JPH04154913A - Production of high tensile strength bent pipe excellent in corrosion resistance - Google Patents
Production of high tensile strength bent pipe excellent in corrosion resistanceInfo
- Publication number
- JPH04154913A JPH04154913A JP27714690A JP27714690A JPH04154913A JP H04154913 A JPH04154913 A JP H04154913A JP 27714690 A JP27714690 A JP 27714690A JP 27714690 A JP27714690 A JP 27714690A JP H04154913 A JPH04154913 A JP H04154913A
- Authority
- JP
- Japan
- Prior art keywords
- less
- pipe
- steel
- content
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005260 corrosion Methods 0.000 title claims abstract description 23
- 230000007797 corrosion Effects 0.000 title claims abstract description 23
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 21
- 239000010959 steel Substances 0.000 claims abstract description 21
- 238000005496 tempering Methods 0.000 claims abstract description 11
- 238000005452 bending Methods 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims abstract description 10
- 239000012535 impurity Substances 0.000 claims abstract description 8
- 238000010791 quenching Methods 0.000 claims abstract description 8
- 230000000171 quenching effect Effects 0.000 claims abstract description 8
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 7
- 229910052802 copper Inorganic materials 0.000 claims abstract description 5
- 229910052796 boron Inorganic materials 0.000 claims abstract description 4
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 4
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 4
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 3
- 229910052799 carbon Inorganic materials 0.000 claims abstract 2
- 238000005336 cracking Methods 0.000 abstract description 34
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 22
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 22
- 239000001257 hydrogen Substances 0.000 abstract description 22
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 abstract description 13
- 239000000203 mixture Substances 0.000 abstract description 8
- 229910052720 vanadium Inorganic materials 0.000 abstract description 2
- 229910052758 niobium Inorganic materials 0.000 abstract 2
- 230000000694 effects Effects 0.000 description 23
- 238000010438 heat treatment Methods 0.000 description 9
- 239000010949 copper Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 230000001771 impaired effect Effects 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 229910000734 martensite Inorganic materials 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、水素誘起割れや硫化物応力腐食割れの生じ
にくい耐食性に優れた高張力ベンド管の製造方法に関す
る。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing a high-tensile bent pipe that is resistant to hydrogen-induced cracking and sulfide stress corrosion cracking and has excellent corrosion resistance.
(従来の技術)
天然ガスや石油の輸送手段としてパイプラインが用いら
れているが、近年、輸送効率の向上を図るために、パイ
プライン用輸送管は厚肉高張力化の傾向にある。このた
め、直管だけでなくベンド管においても厚肉高張力化が
求められている。また、近年、生産される石油や天然ガ
ス中には硫化水素を多量に含む場合が多く、直管および
ベンド管ともに硫化水素に起因する水素誘起割れ(Tl
lC)や硫化物応力腐食削れ(SSCC)の生し難い材
料が求められている。そして、これらの要求は海底パイ
プラインのプラットフA−ム回りに使用されるベンド管
において最もl1iJi シい。(Prior Art) Pipelines are used as a means of transporting natural gas and oil, but in recent years, in order to improve transport efficiency, there has been a trend toward thicker walls and higher tensile strength of pipeline transport pipes. For this reason, not only straight pipes but also bent pipes are required to have thick walls and high tension. In addition, in recent years, oil and natural gas produced often contain large amounts of hydrogen sulfide, and both straight and bent pipes are exposed to hydrogen-induced cracking (Tl) caused by hydrogen sulfide.
There is a need for materials that are resistant to SCC) and sulfide stress corrosion chipping (SSCC). These requirements are most severe for bent pipes used around platform A of submarine pipelines.
従来、ベンド管は、素Hの真っ直くな鋼管を連続的に押
し進めながら高周波加熱コイル内をillLて加熱しな
がら曲げる方法で製造しており、焼準材が主流を占めて
いたが、焼準材は強度が低いので厚肉高張力化には適し
ていない。このため、厚肉高張力化には曲げ加工後に焼
入れ或いは焼入れと焼戻しを施すことで対処している。Conventionally, bent pipes have been manufactured by continuously pushing a bare straight steel pipe and bending it while heating it inside a high-frequency heating coil. Semi-materials have low strength, so they are not suitable for thick walls and high tensile strength. For this reason, increasing the thickness and tension is dealt with by quenching or quenching and tempering after bending.
