JPH04154909A - Production of cast material for tool excellent in crack resistance - Google Patents

Production of cast material for tool excellent in crack resistance

Info

Publication number
JPH04154909A
JPH04154909A JP27728690A JP27728690A JPH04154909A JP H04154909 A JPH04154909 A JP H04154909A JP 27728690 A JP27728690 A JP 27728690A JP 27728690 A JP27728690 A JP 27728690A JP H04154909 A JPH04154909 A JP H04154909A
Authority
JP
Japan
Prior art keywords
less
temperature
resistance
cast
crack resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27728690A
Other languages
Japanese (ja)
Inventor
Tetsuya Nakanishi
哲也 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP27728690A priority Critical patent/JPH04154909A/en
Publication of JPH04154909A publication Critical patent/JPH04154909A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To produce a cast material for tool excellent in wear resistance, seizure resistance, and crack resistance by subjecting a cast high alloy steel having a specific composition consisting of C, Si, Mn, Cr, Ni, S, P, O, and Fe to specific heat treatment. CONSTITUTION:A cast high alloy steel which has a composition consisting of, by weight, 0.7-2.5% C, <=3% Si, <=3% Mn, 20-40% Cr, 20-50% Ni, <=0.05% S, <=0.05% P, <=0.10% O, and the balance Fe with inevitable impurities and further containing, if necessary, either or both of 0.0001-0.050% Ca and 0.0001-0.50% REM and/or one or more kinds among 0.1-5.0% Mo, 0.1-5;0% W, 0.1-5.0% CO, 0.1-5.0% Ti, 0.1-5.0% V, and 0.1-5.0% Zr is heated and held at a temp. in the region between (solidus temp. -20 deg.C) and (solidus temp. +40 deg.C) for 1-20hr. By this method, a high temp. tool material free from the occurrence of cracks in many localities even if subjected to severe heating-cooling cycle or bearing and having long service life can be obtained.

Description

【発明の詳細な説明】 〈産業上の利用分野) この発明は、例えば継目無管製造用傾斜ロール式圧延機
のガイドシューや熱間押出用ダイス等の如き、高温の被
加工材との間で厳しいすべり摩擦を生じる部材として好
適な工具用鋳造材の製造方法に関する。
[Detailed Description of the Invention] <Industrial Application Fields> The present invention is applicable to high-temperature workpieces, such as guide shoes of inclined roll rolling mills for producing seamless pipes, dies for hot extrusion, etc. The present invention relates to a method for manufacturing a cast material for tools, which is suitable as a member that causes severe sliding friction.

〈従来技術とその課題〉 継目無管製造用傾斜ロール式圧延機のガイドシューや熱
間押出用ダイス等の高温用工具部材は、その使用の際、
高温に加熱された被加工材との間で極めて厳しいすべり
摩擦を受ける。そして、このすべり摩擦によって生じる
摩耗や焼付により工具寿命や製品品質が支配されてしま
う。
<Prior art and its problems> When using high-temperature tool members such as guide shoes of inclined roll rolling mills for seamless pipe production and dies for hot extrusion,
It is subjected to extremely severe sliding friction between the workpiece and the heated workpiece. The tool life and product quality are dominated by wear and seizure caused by this sliding friction.

そこで、従来、このような高温工具部材用には硬質のP
e−1,2wtχC−25wtχCr−30wtXNi
−CCr−3OW系高合金鋳鋼が、鋳込みのまま、或い
は特開昭61−113713号公報に開示されているよ
うな炭化物の凝集・粗大化熱処理を施されて使用される
のが一般的であった。
Therefore, hard P was conventionally used for such high-temperature tool parts.
e-1,2wtχC-25wtχCr-30wtXNi
-CCr-3OW high alloy cast steel is generally used as cast or after being subjected to carbide agglomeration and coarsening heat treatment as disclosed in JP-A-61-113713. Ta.

しかし、近年、鋼管類に対しても高級品を指向する傾向
が強まり、継目無管製造用圧延機や熱間押出機で加工さ
れる被加工材として難加工性のステンレス#iiI類が
適用される場合が増えてきたが、そのため次のような問
題が指摘されるようになった。即ち、ステンレス鋼等の
難加工性材料では、加工に当っての加熱温度が1100
〜1250′Cとより高温である上、加工時の面圧が高
くて工具と被加工材間で完全なすべり摩擦が生じるなど
摩擦条件が非常に苛酷であることから、工具材料として
前記従来材を使用したとしても“摩耗による工具寿命の
低下”、“焼付発生による被加工材表面疵発生”が著し
いばかりか、工具表面に繰り返し加えられる熱サイクル
のために亀裂が発生しやすく、しかもこの亀裂部を起点
として更に焼付が生じやすくなる現象が多発したのであ
る。
However, in recent years, there has been a growing trend toward high-quality steel pipes, and stainless steel #III class, which is difficult to process, is being used as the work material processed by rolling mills and hot extruders for seamless pipe manufacturing. As a result, the following problems have been pointed out. That is, for difficult-to-process materials such as stainless steel, the heating temperature during processing is 1100℃.
In addition to the higher temperature of ~1250'C, the friction conditions are very severe, such as high surface pressure during machining and complete sliding friction between the tool and the workpiece, so the conventional materials are used as tool materials. Even if a tool is used, not only will the life of the tool be reduced due to wear and defects on the surface of the workpiece due to seizure, but also cracks will easily form due to the repeated heat cycles applied to the tool surface. A phenomenon in which seizure was more likely to occur starting from the area occurred frequently.

