JPS6252437A - Method and apparatus for measuring refractive index of reflective type anisotropic medium - Google Patents

Method and apparatus for measuring refractive index of reflective type anisotropic medium

Info

Publication number
JPS6252437A
JPS6252437A JP19338585A JP19338585A JPS6252437A JP S6252437 A JPS6252437 A JP S6252437A JP 19338585 A JP19338585 A JP 19338585A JP 19338585 A JP19338585 A JP 19338585A JP S6252437 A JPS6252437 A JP S6252437A
Authority
JP
Japan
Prior art keywords
light
medium
refractive index
light source
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19338585A
Other languages
Japanese (ja)
Other versions
JPH0663970B2 (en
Inventor
Yasuyuki Kato
康之 加藤
Mitsuru Miyauchi
宮内 充
Akihiko Ishikura
石倉 昭彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP19338585A priority Critical patent/JPH0663970B2/en
Publication of JPS6252437A publication Critical patent/JPS6252437A/en
Publication of JPH0663970B2 publication Critical patent/JPH0663970B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To make it possible to measure the refractive index distribution on the surface of an anisotropic medium, by irradiating a medium to be measured with linear polarized light and measured the intensity of reflected light on the basis of the refractive index in a polarizing axis direction. CONSTITUTION:The linear polarized light 2 from a light source 1 is guided to a directional photocoupling element 3 but, because the main axes X, Y of the directional photocoupling element 3 coincide with the polarizing axis of the light source 1, said light passes in a low loss state. The linear polarizing light 2 irradiates a medium 7 to be measured while the polarizing axis thereof is rotated by 45 deg. by a Faraday rotary element 14. The reflected light 12 passes through the Faraday rotation element 14 while the polarizing axis thereof is rotated by 45 deg. and, therefore, said polarizing axis becomes vertical to that of the light source 1. When the directional photocoupling element 3 advances to the direction opposite to that of the polarized light 2, the polarized component in the X-axis direction is changed in its light path with good efficiency and measured by an optical detector 10.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は媒質に光を当て、反射光の強度を測定して媒質
の屈折率を測定する方法およびその装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method and apparatus for measuring the refractive index of a medium by shining light onto a medium and measuring the intensity of reflected light.

「従来の技術」 第4図は従来の反射形層折率測定装置の原理を示したも
のである。lは直線偏光を出力する光源であり、該光源
lからの光2はまず方向性光結合素子3に導びかれる。
"Prior Art" FIG. 4 shows the principle of a conventional reflective layer refractive index measuring device. 1 is a light source that outputs linearly polarized light, and light 2 from the light source 1 is first guided to a directional optical coupling element 3.

方向性光結合素子3の主軸は光源lの崗光細く一致する
よう固定されているため、光源からの光2は低損失で通
過する。その後、ン4波長板4を通過し、レンズ6で被
測定媒質7に照射される。ここで、し、波長板の主軸は
光源の偏光軸に対して45度傾いているために、ン 波
長板4を通過した光5は円偏光となる0この様子?第5
図にベクトルで示す。第5図のベクトル番号は、第4図
の光の各々の番号に対応する。
Since the main axis of the directional optical coupling element 3 is fixed so as to narrowly coincide with the light beam of the light source 1, the light 2 from the light source passes through with low loss. Thereafter, the light passes through a four-wavelength plate 4 and is irradiated onto a medium 7 to be measured through a lens 6. Here, since the principal axis of the wave plate is inclined at 45 degrees with respect to the polarization axis of the light source, the light 5 passing through the wave plate 4 becomes circularly polarized. Fifth
It is shown as a vector in the figure. The vector numbers in FIG. 5 correspond to the respective numbers of the lights in FIG.

まだ光源から媒質に向かう元は実線で1反射光は破線で
示千〇第5図において、X、Y軸は、方向性結合素子3
の主軸であり、x、y&!/4  波長板4の主軸であ
る。従って、媒質7で反射して来る光8も第5図に示す
工うな円偏光となる。そして。
The original light going from the light source to the medium is shown by a solid line, and the reflected light is shown by a broken line.
It is the main axis of x, y &! /4 This is the main axis of the wave plate 4. Therefore, the light 8 reflected by the medium 7 also becomes circularly polarized light as shown in FIG. and.