しかし、焼入れ一焼戻し材は、比較的強度は高いものの
プラットフォーム回りに使用されるベンド管において求
められているような高強度を満たすまでに至っておらず
、一方、焼入れまま材は耐水素誘起割れ性が不十分であ
る。However, although the quenched and tempered material has relatively high strength, it does not meet the high strength required for bent pipes used around the platform.On the other hand, the as-quenched material has poor hydrogen-induced cracking resistance. is insufficient.
(発明が解決しようとする課題)
この発明の課題は、前記の問題を解消することにあり、
プラットフォーム回りに使用されるベンド管において求
められているような岐しい要求にも充分応えることがで
きる耐水素誘起割れ性、耐硫化物応力腐食割れ性に優れ
た強度の高いベンド管を製造する方法を提供することに
ある。(Problem to be solved by the invention) The problem to be solved by the invention is to solve the above-mentioned problem.
A method for manufacturing bent pipes with high strength and excellent resistance to hydrogen-induced cracking and sulfide stress corrosion cracking, which can fully meet the diverse requirements of bent pipes used around platforms. Our goal is to provide the following.
具体的には、本発明の製造方法が目標とするベンド管の
機械的性質はAPI規格の5L−X65〜X70級であ
り、耐水素誘起割れ性、耐硫化物応力腐食割れ性はそれ
ぞれN A CE条件にて割れなし、破断なしである。Specifically, the mechanical properties of the bent pipe targeted by the manufacturing method of the present invention are API standard 5L-X65 to X70 class, and the hydrogen-induced cracking resistance and sulfide stress corrosion cracking resistance are respectively NA. No cracks or breaks under CE conditions.
(課題を解決するための手段)
この発明は「重量%で、C:0.01〜0.06%、S
i:0.50%以下、Mn : 1.0(1〜2.00
%、Cu : 0.25〜1.50%、Ni : 0.
10〜1.50%、Cr : 0.50%以下、Mo:
0.50%以下、N : 0.01%以下、^ffi:
0.01〜0.10%、B : 0.002%以下を含
み、更に、Nb : 0.002〜0.050%、V
: 0.01〜0.10%およびTi : 0.005
〜0.030%のうちの1種又は2種以上とCa :
0.001〜0.005%およびTe : 0.001
〜0.010%のうちの1種を含有し、残部がFeおよ
び不可避不純物からなり、不純物としてのPおよびSの
含有量を、それぞれP : 0.020%以下、S:0
.002%以下とした成分組成を有する鋼管を、900
〜1050℃の温度範囲で加熱して曲げ加工を行った後
に急冷する焼入れ処理を施し、次いで、450〜600
℃の温度範囲で焼戻し処理を施すことを特徴とする耐食
性に優れた高張カヘンド管の製造方法」を要旨とする。(Means for Solving the Problems) This invention is based on "C: 0.01 to 0.06%, S: 0.01 to 0.06%, S
i: 0.50% or less, Mn: 1.0 (1 to 2.00
%, Cu: 0.25-1.50%, Ni: 0.
10-1.50%, Cr: 0.50% or less, Mo:
0.50% or less, N: 0.01% or less, ^ffi:
Contains 0.01 to 0.10%, B: 0.002% or less, and further includes Nb: 0.002 to 0.050%, V
: 0.01-0.10% and Ti: 0.005
One or more of ~0.030% and Ca:
0.001-0.005% and Te: 0.001
~0.010%, the remainder consists of Fe and unavoidable impurities, and the content of P and S as impurities is P: 0.020% or less, S: 0
.. A steel pipe having a composition of 0.002% or less is
After heating and bending in a temperature range of ~1050°C, a quenching process is performed to rapidly cool it, and then a temperature range of 450 to 600°C is applied.
The subject matter is a method for producing hypertonic copper tubes with excellent corrosion resistance, which is characterized by subjecting them to tempering treatment in the temperature range of °C.