そして、この工具表面の亀裂割れは結晶粒界割れ状に工
具表面から深さ力月〜511程度の深さにまで達するも
のであり、しかも上述したように工具面焼付発生の新た
な起点となりがちであって、工具の原単位及び被加工材
品質を著しく悪化させている。
These cracks on the tool surface, in the form of grain boundary cracks, reach a depth of approximately 511 mm from the tool surface, and as mentioned above, they tend to become a new starting point for tool surface seizure. This significantly deteriorates the unit consumption of the tool and the quality of the workpiece.

このようなことから、本発明が目的としたのは、表面に
従来にも増して苛酷な加熱・冷却サイクルや面圧が加え
られても亀裂割れを多発することがなく、十分な使用寿
命を有したコストの安い高温工具用材料を提供すること
であった。
For this reason, the purpose of the present invention is to ensure that the surface does not crack frequently even when subjected to more severe heating/cooling cycles and surface pressure than ever before, and has a sufficient service life. The object of the present invention was to provide a low-cost material for high-temperature tools.

〈課題を解決するための手段〉 そこで、本発明者等は上記目的を達成すべく数多(の試
験を繰り返しながら研究を重ねた結果、次のような知見
を得ることができた。
<Means for Solving the Problems> In order to achieve the above object, the present inventors conducted research while repeating numerous tests, and as a result, they were able to obtain the following knowledge.

(al  苛酷な使用環境下において指摘された上記“
鋳造高合金鋼系高温工具材料に見られる表面亀裂の発生
”にはS、Pと言った微量不純物元素の結晶粒界偏析が
大きく係わっており、この微量元素の低減が材料の靭性
を向上させて加熱、冷却サ6一 イクルや面圧サイクルによる表面亀裂抑制に顕著な効果
を発揮する。
(al. The above mentioned “
The occurrence of surface cracks observed in cast high-alloy steel high-temperature tool materials is largely related to grain boundary segregation of trace impurity elements such as S and P, and reduction of these trace elements improves the toughness of the material. It has a remarkable effect on suppressing surface cracks caused by heating and cooling cycles and surface pressure cycles.

(b)シかも、上記微量不純物元素の低減に加え微量元
素形態制御効果を発揮するCa、 REM (希土類元
素)を添加した場合には、前記微量不純物元素の粒界偏
析がより一層効果的に防止され、表面亀裂抑制効果は一
段と顕著になる。
(b) In addition to reducing the trace impurity elements mentioned above, when Ca or REM (rare earth element), which exerts the effect of controlling the trace element morphology, is added, the grain boundary segregation of the trace impurity elements becomes even more effective. The effect of suppressing surface cracks becomes even more pronounced.

(C1その上、微量不純物元素を低減するか、或いはこ
れに加えてCa、 Mg、 REM添加を行った高温工
具用鋳造高合金鋼に特定の熱処理を施し、炭化物が凝集
・粗大化した組織を現出させると、その耐摩耗性や耐焼
付性も顕著に向上し、高合金材料の加工と言った苛酷な
条件下においても十分に満足できる使用寿命を有した高
温工具用材料が実現される。
(C1 In addition, a specific heat treatment is applied to cast high-alloy steel for high-temperature tools to reduce trace impurity elements or to add Ca, Mg, and REM, to create a structure in which carbides have aggregated and coarsened. Once developed, its wear resistance and seizure resistance will be significantly improved, making it possible to create a material for high-temperature tools that has a sufficiently satisfactory service life even under the harsh conditions of machining high-alloy materials. .

本発明は、上記知見事項等に基づいてなされたもので、 rc:o、7〜2.5%(以降、成分割合を表わず%は
重量%とする)。
The present invention was made based on the above-mentioned findings, etc. rc:o, 7 to 2.5% (hereinafter, the component ratio is not expressed and % is expressed as weight %).

Si:3%以下、    Mn:3%以下。Si: 3% or less, Mn: 3% or less.

