向して設けられた光パワ
ーメータ(18、20)を含んでいることを特徴とする
請求項2に記載の多層平面導波路の屈折率測定装置。 4、上記モニタ装置は、上記多層平面導波路の端部に対
向して設けられたテレビカメラ(22)と、該テレビカ
メラ(22)からの画像情報に基づき各層の導波路端部
から光が出射しているか否かを検知する画像処理装置(
26)とを含んでいることを特徴とする請求項2に記載
の多層平面導波路の屈折率測定装置。[Claims] 1. A method for measuring the refractive index of a multilayer planar waveguide, which involves introducing light into the multilayer planar waveguide through a prism (4) that is brought into close contact with the outermost layer of the waveguide, and measuring the refractive index. Determine the critical angle for each layer from the relationship between the intensity of the light emitted from the waveguide end of each layer to be measured and the angle of incidence on the prism (4), and calculate the refractive index of each layer from the critical angle. A method for measuring the refractive index of a multilayer planar waveguide, characterized by calculating the refractive index. 2. A table (8) on which the multilayer planar waveguide (2) is placed; a prism (4) that is in close contact with the outermost layer of the multilayer planar waveguide (2); A light source device (14) that makes light enter the waveguide (2), an incident angle measuring device (12) that measures the angle of incidence on the prism (4), and a waveguide of each layer whose refractive index is to be measured. 1. A refractive index measuring device for a multilayer planar waveguide, comprising a monitor device that detects light emitted from each end. 3. The above-mentioned monitoring device is characterized in that the optical input section includes an optical power meter (18, 20) provided facing each waveguide end of each layer whose refractive index is to be measured. 2. The refractive index measuring device for a multilayer planar waveguide according to 2. 4. The monitor device includes a television camera (22) provided opposite to the end of the multilayer planar waveguide, and monitors light from the waveguide end of each layer based on image information from the television camera (22). An image processing device (
26). The refractive index measuring device for a multilayer planar waveguide according to claim 2, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27923590A JPH04157338A (en) | 1990-10-19 | 1990-10-19 | Method and instrument for measuring refractive index of multilayer plane wave guide path |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27923590A JPH04157338A (en) | 1990-10-19 | 1990-10-19 | Method and instrument for measuring refractive index of multilayer plane wave guide path |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04157338A true JPH04157338A (en) | 1992-05-29 |
Family
ID=17608322
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27923590A Pending JPH04157338A (en) | 1990-10-19 | 1990-10-19 | Method and instrument for measuring refractive index of multilayer plane wave guide path |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04157338A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105067223A (en) * | 2015-07-22 | 2015-11-18 | 清华大学深圳研究生院 | Optical waveguide chip coupling testing clamp |
-
1990
- 1990-10-19 JP JP27923590A patent/JPH04157338A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105067223A (en) * | 2015-07-22 | 2015-11-18 | 清华大学深圳研究生院 | Optical waveguide chip coupling testing clamp |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2804073B2 (en) | Apparatus and method for measuring the refractive index of a substance | |
CN105092535B (en) | Distributed surface plasma resonance optical fiber sensor | |
JPH0353566B2 (en) | ||
US4818071A (en) | Fiber optic doppler anemometer | |
Schubert et al. | Refractive-index measurements using an integrated Mach-Zehnder interferometer | |
TW201802441A (en) | Temperature measurement substrate and temperature measurement system | |
US5585735A (en) | E-O probe with FOP and voltage detecting apparatus using the E-O probe | |
JP7117869B2 (en) | Analysis equipment | |
CN102590577B (en) | Full-optical fiber heterodyning current sensor | |
KR20170139825A (en) | Optical interferometer structure and manufacturing method of the same and optical sensors incorporating multimode interference waveguide devices using of the same and signal processing method for the same | |
JPH04157338A (en) | Method and instrument for measuring refractive index of multilayer plane wave guide path | |
JPS61221629A (en) | Pressure sensitive element | |
JPS63132139A (en) | Liquid refractive index meter | |
JPH02181707A (en) | Optical fiber for detecting liquid, gas or the like | |
JPS6066137A (en) | Liquid refractive index sensor head | |
JPS5919829A (en) | Optical pressure sensor | |
US20240264285A1 (en) | F-p sensor probe, absolute distance measurement device, and absolute distance measurement method | |
Ye et al. | Hole-assisted three-core fiber directional coupler operated in reflection mode for vector bending measurement | |
JPH0694936A (en) | Aligning device for optical waveguide device | |
Ura et al. | A configuration for guided-wave excitation into a disposable integrated-optic head | |
JPS5831860B2 (en) | Optical fiber cutoff wavelength measuring device | |
JP3036610B2 (en) | Polarization direction switch | |
JPS6252437A (en) | Method and apparatus for measuring refractive index of reflective type anisotropic medium | |
JPS5811566B2 (en) | Optical path diameter measuring device | |
JPS59166830A (en) | Optical pressure sensor |