(作用)
以下、この発明の方法において、鋼管の成分組成および
熱処理条件を上記の通りに数値限定した理由を説明する
。(Function) Hereinafter, in the method of the present invention, the reason why the component composition and heat treatment conditions of the steel pipe are numerically limited as described above will be explained.
A 鋼管の成分組成
(a) C
Cは、強度を高める作用があり、多く添加する方が高強
度を得る上で有利である。しかし、必要以上に添加する
と水素誘起割れが発生しやすくなる。耐水素誘起割れ性
からは、ベンド管のミクロ&Il織をフェライトとベイ
ナイトとの混合組織とするのがよく、C含有量が0.0
6%を超えると縞状マルテンサイトが増加し、水素誘起
割れの起点となるので、0.06%を上限とした。一方
、0.01%未満では強度が不足したり、鋼の溶製が困
難となるので、0,01%を下限とした。A Composition of Steel Pipe (a) C C has the effect of increasing strength, and adding a large amount is advantageous in obtaining high strength. However, if more than necessary is added, hydrogen-induced cracking is likely to occur. From the viewpoint of hydrogen-induced cracking resistance, it is best to make the micro-Il weave of the bent pipe a mixed structure of ferrite and bainite, and the C content is 0.0.
If it exceeds 6%, striped martensite increases and becomes a starting point for hydrogen-induced cracking, so 0.06% is set as the upper limit. On the other hand, if it is less than 0.01%, the strength will be insufficient or it will be difficult to melt the steel, so 0.01% is set as the lower limit.
(ロ)Si
Siは、脱酸作用があるが、反面、Cと同様に多く添加
すると縞状マルテン゛す°イトが生成し、水素誘起割れ
が発生しやすくなるので、0.50%を上限とした。(B) Si Si has a deoxidizing effect, but on the other hand, like C, when added in large amounts, striped martinites are formed and hydrogen-induced cracking is more likely to occur, so the upper limit is 0.50%. And so.
(C) 月n
Mnは、綱の強度を高める作用があり、所望の強度を確
保するためには1.00%以上含有させる必要があるが
、2.00%を超えて含有するとミクロ偏析が多くなり
、耐水素誘起割れ性に好ましくないため、その含有量を
1.00〜2.00%と定めた。(C) Moon Mn has the effect of increasing the strength of the rope, and in order to ensure the desired strength it is necessary to contain it at 1.00% or more, but if it is contained in excess of 2.00%, it may cause micro-segregation. Since this amount is unfavorable for hydrogen-induced cracking resistance, the content is set at 1.00 to 2.00%.
(d) Cu
Cuは、強度、靭性および耐水素誘起割れ性を高める作
用がある。しかし、その含有量が0.25%より低いと
前記の作用効果が小さく、1.50%を超えて含有する
と、コスト高となるほかにベンド管の表面性状が損なわ
れので、その含有量を0.25〜1.50%と定めた。(d) Cu Cu has the effect of increasing strength, toughness, and hydrogen-induced cracking resistance. However, if the content is lower than 0.25%, the above-mentioned effects will be small, and if the content exceeds 1.50%, the cost will increase and the surface quality of the bent pipe will be impaired. It was set at 0.25 to 1.50%.
(e) Ni Niは、Cuチェツキング疵を防止する作用がある。(e) Ni Ni has the effect of preventing Cu checking flaws.
この疵を確実に防止するためには、少なくとも0.10
%の含有量を必要とするので、0.10%を下限とした
。また、Niには強度および靭性を高める作用がある。In order to reliably prevent this flaw, at least 0.10
% content, the lower limit was set at 0.10%. Further, Ni has the effect of increasing strength and toughness.
Cuチェツキング疵を防止し、且つ、強度および靭性を
高めるためには、Niを多く添加した方が有利であるが
、コストが高くなるので、1.50を」ニレとした。In order to prevent Cu checking flaws and increase strength and toughness, it is advantageous to add a large amount of Ni, but this increases cost, so 1.50 was set as elm.