Cr:20〜40%、      Ni : 20〜5
0%。
Cr: 20-40%, Ni: 20-5
0%.

s:o、os%以下、    P : 0.05%以下
s: o, os% or less; P: 0.05% or less.

○:0.10%以下 を含むと共に、 Ca : 0.0001〜0.050%。○: 0.10% or less including, Ca: 0.0001-0.050%.

REM : 0.0001〜0.50%Mo : 0.
1〜5.0%、    W:0.1〜5.0%。
REM: 0.0001-0.50%Mo: 0.
1-5.0%, W: 0.1-5.0%.

Co : 0.1〜5.0%、   Ti : 0.1
〜5.0%。
Co: 0.1-5.0%, Ti: 0.1
~5.0%.

V:0.1〜5.0%、   Zr : 0.1〜5.
0%のうちの1種以上をも含有し、残部が実質的にFe
(Fe及び不可避的不純物)からなる鋳造高合金鋼を、
〔固相線よりも20℃低い温度〕〜〔固相線よりも40
℃高い温度〕の領域にて1〜20時間加熱保持すること
により、凝集・粗大化した炭化物が存在する組織を有し
たところの、耐割れ性に優れていて使用寿命の長い工具
用鋳造材料を実現した点」 に大きな特徴を有している。
V: 0.1-5.0%, Zr: 0.1-5.
0%, and the remainder is substantially Fe.
Cast high alloy steel consisting of (Fe and unavoidable impurities),
[Temperature 20℃ lower than the solidus line] ~ [40℃ lower than the solidus line]
By heating and holding the material at a high temperature for 1 to 20 hours, a cast material for tools with a structure containing agglomerated and coarsened carbides, which has excellent crack resistance and a long service life, is produced. It has a major feature in that it has been realized.

以下、本発明において、適用する鋼の化学成分組成及び
熱処理条件を前記の如くに限定した理由を、その作用と
共に詳述する。
Hereinafter, in the present invention, the reason why the chemical composition and heat treatment conditions of the steel to be applied are limited as described above will be explained in detail together with the effects thereof.

^)鋼の化学成分組成 旦 Cは鋼中でCr、 Fe等と結合してM 23 Cb型
及びM 7C、l型炭化物を形成し、材料の耐摩耗性、
耐焼付性を改善する作用を発揮するが、該作用による所
望の効果を確保するには所定の熱処理によってこれらの
炭化物を凝集・粗大化せしめる必要があり、しかも、そ
のためには鋳込みのままの状態で所望の炭化物量を確保
することが必要である。そして、C含有量が0.7%未
満であると、所望の炭化物量を確保できないために熱処
理を施しても耐摩耗性、耐焼付性の改善効果が不十分で
あり、−方、2.5%を超えてCを含有させると炭化物
量が多くなりすぎて靭性の低下を招き、割れを発生しや
すくなることから、C含有量は0.7〜2.5%と定め
た。
^) Chemical composition of steel: C combines with Cr, Fe, etc. in steel to form M23Cb type, M7C, and l type carbides, which improves the wear resistance of the material.
It exerts the effect of improving seizure resistance, but in order to ensure the desired effect of this effect, it is necessary to agglomerate and coarsen these carbides through a prescribed heat treatment. It is necessary to secure the desired amount of carbide. If the C content is less than 0.7%, the desired amount of carbide cannot be secured, so even if heat treatment is performed, the effect of improving wear resistance and seizure resistance will be insufficient. If C content exceeds 5%, the amount of carbides becomes too large, leading to a decrease in toughness and making cracks more likely to occur, so the C content was set at 0.7 to 2.5%.

旦 Siは脱酸調整及び鋳造性改善のために有効な成分では
あるが、3%を超えて過剰に含有させると材料の靭性を
損なうようになることから、St含有量の上限を3%と
定めた。
Although Si is an effective component for adjusting deoxidation and improving castability, if it is included in excess of more than 3%, it will impair the toughness of the material, so the upper limit of the St content is set at 3%. Established.

ハ Mnには脱酸作用を有するほか、高温強度を高めて耐摩
耗性を向上させる効果があるが、3%を超えて過剰に含
有させるとやはり材料の靭性を低下させることから、M
n含有量の上限を3%と定めた。
In addition to having a deoxidizing effect, Mn has the effect of increasing high-temperature strength and improving wear resistance.
The upper limit of the n content was set at 3%.

Crには、鋼材料の基地に固溶して高温強度を高めると
共に、前述したようにCと結合して炭化物を形成し材料
の耐摩耗性、耐焼付性を改善する作用があるが、その含
有量が20%未満では前記作用による所望の効果が得ら
れず、一方、40%を超えてCrを含有させるとσ相が
析出して材料を脆化させることから、Cr含有量は20
〜40%と定めた。
Cr has the effect of increasing high-temperature strength by forming a solid solution in the matrix of steel materials, and as mentioned above, it combines with C to form carbides and improves the wear resistance and seizure resistance of the material. If the Cr content is less than 20%, the desired effect due to the above action cannot be obtained. On the other hand, if the Cr content exceeds 40%, the σ phase will precipitate and the material will become brittle.
It was set at ~40%.