再び名 波長板4馨通過する時1反射光8はX軸に平行
な直#JI偏光9に変わる。反射光に対して垂@な直線
偏光となった反射光9は方向性光結合素子3で分離され
、光検出器10で測定される。
Once again, when passing through the wavelength plate 4, the reflected light 8 changes into directly #JI polarized light 9 parallel to the X axis. The reflected light 9, which has become linearly polarized light perpendicular to the reflected light, is separated by the directional optical coupling element 3 and measured by the photodetector 10.

[発明が解決しようとする問題点」 以上の説明でも明らυ・な工5に、従来方法では、被測
定媒質7に対し1円偏光で照射し、測定していたために
、照射光の偏光方向に対して屈折率が異なる工つな、異
方性媒質の綿密な測定ができなかった。従って異方性媒
質の屈折率測定は主として、透過形の測定が行なわれ、
測定試料乞透過に適した状態に加工しなければならない
欠点を有していた。
[Problems to be Solved by the Invention] As is clear from the above explanation, in the conventional method, the medium to be measured 7 was irradiated with circularly polarized light and measured, so the polarization of the irradiated light was It was not possible to make detailed measurements of anisotropic media, which have different refractive indices in different directions. Therefore, refractive index measurements of anisotropic media are mainly performed in transmission mode.
It had the disadvantage that it had to be processed into a state suitable for passing through the measurement sample.

不発明は異方性媒質の屈折率を反射法によって測定する
2めに1元の照射状態?工び反射光検出のための偏光軸
制御の問題?解決しにもので、七の目的は被測定媒質中
に応力が不均一に加わったもの、または光透過方式用に
加工できない媒質、あるいは加工すると屈折率が変化す
る媒質等の測定に実施して好適な方法χ工びその装置?
提供することにある。
Is the non-invention a one-dimensional irradiation state in which the refractive index of an anisotropic medium is measured by a reflection method? Problem with polarization axis control for detecting reflected light? The purpose of item 7 is to measure a medium to be measured in which stress is applied non-uniformly, a medium that cannot be processed for a light transmission method, or a medium whose refractive index changes when processed. Preferred method and equipment?
It is about providing.

「問題点を解決するための手段」 本発明の方法は、ti[l/iA偏光を被測定媒質に照
射し、偏光軸方向の屈折率に応じた反射光の強度から異
方性媒質表面の屈折率分布ン測定するものであり、また
反射光の検出においては反射光が方向性光結合素子に到
達する前に、偏光軸を照射光の軸に対して垂直になるよ
うに回転し、効率良(5反射強度乞測定することt特徴
としてKす0円偏光’kM測定媒質に照射し、全て7等
方性媒質とみなして屈折′41を測定する従来技術とは
基本的に異なるものである。
"Means for Solving the Problems" The method of the present invention irradiates the medium to be measured with ti[l/iA polarized light, and determines the surface of the anisotropic medium from the intensity of the reflected light according to the refractive index in the direction of the polarization axis. It measures the refractive index distribution, and in detecting reflected light, the polarization axis is rotated perpendicular to the axis of the irradiated light before the reflected light reaches the directional optical coupler, increasing the efficiency. This method is fundamentally different from the conventional technique in which the measurement medium is irradiated with circularly polarized light and the refraction is measured assuming that the medium is all 7 isotropic. be.

不発明の装置は、A線偏光を出力可能な光源と。The uninvented device is a light source capable of outputting A-line polarized light.

方向性光結合素子と、ファラデー回転素子と、光学レン
ズと、光検出器とを各々光路上に配置したものである。
A directional optical coupling element, a Faraday rotation element, an optical lens, and a photodetector are each arranged on the optical path.