(f) Cr
Crは、鋼の強度を向上さ−lる作用があるが、0.5
0%を超えて含有すると靭性が劣化するので、その含有
量を0.50%以下とした。(f) Cr Cr has the effect of improving the strength of steel, but 0.5
If the content exceeds 0%, the toughness deteriorates, so the content was set to 0.50% or less.
(g) M。(g) M.
Moは、強度向」二に寄与するが、0.50%を超えて
含有すると溶接部の靭性を1(11害し、且つ、Cuの
耐食性改善効果も損なわれるので、その含有量を0.5
0%以下とした。Mo contributes to strength improvement, but if it is contained in an amount exceeding 0.50%, it impairs the toughness of the welded part and also impairs the corrosion resistance improvement effect of Cu, so its content is reduced to 0.5%.
It was set to 0% or less.
(h) N
Nは、析出強化の作用を有しているが、多く添加すると
溶接部および溶接熱影響部の靭性が損なわれるので、そ
の含有量を0.01%以下とした。(h) N N has a precipitation-strengthening effect, but if added in large quantities, the toughness of the weld zone and weld heat-affected zone will be impaired, so its content was set to 0.01% or less.
(i) 八i
AIは、脱酸剤として有効であり、鋼の清浄性を確保す
るためには少なくとも0.旧%の含有量を必要とするの
で、0.01%を下限とした。一方、0.10%を超え
てlを金子fするとへ!203クラスターが増加し、鋼
が脆くなるので、0.10%を上限とした。(i) 8i AI is effective as a deoxidizing agent and must be present at least 0.0% to ensure cleanliness of steel. Since a content of % of old is required, the lower limit was set to 0.01%. On the other hand, if l exceeds 0.10% and Kaneko f! Since the number of 203 clusters increases and the steel becomes brittle, the upper limit was set at 0.10%.
(j) B
Bは、焼入性を高め、強度向上に寄与する有効な成分で
あるが、0.002%を超えて含有させると耐食性を阻
害するようになるので、その含有量を0.002%以下
とした。(j) B B is an effective component that enhances hardenability and contributes to improving strength, but if it is contained in an amount exceeding 0.002%, it will impair corrosion resistance, so its content should be reduced to 0.002%. 0.002% or less.
ヘンド管の素材の鋼管は、上記の成分の他に、更に、N
b、■およびTiのうちの1種又は2種以−にと、Ca
およびTeのうちの1種を含有している。これらの成分
の含有量の限定理由は下記のとおりである。In addition to the above-mentioned components, the steel pipe used as the raw material for the hend pipe also contains N.
One or more of b, ■ and Ti, and Ca
and one of Te. The reasons for limiting the content of these components are as follows.
(k) Nb
Nbは、熱処理前の組織を微細化して熱処理後の靭性を
高める作用があるが、その含有量が0.002%未満で
はこの作用が小さく、0.050%を超えて含有すると
、Nbが未固溶炭窒化物として鋼中に残存し、耐食性を
阻害するようになるので、その含有量は0.002〜0
.050%がよい。(k) Nb Nb has the effect of refining the structure before heat treatment and increasing the toughness after heat treatment, but this effect is small when its content is less than 0.002%, and when it is contained more than 0.050%. , Nb remains in the steel as undissolved carbonitride and impairs corrosion resistance, so its content should be 0.002 to 0.
.. 050% is good.
(1)■ ■は、固溶強化によって鋼の強度を高める作用がある。(1)■ (2) has the effect of increasing the strength of steel through solid solution strengthening.
その含有量が0.01%より少ないと前記の効果が小さ
く 、0.10%を超えて含有するとヘンド管の表面性
状が損なわれるので、その含有量は0.01〜0.10
%がよい。If the content is less than 0.01%, the above effect will be small, and if the content exceeds 0.10%, the surface quality of the hend tube will be impaired, so the content should be 0.01 to 0.10%.
% is good.