肛 Niには材料の靭性及び耐熱衝撃性を高める作用がある
が、その含有量が20%未満では前記作用による所望の
効果が得られず、一方、50%を超えてNiを含有させ
てもより一層の効果が認められないので、経済性をも考
慮してNi含有量は20〜50%と定めた。
Ni has the effect of increasing the toughness and thermal shock resistance of the material, but if its content is less than 20%, the desired effect of the above effect cannot be obtained; on the other hand, even if it contains more than 50%, Since no further effect was observed, the Ni content was determined to be 20 to 50% in consideration of economic efficiency.

盈 Sは化合物として結晶粒界に偏析し、材料の耐割れ性を
悪化させて工具寿命に悪影響を及ぼす不純物元素であっ
て、その含有量は極力低い方が好ましい。しかし、P量
の低減と同時にS含有量を0.05%以下の領域にまで
抑えることにより所望の耐割れ性が確保できることから
、S含有量は0.05%以下と定めた。
S is an impurity element that segregates as a compound at grain boundaries and deteriorates the cracking resistance of the material and adversely affects tool life, and its content is preferably as low as possible. However, the S content was determined to be 0.05% or less because the desired cracking resistance can be ensured by simultaneously reducing the P content and suppressing the S content to a range of 0.05% or less.

Pも、Sと同様に耐割れ性を悪化する不純物元素である
ため、その含有量は極力低い方が好ましい。しかし、S
量の低減と共にP含有量を0.05%以下の領域にまで
抑えることにより所望の耐割れ性が確保できることから
、P含有量は0.05%以下と定めた。
Like S, P is an impurity element that deteriorates cracking resistance, so it is preferable that its content be as low as possible. However, S
The P content was determined to be 0.05% or less because the desired cracking resistance can be ensured by reducing the amount and suppressing the P content to a range of 0.05% or less.

Oも不可避的に鋼中に混入する不純物元素であるが、0
.10%を超えて鋼中に存在すると酸化物として地底の
発生に関与するため、O含有量は0.10%以下と定め
た。
O is also an impurity element that inevitably mixes into steel, but 0
.. If more than 10% of O is present in steel, it becomes an oxide and is involved in underground formation, so the O content was set at 0.10% or less.

Ca、  びREM(±7−1) これらの成分は鋼中のSと結び付いてSが結晶粒界に偏
析するのを抑制する作用を有しているので、必要により
単独又は複合で含有せしめられるが、各々の含有量が0
.0001%未満では前記作用による所望の効果が得ら
れず、一方、Caの場合には0.050%を、そしてR
EVの場合には0.50%をそれぞれ超えて含有させる
と地底の発生をもたらすようになることから、Ca含有
量は0.0001〜0.050%と、REM含有量は0
.0001〜0.50%とそれぞれ定めた。
Ca, and REM (±7-1) These components combine with S in steel and have the effect of suppressing the segregation of S at grain boundaries, so they can be included alone or in combination as necessary. However, each content is 0
.. If it is less than 0.0001%, the desired effect cannot be obtained by the above action, while in the case of Ca, 0.050% and R
In the case of EV, if the content exceeds 0.50%, it will cause underground formation, so the Ca content is 0.0001 to 0.050% and the REM content is 0.
.. 0001 to 0.50%, respectively.

Mo、 W、 Co、 Ti、  L  びZrこれら
の成分には、何れも鋼材料の基地に固溶してその強度を
高めると共に、Cと結合して炭化物を形成し耐摩耗性、
耐焼付性を向上させる作用があるので必要により1種又
は2種以上の添加がなされるが、何れもその含有量が0
.1%未満であると前記作用による所望の効果が得られ
ず、一方、該効果は各成分の含有量が多いほど増加する
が、経済性をも考慮して各々の含有量は0.1〜5.0
%と定めた。
Mo, W, Co, Ti, L and Zr These components all form a solid solution in the base of the steel material to increase its strength, and combine with C to form carbides to improve wear resistance,
Since it has the effect of improving seizure resistance, one or more types may be added if necessary, but in any case, the content is 0.
.. If it is less than 1%, the desired effect cannot be obtained by the above-mentioned action, and on the other hand, the effect increases as the content of each component increases, but considering economic efficiency, the content of each component is 0.1 to 0. 5.0
%.

B)熱処理条件 本発明に係る熱処理は、液相から晶出した一次炭化物を
凝集・粗大化させることによって通常の熱処理では得ら
れない大きな炭化物が存在する組織を実現し、優れた耐
摩耗性、耐焼付性を確保することを目的としているので
、通常の熱処理とは異なり非常に高い温度に加熱・保持
することが必須である。
B) Heat treatment conditions The heat treatment according to the present invention aggregates and coarsens the primary carbides crystallized from the liquid phase, thereby realizing a structure with large carbides that cannot be obtained with normal heat treatment, resulting in excellent wear resistance, Since the purpose is to ensure seizure resistance, unlike normal heat treatment, it is essential to heat and hold at a very high temperature.

この場合、加熱温度が〔固相線よりも20℃低い温度〕
を下回った場合には、後述する保持時間内で炭化物の凝
集・粗大化が十分に起こらず、−方、〔固相線よりも4
0℃高い温度〕を上回る温度に加熱すると材料が部分的
に溶融し始めて元の形状を保てなくなることから、加熱
温度は〔固相線よりも20℃低い温度〕〜〔固相線より
も40°C高い温度〕の範囲内とすることと定めた。こ
こ−19= で、前記“固相線”とは熱分析曲線から得られる凝固終
了温度を意味しており、成分系によって該固相線温度は
異なるが、上記の如き高C系合金鋼の場合には固相線温
度は1250〜1350℃程度であるから、実際に適用
される熱処理温度の範囲は1230〜1390℃となる
In this case, the heating temperature is [20°C lower than the solidus line]
If the temperature is less than
If the material is heated to a temperature higher than 0℃ above the solidus line, the material will begin to partially melt and will no longer maintain its original shape, so the heating temperature should be between 20℃ below the solidus line and 20℃ below the solidus line. 40°C higher temperature]. -19= Here, the above-mentioned "solidus line" means the solidification end temperature obtained from the thermal analysis curve, and the solidus line temperature differs depending on the component system, but it is In this case, the solidus temperature is about 1250 to 1350°C, so the range of the heat treatment temperature actually applied is 1230 to 1390°C.

また、熱処理での加熱保持時間は加熱温度との兼ね合い
でその長さを決定する必要があるが、被熱処理材が溶融
し始めない温度で炭化物を凝集・粗大化せしめるために
は、最低1時間の保持が必要であり、比較的低目の温度
(下限値近くの温度)で熱処理する場合にはより長時間
の保持が必要となる。ただ、実際上、20時間を超える
処理はコスト的に極めて不利となることから、経済性を
考慮して保持時間の上限は20時間と定めた。
In addition, the heating holding time during heat treatment must be determined in consideration of the heating temperature, but in order to coagulate and coarsen the carbide at a temperature where the material to be heat treated does not begin to melt, it is necessary to determine the length for at least 1 hour. In the case of heat treatment at a relatively low temperature (temperature close to the lower limit), it is necessary to maintain the temperature for a longer time. However, in practice, treatment for more than 20 hours is extremely disadvantageous in terms of cost, so the upper limit of the holding time was set at 20 hours in consideration of economic efficiency.

なお、加熱処理後の冷却速度は炭化物の凝集・粗大化に
は直接影響しないことから特に限定する必要はないが、
炭化物量が多いほど耐摩耗性、耐焼付性には有利である
ので、高温において基地に固溶しているCをも出来るだ
け炭化物として析出させるべく、徐冷することが好まし
い。
Note that the cooling rate after heat treatment does not have a direct effect on the agglomeration and coarsening of carbides, so there is no need to specifically limit it.
Since a larger amount of carbide is more advantageous for wear resistance and seizure resistance, it is preferable to perform slow cooling in order to precipitate as much of the carbon solid-solved in the matrix as possible at high temperatures as carbide.

従って、実際の作業性や経済性を考慮すれば、前記化学
成分組成の合金鋼の熱処理は、〔固相線温度〕〜〔固相
線よりも40°C高い温度〕に1〜5時間加熱・保持し
てから、600℃以下まで炉冷する条件で実施するのが
好ましいと言える。そして、熱処理雰囲気については炭
化物の凝集・粗大化に格別な影響を及ぼさないので特に
限定する必要はなく、通常は大気中で差し支えない。
Therefore, in consideration of actual workability and economic efficiency, the heat treatment of alloy steel with the above chemical composition should be performed by heating at [solidus temperature] to [40°C higher than solidus temperature] for 1 to 5 hours. - It can be said that it is preferable to carry out the process under the conditions of holding and then furnace cooling to 600°C or less. The heat treatment atmosphere does not have a particular effect on the agglomeration and coarsening of carbides, so there is no need to limit it in particular, and the atmosphere may normally be used.

続いて、本発明を実施例によって更に具体的に説明する
Next, the present invention will be explained in more detail with reference to Examples.

〈実施例〉 まず、高周波炉を用いて第1表に示す化学成分組成の高
合金鋼を溶製した後、これを直径二80mm、長さ:4
0Qmmの丸棒に鋳込んで室温まで冷却した。
<Example> First, high-alloy steel having the chemical composition shown in Table 1 was melted using a high-frequency furnace, and then this was melted to a diameter of 280 mm and a length of 4.
It was cast into a 0Qmm round bar and cooled to room temperature.

なお、上記高合金鋼の溶製に当っては、主要成分を16
50℃に溶解した後、Ca、REM(ここではCe +
 Laを使用)を含んだ鋼種についてはこれら添加元素
を取鍋底置き法で、またMo、 w、 Go+ 7++
V、Zrを含んだ鋼種についてはこれら添加元素を脱酸
後の炉内添加法を適用して添加した。
In addition, when melting the above-mentioned high alloy steel, the main components are 16
After dissolving at 50°C, Ca, REM (here Ce +
For steel types containing La), these additive elements are added by the ladle bottom method, and Mo, w, Go+ 7++
For steel types containing V and Zr, these additional elements were added by applying the in-furnace addition method after deoxidation.

そして、固相線温度は熱分析試験によって確認した。即
ち、寸法が18φ×401の試料をタンマン炉内で14
50〜1500℃に加熱して溶解した後、これを徐冷し
て凝固終了温度を測定し、測定された該凝固終了温度を
固相線とした。
Then, the solidus temperature was confirmed by a thermal analysis test. That is, a sample with dimensions of 18φ x 401mm was heated in a Tammann furnace for 14 minutes.
After heating to 50 to 1500°C to melt, this was slowly cooled and the solidification completion temperature was measured, and the measured solidification completion temperature was taken as the solidus line.

次に、得られた丸棒材に1300℃X5hrの球状化焼
鈍を施した後、これらから試験片を採取し、“引張り性
質”、“シャルピー衝撃吸収エネルギー”及び“破壊靭
性”を調査すると共に、焼き割れテストを実施した。
Next, after subjecting the obtained round bars to spheroidizing annealing at 1300°C for 5 hours, test pieces were taken from these and their "tensile properties", "Charpy impact absorption energy" and "fracture toughness" were investigated. , a quench cracking test was conducted.

ここで、シャルピー衝撃試験は2■ノツチ試験片につい
て26〜180℃で実施した。また、破壊靭性の測定に
はWOL試験(^STM E399法)を適用し、50
トンX0.5secの条件で実施した。そして、焼き割
れテスト(熱衝撃試験)には第1図に示した厚さ5w1
の試験片を用い、600〜1150℃に10分間加熱保
持した後で水焼入れし、その際の割れ発生の有無を調べ
た。
Here, the Charpy impact test was carried out at 26 to 180°C on a 2-notch test piece. In addition, the WOL test (^STM E399 method) was applied to measure the fracture toughness.
The test was carried out under the conditions of ton x 0.5 sec. For the quench cracking test (thermal shock test), the thickness 5w1 shown in Figure 1 was used.
A test piece was heated and held at 600 to 1150°C for 10 minutes, and then water quenched, and the presence or absence of cracking during this process was examined.

これらの結果を第2表に示す。These results are shown in Table 2.

第2表に示される結果からも明らかなように、本発明で
規定される条件に従って製造された鋳造材は、強度、シ
ャルピー衝撃値、破壊靭性(K+c)。
As is clear from the results shown in Table 2, the cast material manufactured according to the conditions specified in the present invention has excellent strength, Charpy impact value, and fracture toughness (K+c).

耐焼き割れ性が共に優れているのに対して、比較法によ
るものは上記特性の何れかに劣ることが分かる。
It can be seen that, while both have excellent resistance to quenching, those obtained by the comparative method are inferior in any of the above properties.

特に、試験番号1.3.5で得られた材料のように、そ
れぞれs、p、oを多く含有するものは耐焼き割れ性は
極端に悪化する。
In particular, materials containing a large amount of s, p, and o, such as the material obtained in test number 1.3.5, have extremely poor resistance to quench cracking.

また、試験番号No3,5.7のように不純物元素s、
  p、 oを少なくしたものは、耐焼き割れ性は改善
される。
In addition, as in test number No. 3, 5.7, impurity element s,
When p and o are reduced, the resistance to quenching is improved.

また、No7.9で得られた材料のようにCa+ RE
Mを添加すると破壊靭性値(KIC)が好転するが、C
a、REMが過剰になると、試験番号8.10に見られ
るように酸化物系介在物が多くなり却って耐焼き割れ性
が悪化する。
In addition, like the material obtained in No. 7.9, Ca + RE
Adding M improves the fracture toughness value (KIC), but C
a. When REM is excessive, oxide-based inclusions increase as seen in test number 8.10, and the quench cracking resistance deteriorates.