「実厖例」 第1図は不発明の一実施例xaaAする図であって、1
は直線偏光を出力する光源、2は1ILaui光の照射
光、3は方向性光結合素子、6は渠元(反射光に対して
は平行]用レンズ、7は被測定媒質、14はファラデー
ig1転素子、11はファラデー回転素子14を通過し
た照射光、12は被測定媒質からの反射光、13はファ
ラデー回転ぶ子14乞通過した反射光である。嘉2図は
第1・図における伝搬光の偏光方向ンベクトルで表わし
7こものであり1図中のベクトル番号は各々の伝搬光の
蕾号に対応する。
"Actual Example" Figure 1 is a diagram showing an example of non-invention, 1
is a light source that outputs linearly polarized light, 2 is the irradiation light of 1 IL light, 3 is the directional optical coupling element, 6 is the lens for the conduit (parallel to the reflected light), 7 is the medium to be measured, 14 is the Faraday ig1 11 is the irradiated light that has passed through the Faraday rotary element 14, 12 is the reflected light from the medium to be measured, and 13 is the reflected light that has passed through the Faraday rotary element 14. Figure 2 shows the propagation in Figure 1. The polarization direction of light is represented by seven vectors, and the vector number in one figure corresponds to the bud number of each propagating light.

第1図と42図において、光源1から発した直線偏光2
は方向性光結合素子3に導びυ・れるが。
In Figures 1 and 42, linearly polarized light 2 emitted from light source 1
is guided to the directional optical coupling element 3.

方向性光結合素子3の主軸X、、Yは図に示す工うに、
光源の偏光軸と一致しているため、低損失で方向性光結
合素子3を通過する。矢に、照射光となる!!偏光2が
ファラデー回転素子142通過てろとぎ、第2図に示す
工うに45度だけ偏光軸が回転させられる。従って、被
測定媒質7はY軸に対して、常に45に方向の直線偏光
で照射されろことになり、この方向の屈折率に厄じた1
反射率で反射光12が戻って来ることになる。そして反
射光12はファラデーl!21転素子14’!′通過す
る際に、45度だけその偏光軸が回転するため、第2図
に示す工うに、f[の偏光軸と垂直な偏光軸となる。そ
して、方向性光結合素子3馨照射元と逆向きに進行する
とき、X軸方向の偏光成分は効率良く光路?変えられて
光検出器10で測定されろ。以上の説明からも明らかな
ように1本発明では、ある一定方向の屈折率を測定9耗
であり、媒質を加工することなく異方性媒質の表面状態
(例えば応力分布ンン測定することができる特*’t”
Piする。なお1例として、第3図に応力付与sヶMす
る偏波保持光ファイバの断Ifiを示した。ファイバ1
5の内部には応力付与ff1116.コア17.りラン
ド18があり、熱膨張率の違いによって破線の主応力線
19で示す工うな応力が生じている。
The main axes X, Y of the directional optical coupling device 3 are as shown in the figure.
Since the light coincides with the polarization axis of the light source, it passes through the directional optical coupling element 3 with low loss. It becomes an irradiation light for an arrow! ! Polarized light 2 passes through Faraday rotation element 142, and the polarization axis is rotated by 45 degrees as shown in FIG. Therefore, the medium to be measured 7 must always be irradiated with linearly polarized light in the direction 45 with respect to the Y axis, and the refractive index in this direction is 1.
The reflected light 12 will return due to the reflectance. And the reflected light 12 is Faraday! 21-turn element 14'! Since the polarization axis rotates by 45 degrees when passing through ', the polarization axis becomes perpendicular to the polarization axis of f[, as shown in FIG. When the directional optical coupling element 3 travels in the opposite direction to the irradiation source, the polarized light component in the X-axis direction efficiently passes through the optical path. be changed and measured with a photodetector 10. As is clear from the above description, in the present invention, it is possible to measure the refractive index in a certain direction, and it is possible to measure the surface condition (for example, stress distribution) of an anisotropic medium without processing the medium. Special *’t”
Pi. As an example, FIG. 3 shows the breakage Ifi of a polarization-maintaining optical fiber that is subjected to stress application of S times M. fiber 1
Stress is applied to the inside of ff1116. Core 17. There is a land 18, and due to the difference in coefficient of thermal expansion, a stress shown by a broken principal stress line 19 is generated.

この応力によって生じる複屈折率の分布状態を従来の反
射方法で測定することはできない。しかし。
The birefringence distribution state caused by this stress cannot be measured using conventional reflection methods. but.