(m) Ti
Tiは、微細なTiNの生成により、溶接熱影響部の粗
粒化を抑制し、溶接熱影響部の靭性低下を防止する作用
がある。しかし、その含有量が0.005%未満では、
前記の作用が小さく、0.030を超えて含有するとT
iCが生成して反対に靭性が劣化するようになるので、
その含有量は0.005〜0.030%がよい。(m) Ti Ti has the effect of suppressing the coarsening of the weld heat affected zone and preventing the toughness of the weld heat affected zone from deteriorating due to the formation of fine TiN. However, if the content is less than 0.005%,
The above effect is small, and if the content exceeds 0.030, T
As iC is generated and the toughness deteriorates,
Its content is preferably 0.005 to 0.030%.
(n) Ca
Caは、MnSを球状化して耐水素誘起割れ性および耐
硫化物応力腐食割れ性を高める作用がある。(n) Ca Ca has the effect of spheroidizing MnS to improve hydrogen-induced cracking resistance and sulfide stress corrosion cracking resistance.
しかし、0.001%未満では前記の作用が小さく、0
、005%を超えて含有するとCa−0−3系介在物を
形成し、耐食性が悪化するので、その含有量は0.00
1〜0.005%がよい。However, if it is less than 0.001%, the above effect is small and 0.001% is less than 0.001%.
If the content exceeds 0.005%, Ca-0-3 inclusions will be formed and the corrosion resistance will deteriorate, so the content should be 0.00%.
1 to 0.005% is good.
(o) Te
TeもCaと同しくMnSを球状化して耐水素誘起割れ
性および耐硫化物応力腐食割れ性を高める作用がある。(o) Te Te, like Ca, also has the effect of spheroidizing MnS to improve hydrogen-induced cracking resistance and sulfide stress corrosion cracking resistance.
しかし、0.001%未満では前記の作用が小さく、0
.010%を超えて含有すると耐食性が悪化するので、
その含有量は0.001〜0.010%がよい。However, if it is less than 0.001%, the above effect is small and 0.001% is less than 0.001%.
.. If the content exceeds 0.010%, corrosion resistance will deteriorate.
Its content is preferably 0.001 to 0.010%.
素材の鋼管は、上記成分の外、残部はFeと不可避不純
物からなる。不純物中のPおよびSは、それぞれP :
0.020%以下、S:0.002%以下に抑えるの
がよい。In addition to the above-mentioned components, the raw material steel pipe consists of Fe and unavoidable impurities. P and S in impurities are each P:
It is preferable to suppress it to 0.020% or less, and S: 0.002% or less.
Pはミクロ偏析に大きな影響を及ぼし、耐水素誘起割れ
性に悪影響をもたらす。SはMnとの親和力が強く、多
いと延性のMnS介在物が増して耐水素誘起割れ性を劣
化さセる。P has a large effect on micro-segregation and has an adverse effect on hydrogen-induced cracking resistance. S has a strong affinity with Mn, and when it is present in large amounts, ductile MnS inclusions increase and the hydrogen-induced cracking resistance deteriorates.
なお、上記成分組成を有する鋼片の熱間圧延は、いわゆ
る制御圧延法で行うのがよい。それは、後工程で製管後
の鋼管に曲げ加工を施しながら焼入れ、および焼戻しだ
後の組織を微細化して靭性を改善するには、制御圧延を
施しておくのが好ましいからである。その制御圧延では
、肉厚中心部においても高周波焼入れした後の組織が微
細化されるように未再結晶温度域以下で強圧下を加える
のがよい。また、鋼片の加熱は、オーステナイト粒の粗
大化を防止するため、1180℃を上限とし、炭窒化物
の固溶を図り、強度を確保するために、1050℃を下
限とするのがよい。Note that the hot rolling of the steel billet having the above-mentioned composition is preferably carried out by a so-called controlled rolling method. This is because it is preferable to perform controlled rolling in order to refine the structure and improve toughness after quenching and tempering the steel pipe while bending it in the subsequent process. In the controlled rolling, it is preferable to apply strong pressure at a temperature below the non-recrystallization temperature range so that the structure after induction hardening is refined even in the center of the wall thickness. Further, the upper limit of heating of the steel slab is preferably 1180°C to prevent coarsening of austenite grains, and the lower limit is preferably 1050°C to ensure solid solution of carbonitrides and ensure strength.
B 熱処理条件
(a) 焼入れおよび曲げ加工
曲げ加工は900〜1050℃の温度域で行い、加工終
了後は直らに象、冷して焼入れする。急冷は水冷でよい
。900℃より低い温度で焼入れしても所望の強度を確
保することができない。一方、1050℃を超える温度
で焼入れするとオーステナイト粒が粗大化し、靭性が劣
化する。B. Heat treatment conditions (a) Hardening and bending The bending process is performed in a temperature range of 900 to 1050°C, and after completion of the process, it is immediately quenched, cooled, and hardened. Water cooling may be used for rapid cooling. Even if it is hardened at a temperature lower than 900°C, the desired strength cannot be secured. On the other hand, if the steel is quenched at a temperature exceeding 1050°C, the austenite grains will become coarser and the toughness will deteriorate.
(b) 焼戻し
焼戻しは450〜600℃の温度範囲で行う。450℃
より低い温度で焼戻ししても焼入れ時の縞状マルテンサ
イト等のミクロ的な硬化組織が十分に軟化されず、耐水
素誘起割れ性等が改善されない。−方、600を超える
温度で焼戻しすると、強度が所望値を下回ることになる
。(b) Tempering Tempering is performed at a temperature range of 450 to 600°C. 450℃
Even if tempering is performed at a lower temperature, microscopic hardened structures such as striped martensite during quenching are not sufficiently softened, and hydrogen-induced cracking resistance and the like are not improved. - On the other hand, tempering at a temperature higher than 600°C will result in the strength being lower than the desired value.
(実施例)
第1表に示す各種組成の溶接鋼管(外径24〜36イン
チ)に、第2表に示す焼入れ温度に高周波過熱して曲げ
加工を施し、直ちに水冷して焼入れし、次いで、焼戻し
処理を施して高張力ベンド管を得た。曲げ半径は(3〜
5)×外径である。(Example) Welded steel pipes (outer diameter 24 to 36 inches) of various compositions shown in Table 1 were subjected to induction heating and bending to the quenching temperatures shown in Table 2, immediately water-cooled and quenched, and then A high tensile strength bent pipe was obtained by tempering. The bending radius is (3~
5) x outer diameter.
得られたベンド管については、それぞれ引張試験、水素
′誘起側れ試験および硫化物応力腐食割れ試験を行った
。これらの結果を第2表に合わせて示す
引張試験は、それぞれのベンド管から引張試験片(71
57M 4370に準じる)を採取しミ降伏強度(Y
S)と引張強さ(TS)を求めた。水素誘起割れ試験は
、試験片を溶液中に96時間浸漬し、割れ発生の有無を
調べた。溶液のpHは、4.8〜5.4(BP条件)と
3.0〜4.0(N A CE条件)とした。硫化物応
力腐食割れ試験は、溶液中で試験片に[80%XSMY
S。The obtained bent pipes were subjected to a tensile test, a hydrogen'-induced sidewall test, and a sulfide stress corrosion cracking test. These results are shown in Table 2. In the tensile test, tensile test pieces (71
57M (according to 4370)) and calculate the yield strength (Y
S) and tensile strength (TS) were determined. In the hydrogen-induced cracking test, a test piece was immersed in a solution for 96 hours, and the presence or absence of cracking was examined. The pH of the solution was 4.8 to 5.4 (BP conditions) and 3.0 to 4.0 (NACE conditions). Sulfide stress corrosion cracking tests test specimens in solution [80%XSMY
S.
の応力をかけた状態で720時間浸漬し、破断の有無を
調べた。The specimens were immersed for 720 hours under a stress of 100%, and the presence or absence of breakage was examined.