〈効果の総括〉 以上に説明した如く、この発明によれば、耐摩純性や耐
焼付性に優れることは勿論、優れた耐割れ性を備えた工
具用鋳造材を工業的に安定して提供することができ、傾
斜ロール式圧延機のガイドシューや熱間押出ダイス値に
適用してその使用寿命を大幅に向上させることが可能に
なるなど、産業上極めて有用な効果がもたらされる。
<Summary of Effects> As explained above, according to the present invention, it is possible to industrially stably provide a cast material for tools that not only has excellent wear resistance and seizure resistance, but also has excellent cracking resistance. It can be applied to the guide shoes and hot extrusion dies of inclined roll rolling mills to greatly improve their service life, bringing about extremely useful effects industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例で使用した“焼き割れテスト(熱衝撃
試験)用試験片の説明図である。
FIG. 1 is an explanatory diagram of a test piece for quench cracking test (thermal shock test) used in Examples.

Claims (4)

【特許請求の範囲】[Claims] (1)重量割合にて、 C:0.7〜2.5%、Si:3%以下、 Mn:3%以下、Cr:20〜40%、 Ni:20〜50%、S:0.05%以下、P:0.0
5%以下、O:0.10%以下 を含有し、残部が実質的にFeから成る鋳造高合金鋼を
、〔固相線よりも20℃低い温度〕〜〔固相線よりも4
0℃高い温度〕の領域にて1〜20時間加熱保持するこ
とを特徴とする、耐割れ性に優れた工具用鋳造材の製造
方法。
(1) In weight percentage: C: 0.7-2.5%, Si: 3% or less, Mn: 3% or less, Cr: 20-40%, Ni: 20-50%, S: 0.05 % or less, P: 0.0
5% or less, O: 0.10% or less, and the balance substantially consists of Fe at a temperature of [20°C lower than the solidus line] to [4°C lower than the solidus line].
A method for producing a cast material for tools having excellent crack resistance, the method comprising heating and holding at a temperature of 0° C. higher for 1 to 20 hours.
(2)重量割合にて、 C:0.7〜2.5%、Si:3%以下、 Mn:3%以下、Cr:20〜40%、 Ni:20〜50%、S:0.05%以下、P:0.0
5%以下、O:0.10%以下 を含むと共に、 Ca:0.0001〜0.050%、 REM:0.0001〜0.50% のうちの1種以上をも含有し、残部が実質的にFeから
成る鋳造高合金鋼を、〔固相線よりも20℃低い温度〕
〜〔固相線よりも40℃高い温度〕の温度領域にて1〜
20時間加熱保持することを特徴とする、耐割れ性に優
れた工具用鋳造材の製造方法。
(2) In weight percentage: C: 0.7-2.5%, Si: 3% or less, Mn: 3% or less, Cr: 20-40%, Ni: 20-50%, S: 0.05 % or less, P: 0.0
5% or less, O: 0.10% or less, and also contains one or more of Ca: 0.0001-0.050%, REM: 0.0001-0.50%, and the remainder is substantially Cast high-alloy steel made of iron is heated to a temperature 20°C lower than the solidus line.
1 in the temperature range of ~[40℃ higher than the solidus line]
A method for producing a cast material for tools with excellent crack resistance, characterized by heating and holding for 20 hours.
(3)重量割合にて、 C:0.7〜2.5%、Si:3%以下、 Mn:3%以下、Cr:20〜40%、 Ni:20〜50%、S:0.05%以下、P:0.0
5%以下、O:0.10%以下 を含むと共に、 Mo:0.1〜5.0%、W:0.1〜5.0%、Co
:0.1〜5.0%、Ti:0.1〜5.0%、V:0
.1〜5.0%、Zr:0.1〜5.0%のうちの1種
以上をも含有し、残部がFe及び不可避的不純物から成
る鋳造高合金鋼を、〔固相線よりも20℃低い温度〕〜
〔固相線よりも40℃高い温度〕の温度領域にて1〜2
0時間加熱保持することを特徴とする、耐割れ性に優れ
た工具用鋳造材の製造方法。
(3) In weight percentage: C: 0.7-2.5%, Si: 3% or less, Mn: 3% or less, Cr: 20-40%, Ni: 20-50%, S: 0.05 % or less, P: 0.0
5% or less, O: 0.10% or less, Mo: 0.1 to 5.0%, W: 0.1 to 5.0%, Co
:0.1~5.0%, Ti:0.1~5.0%, V:0
.. 1 to 5.0%, Zr: 0.1 to 5.0%, and the balance is Fe and unavoidable impurities. ℃lower temperature〕〜
1 to 2 in the temperature range [40℃ higher than the solidus line]
A method for producing a cast material for tools with excellent crack resistance, characterized by heating and holding for 0 hours.
(4)重量割合にて、 C:0.7〜2.5%、Si:3%以下、 Mn:3%以下、Cr:20〜40%、 Ni:20〜50%、S:0.05%以下、P:0.0
5%以下、O:0.10%以下 を含むと共に、 Ca:0.0001〜0.050%、 REM:0.0001〜0.50% のうちの1種以上、並びに Mo:0.1〜5.0%、W:0.1〜5.0%、Co
:0.1〜5.0%、Ti:0.1〜5.0%、V:0
.1〜5.0%、Zr:0.1〜5.0%のうちの1種
以上をも含有し、残部がFe及び不可避的不純物から成
る鋳造高合金鋼を、〔固相線よりも20℃低い温度〕〜
〔固相線よりも40℃高い温度〕の温度領域にて1〜2
0時間加熱保持することを特徴とする、耐割れ性に優れ
た工具用鋳造材の製造方法。
(4) In weight percentage: C: 0.7-2.5%, Si: 3% or less, Mn: 3% or less, Cr: 20-40%, Ni: 20-50%, S: 0.05 % or less, P: 0.0
5% or less, O: 0.10% or less, and one or more of Ca: 0.0001-0.050%, REM: 0.0001-0.50%, and Mo: 0.1-0. 5.0%, W: 0.1-5.0%, Co
:0.1~5.0%, Ti:0.1~5.0%, V:0
.. 1 to 5.0%, Zr: 0.1 to 5.0%, and the balance is Fe and unavoidable impurities. ℃lower temperature〕〜
1 to 2 in the temperature range [40℃ higher than the solidus line]
A method for producing a cast material for tools with excellent crack resistance, characterized by heating and holding for 0 hours.
JP27728690A 1990-10-16 1990-10-16 Production of cast material for tool excellent in crack resistance Pending JPH04154909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27728690A JPH04154909A (en) 1990-10-16 1990-10-16 Production of cast material for tool excellent in crack resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27728690A JPH04154909A (en) 1990-10-16 1990-10-16 Production of cast material for tool excellent in crack resistance

Publications (1)

Publication Number Publication Date
JPH04154909A true JPH04154909A (en) 1992-05-27

Family

ID=17581418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27728690A Pending JPH04154909A (en) 1990-10-16 1990-10-16 Production of cast material for tool excellent in crack resistance

Country Status (1)

Country Link
JP (1) JPH04154909A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2607513A1 (en) * 2011-12-22 2013-06-26 Airbus Engineering Centre India Shape memory stainless steels with rare earth elements Ce and La

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2607513A1 (en) * 2011-12-22 2013-06-26 Airbus Engineering Centre India Shape memory stainless steels with rare earth elements Ce and La

Similar Documents

Publication Publication Date Title
CN109338214B (en) High-strength high-toughness steel for rock drilling tool and production method thereof
JP2012122111A (en) Method for producing tmcp and tempering process type high-strength thick steel plate having both excellent productivity and weldability, and excellent in drop-weight characteristic after pwht
JP4629816B2 (en) High strength bolt excellent in delayed fracture resistance and method for producing the same
CN111440985A (en) Steel wire rod for high-strength welding nail and preparation method thereof
JPS5887249A (en) Wear resistant cast iron for material of roll
CN111015019B (en) 00Cr20Mo16 welding wire and production process thereof
CN113215489A (en) High-strength-plasticity low-chromium nickel-saving type duplex stainless steel and stretching preparation method thereof
JPS61104022A (en) Production of structural steel for high temperature use
JPS6214606B2 (en)
JPH04154909A (en) Production of cast material for tool excellent in crack resistance
JP2001234288A (en) Tool material for hot working
JPS62196359A (en) Non-heattreated steel for hot forging and production thereof
CN109835015B (en) Wear-resistant composite steel plate and manufacturing method thereof
JP3256184B2 (en) Method for producing ultra-free-cutting steel rods and parts, and ultra-free-cutting steel rods and parts using them
JP4158390B2 (en) Hot forged steel for cold work with excellent fatigue resistance and cold workability
CN114990425B (en) Cutter for scrap steel crushing and preparation and repair methods thereof
CN113881904B (en) Chromium alloy for engine valve seat ring and preparation method thereof
WO2024022531A1 (en) Corrosion-resistant and wear-resistant steel plate and manufacturing method therefor
JP2003183766A (en) Tool material for hot working
JP3482349B2 (en) Hot working tool materials
JP2501438B2 (en) Low carbon steel wire rod and steel bar manufacturing method
JPS635464B2 (en)
JP2745647B2 (en) Method for producing high-temperature wear-resistant Co-based alloy with excellent hot workability
JP2538905B2 (en) Steel material for centrifugal casting molds with excellent high temperature strength and toughness
WO2023241611A1 (en) Low-nickel high-manganese austenite wear-resistant steel welding wire rod and welding wire