不発明方法を適用するならばX軸側波方向とy軸側波方
向の屈折率を明確に分離して測定することか可能である
止めに、第3図に示す光ファイバの屈折率の分布状態を
測定することができるのである。
If the uninvented method is applied, it is possible to clearly separate and measure the refractive index in the X-axis sidewave direction and the y-axis sidewave direction.In addition, the refractive index distribution of the optical fiber shown in FIG. The state can be measured.

「発明の幼果」 以上説明したように、不発明の方云お工び装置によれば
被測定媒質の一定の偏波方向の屈折双分布ヶ測定するこ
とかできるため、1[交する2軸について屈折重分i 
’k 111I定することにより、その媒質の表面の応
力分布を測定することかoJ罷である。
"The Young Fruit of the Invention" As explained above, the uninvented method and device can measure the refraction double distribution in a certain polarization direction of the medium to be measured. refraction weight i about the axis
By determining 'k111I, it is possible to measure the stress distribution on the surface of the medium.

特に、照射光?レンズ等で集光して測定0T罷なため、
数μm程度のきわめて微細な領域の異方性屈折率及び応
力状態を測定することができる。
Especially the irradiation light? Because the light is focused with a lens etc. and the measurement is 0T,
It is possible to measure the anisotropic refractive index and stress state in extremely minute regions of the order of several μm.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成図、第2図は本発明に
おける照射光及び反射光の偏光状態を示す説明図、@3
図は応力付与形偏波保持ファイバの断面口、第4図は従
来の測定装置の原理図、第5図は従来装置における照射
光及び反射光の偏光状態を示す説明図である。 1・・・光源、2・・・[ls偏光の照射光、3・・・
方向性光結合素子、6・・・集光用レンズ、7・・・被
測定媒質。 8・・・反射光、10・・・光検出器、11・・・ファ
ラデー回転素子2適過した照射光、12・・・反射光、
13・・・ファラデー回転素子を通過した反射光。 14・・・ファラデー回転素子。 出願人  日本電@電話株式会社 第1図 ÷ [)10 第2図      I:禿頭 Y3:力向゛1ユ光結会素子
Figure 1 is a configuration diagram of an embodiment of the present invention, Figure 2 is an explanatory diagram showing the polarization states of irradiated light and reflected light in the present invention, @3
4 is a principle diagram of a conventional measuring device, and FIG. 5 is an explanatory diagram showing the polarization states of irradiated light and reflected light in the conventional device. 1... Light source, 2... [ls polarized irradiation light, 3...
Directional optical coupling element, 6... condensing lens, 7... medium to be measured. 8... Reflected light, 10... Photodetector, 11... Faraday rotation element 2 appropriate irradiation light, 12... Reflected light,
13...Reflected light that passed through the Faraday rotation element. 14...Faraday rotation element. Applicant Nippon Electric @ Telephone Co., Ltd. Figure 1 ÷ [ ) 10 Figure 2 I: Bald head Y3: Force direction 1 unit light coupling element

Claims (2)