第2表から明らかなように、本発明の製造方法で得られ
たNα4〜9のベンド管は、強度が高く、水素誘起割れ
および硫化物応力腐食割れが発生していない。これに対
してC含有量が本発明で規定する範囲外であるNo、
1およびNo、 2のベンド管、および成分組成は本発
明で規定する範囲内であるが、焼入れままのN013の
ベンド管には、水素誘起割れおよび硫化物応力腐食割れ
が発生しており、しかも、硫化物応力腐食割れは短時間
で発生している。As is clear from Table 2, the bent pipes with Nα of 4 to 9 obtained by the manufacturing method of the present invention have high strength and are free from hydrogen-induced cracking and sulfide stress corrosion cracking. On the other hand, No. whose C content is outside the range specified by the present invention,
Although the bent pipes No. 1, No. 2, and the component compositions are within the range specified by the present invention, hydrogen-induced cracking and sulfide stress corrosion cracking occurred in the as-quenched bent pipe No. 13. , sulfide stress corrosion cracking occurs in a short period of time.
(発明の効果)
実施例に示した如く、本発明の製造方法により得られた
ベンド管は、強度が高く、且つ、優れた耐水素誘起割れ
性および耐硫化物応力腐食割れ性を有している。(Effects of the Invention) As shown in the examples, the bent pipe obtained by the manufacturing method of the present invention has high strength and excellent resistance to hydrogen-induced cracking and sulfide stress corrosion cracking. There is.
Claims (1)
%以下、Mn:1.00〜2.00%、Cu:0.25
〜1.50%、Ni:0.10〜1.50%、Cr:0
.50%以下、Mo:0.50%以下、N:0.01%
以下、Al:0.01〜0.10%、B:0.002%
以下を含み、更に、Nb:0.002〜0.050%、
V:0.01〜0.10%およびTi:0.005〜0
.030%のうちの1種又は2種以上とCa:0.00
1.0.005%およびTe:0.001〜0.010
%のうちの1種を含有し、残部がFeおよび不可避不純
物からなり、不純物としてのPおよびSの含有量を、そ
れぞれP:0.020%以下、S:0.002%以下と
した成分組成を有する鋼管を、900〜1,050℃の
温度範囲で加熱して曲げ加工を行った後に急冷する焼入
れ処理を施し、次いで、450〜600℃の温度範囲で
焼戻し処理を施すことを特徴とする耐食性に優れた高張
力ベンド管の製造方法。In weight%, C: 0.01-0.06%, Si: 0.50
% or less, Mn: 1.00-2.00%, Cu: 0.25
~1.50%, Ni:0.10~1.50%, Cr:0
.. 50% or less, Mo: 0.50% or less, N: 0.01%
Below, Al: 0.01-0.10%, B: 0.002%
Contains the following, further Nb: 0.002 to 0.050%,
V: 0.01-0.10% and Ti: 0.005-0
.. One or more of 030% and Ca: 0.00
1.0.005% and Te: 0.001-0.010
%, the remainder consists of Fe and unavoidable impurities, and the content of P and S as impurities is P: 0.020% or less and S: 0.002% or less, respectively. The steel pipe is heated in a temperature range of 900 to 1,050°C, subjected to bending processing, and then subjected to a quenching treatment in which it is rapidly cooled, and then subjected to a tempering treatment in a temperature range of 450 to 600°C. A method for manufacturing high-tensile bent pipes with excellent corrosion resistance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27714690A JPH04154913A (en) | 1990-10-15 | 1990-10-15 | Production of high tensile strength bent pipe excellent in corrosion resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27714690A JPH04154913A (en) | 1990-10-15 | 1990-10-15 | Production of high tensile strength bent pipe excellent in corrosion resistance |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04154913A true JPH04154913A (en) | 1992-05-27 |
Family
ID=17579442
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27714690A Pending JPH04154913A (en) | 1990-10-15 | 1990-10-15 | Production of high tensile strength bent pipe excellent in corrosion resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04154913A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5711914A (en) * | 1992-10-15 | 1998-01-27 | Nmh Stahwerke Gmbh | Rail steel |
KR100627461B1 (en) * | 1999-12-28 | 2006-09-22 | 주식회사 포스코 | Method of manufacturing hot rolling steel sheet having high strength for linepipe |
WO2008007737A1 (en) * | 2006-07-13 | 2008-01-17 | Sumitomo Metal Industries, Ltd. | Bend pipe and process for producing the same |
WO2018216638A1 (en) | 2017-05-22 | 2018-11-29 | 新日鐵住金株式会社 | Bent steel pipe and method for producing same |
-
1990
- 1990-10-15 JP JP27714690A patent/JPH04154913A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5711914A (en) * | 1992-10-15 | 1998-01-27 | Nmh Stahwerke Gmbh | Rail steel |
KR100627461B1 (en) * | 1999-12-28 | 2006-09-22 | 주식회사 포스코 | Method of manufacturing hot rolling steel sheet having high strength for linepipe |
WO2008007737A1 (en) * | 2006-07-13 | 2008-01-17 | Sumitomo Metal Industries, Ltd. | Bend pipe and process for producing the same |
US7770428B2 (en) | 2006-07-13 | 2010-08-10 | Sumitomo Metal Industries, Ltd. | Hot bend pipe and a process for its manufacture |
KR101111023B1 (en) * | 2006-07-13 | 2012-02-13 | 수미도모 메탈 인더스트리즈, 리미티드 | Bend pipe and process for producing the same |
JP2013040405A (en) * | 2006-07-13 | 2013-02-28 | Nippon Steel & Sumitomo Metal Corp | Method for producing bend pipe and method for improving characteristics of the same |
JP5200932B2 (en) * | 2006-07-13 | 2013-06-05 | 新日鐵住金株式会社 | Bend pipe and manufacturing method thereof |
WO2018216638A1 (en) | 2017-05-22 | 2018-11-29 | 新日鐵住金株式会社 | Bent steel pipe and method for producing same |
CN110662853A (en) * | 2017-05-22 | 2020-01-07 | 日本制铁株式会社 | Steel bent pipe and method for manufacturing same |
CN110662853B (en) * | 2017-05-22 | 2022-03-18 | 日本制铁株式会社 | Steel bent pipe and method for manufacturing same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2006282412B2 (en) | Seamless steel pipe for line pipe and a process for its manufacture | |
JP6212473B2 (en) | Rolled material for high-strength spring and high-strength spring wire using the same | |
NO343350B1 (en) | Seamless steel tube for oil wells with excellent resistance to sulphide stress cracking and method for producing seamless steel tubes for oil wells | |
CN115386808B (en) | Corrosion-resistant oil casing and preparation method and application thereof | |
JPS63230847A (en) | Low-alloy steel for oil well pipe excellent in corrosion resistance | |
JPH06116635A (en) | Production of high strength low alloy steel for oil well use, excellent in sulfide stress corrosion cracking resistance | |
JPH0421718A (en) | Production of high strength steel excellent in sulfide stress cracking resistance | |
JP2009191330A (en) | Electric resistance steel tube | |
EP0738784B1 (en) | High chromium martensitic steel pipe having excellent pitting resistance and method of manufacturing | |
JPH04154913A (en) | Production of high tensile strength bent pipe excellent in corrosion resistance | |
JPH08104922A (en) | Production of high strength steel pipe excellent in low temperature toughness | |
JPH05156409A (en) | High-strength martensite stainless steel having excellent sea water resistance and production thereof | |
JPS6216250B2 (en) | ||
JPS6187818A (en) | Manufacture of ultrathick steel material of high strength low alloy steel | |
KR100345704B1 (en) | A method of manufacturing high strength hot rolled steel strip with low susceptibility of SSCC | |
JPS6028885B2 (en) | UOE steel pipe heat treatment method that yields high toughness weld metal | |
JPH0569884B2 (en) | ||
JPS62120430A (en) | Manufacture of ultra-high-strength steel pipe | |
JP3260056B2 (en) | Method for producing steel with excellent sour resistance and hot workability | |
JPH0319285B2 (en) | ||
JPH05255744A (en) | Production of high tensile strength steel plate excellent in toughness at low temperature | |
JPH08269566A (en) | Production of high strength and high toughness uoe steel pipe excellent in sr characteristic | |
JP2000119817A (en) | Martensitic stainless steel tube | |
JPS59123716A (en) | Production of steel pipe for oil well having excellent resistance to sulfide cracking | |
JPS62149814A (en) | Production of low-carbon high-strength seamless steel pipe by direct hardening method |