【特許請求の範囲】[Claims] (1)媒質に光を当て、反射光の強度を測定して媒質の
屈折率を測定する方法において、光源からの直線偏光を
方向性光結合素子を通過させ、その後、ファラデー回転
素子を通過させることによつて光源の偏光軸に対して4
5度回転させ、直線偏光の状態で光学レンズを介して媒
質に当て、該媒質からの反射光を再びファラデー回転素
子に導びき、通過させることによつて反射光の偏光軸を
45度回転させ、続いて方向性光結合素子に導びき、該
結合素子によつて、前記光源の偏光軸と直角な偏光成分
を分離し、検出することを特徴とする反射形異方性媒質
の屈折率測定方法。
(1) In a method of measuring the refractive index of a medium by shining light onto a medium and measuring the intensity of reflected light, linearly polarized light from a light source is passed through a directional optical coupling element, and then passed through a Faraday rotation element. 4 with respect to the polarization axis of the light source
Rotate the light by 5 degrees, apply it to a medium through an optical lens in a linearly polarized state, and guide the reflected light from the medium again to the Faraday rotator and pass it through, thereby rotating the polarization axis of the reflected light by 45 degrees. , followed by a directional optical coupling element, and the coupling element separates and detects a polarized light component perpendicular to the polarization axis of the light source. Method.
(2)直線偏光を出力可能な光源と、方向性光結合素子
と、通過する直線偏光の偏光軸を45度回転させるファ
ラデー回転素子と、光学レンズと、光検出器とをそれぞ
れ光源が出力した光の光路上に配置した構成を特徴とす
る反射形異方性媒質の屈折率測定装置。
(2) The light source outputs a light source capable of outputting linearly polarized light, a directional optical coupling element, a Faraday rotation element that rotates the polarization axis of the linearly polarized light passing through it by 45 degrees, an optical lens, and a photodetector. A refractive index measuring device for a reflective anisotropic medium characterized by a configuration in which it is placed on the optical path of light.
JP19338585A 1985-09-02 1985-09-02 Method and apparatus for measuring refractive index of reflective anisotropic medium Expired - Fee Related JPH0663970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19338585A JPH0663970B2 (en) 1985-09-02 1985-09-02 Method and apparatus for measuring refractive index of reflective anisotropic medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19338585A JPH0663970B2 (en) 1985-09-02 1985-09-02 Method and apparatus for measuring refractive index of reflective anisotropic medium

Publications (2)

Publication Number Publication Date
JPS6252437A true JPS6252437A (en) 1987-03-07
JPH0663970B2 JPH0663970B2 (en) 1994-08-22

Family

ID=16307050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19338585A Expired - Fee Related JPH0663970B2 (en) 1985-09-02 1985-09-02 Method and apparatus for measuring refractive index of reflective anisotropic medium

Country Status (1)

Country Link
JP (1) JPH0663970B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0267591U (en) * 1988-11-09 1990-05-22
JP2008122082A (en) * 2006-11-08 2008-05-29 Optoquest Co Ltd Reflection type double-refractive index measuring instrument

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0267591U (en) * 1988-11-09 1990-05-22
JP2008122082A (en) * 2006-11-08 2008-05-29 Optoquest Co Ltd Reflection type double-refractive index measuring instrument

Also Published As

Publication number Publication date
JPH0663970B2 (en) 1994-08-22

Similar Documents

Publication Publication Date Title
JP2804073B2 (en) Apparatus and method for measuring the refractive index of a substance
US4818071A (en) Fiber optic doppler anemometer
KR100958185B1 (en) Apparatus for measuring residual stress of optical fiber
JP4031643B2 (en) Method and apparatus for measuring cell gap of VA liquid crystal panel
US5157324A (en) Improved electro-optical crystal
JP2004226404A (en) Device for measuring residual stress of optical fiber
JPS63307329A (en) Measurement of deviation and double refraction with single mode optical fiber
JPS6252437A (en) Method and apparatus for measuring refractive index of reflective type anisotropic medium
KR100442668B1 (en) Apparatus for residual stress measuring of optical fiber
JPH0815563A (en) Alignment method in coupling part of optical fiber having non-axisymmetrical refractive index distribution and optical waveguide, optical fiber fixing structure and coupling part
Hand et al. Extrinsic Michelson interferometric fibre optic sensor with bend insensitive downlead
JPH0369059B2 (en)
JP4455126B2 (en) Optical sensor and optical sensor assembly method
JP2523830B2 (en) Method and apparatus for determining crystal orientation
JPH06242000A (en) Device for evaluating nonlinear optical material
JP2009180635A (en) Optical composite part and optical measurement device
JP2010526394A (en) Method and apparatus for reading high density optical information
US5172184A (en) Electromagnetic disturbance free ring interferometer
JP3000030B2 (en) Measuring method of reflection amount of optical fiber component and apparatus therefor
JPS59114432A (en) Method of measuring cutoff wavelength of primary and higher mode of optical fiber
Domanskii et al. Fiber-optic surface roughness sensor based on polarization measurements
JPH0843254A (en) Equivalent refractive index of light transmitting medium and instrument and method for measuring refractive index
JPH10232109A (en) Optical displacement sensor
JPS5862571A (en) Photometric apparatus
Homola et al. Advances in development of miniature fiber optic surface plasmon resonance sensors

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees