JPH04152225A - Manufacture of infrared ray sensor - Google Patents

Manufacture of infrared ray sensor

Info

Publication number
JPH04152225A
JPH04152225A JP27630990A JP27630990A JPH04152225A JP H04152225 A JPH04152225 A JP H04152225A JP 27630990 A JP27630990 A JP 27630990A JP 27630990 A JP27630990 A JP 27630990A JP H04152225 A JPH04152225 A JP H04152225A
Authority
JP
Japan
Prior art keywords
groove
infrared
infrared ray
chips
cooling stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27630990A
Other languages
Japanese (ja)
Inventor
Shigeki Hamashima
濱嶋 茂樹
Koji Hirota
廣田 耕治
Tokutomo Satou
徳朋 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP27630990A priority Critical patent/JPH04152225A/en
Publication of JPH04152225A publication Critical patent/JPH04152225A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To align chips of infrared ray sensing element having different characteristics precisely and place on a cooling stage by forming a plurality of infrared ray receiving parts on the chip surface in mating with a V-groove provided at the rear of the chip. CONSTITUTION:A V-groove 24 is formed in a sapphire base board 22 using a diamond tool or cutter, and HgCdTe crystals 26 are adhered to the opposite side of this sapphire base board 22. A comb-teeth form element part 28 is formed on these HgCdTe crystals 26 by mean of etching. An infrared ray receiving part 30 is formed in each element part 28 by photo-lithographic method by reference to the V-groove 24 in the base board 22. Because the base board 22 and HgCdTe crystals 26 are transparent, it is practicable to observe the V-groove 24 from above easily and the infrared ray receiving part 30 can be formed in alignment with the V-groove 24. The V-grooves 24 are aligned with each other from the same side with a projection 20 formed on a cooling stage 12 the infrared ray sensing element, and each base board 22 is adhered onto this stage 12.

Description

【発明の詳細な説明】 概要 赤外線検知器の製造方法に関し、 特性の異なる赤外線検知素子チップを複数個正確に整列
させて冷却ステージ上に搭載することのできる赤外線検
知器の製造方法を提供することを目的とし、 複数の赤外線検知素子チップを冷却ステージ上に搭載し
て構成される赤外線検知器の製造方法において、赤外線
検知素子チップ裏面側にV溝を設け、該V溝に合わせて
該チップ表面に複数の赤外線受光部を形成し、冷却ステ
ージに設けられた細長い突起に複数の前記チップのV溝
を同一方向から当接させて該複数のチップを一列に整列
させ、該複数のチップを前記冷却ステージに接着して構
成する。
[Detailed Description of the Invention] Summary: An object of the present invention is to provide an infrared detector manufacturing method in which a plurality of infrared sensing element chips with different characteristics can be accurately aligned and mounted on a cooling stage. In a method for manufacturing an infrared detector configured by mounting a plurality of infrared sensing element chips on a cooling stage, a V-groove is provided on the back side of the infrared sensing element chip, and the chip surface is aligned with the V-groove. A plurality of infrared receiving portions are formed in the cooling stage, and the V grooves of the plurality of chips are brought into contact from the same direction with an elongated protrusion provided on the cooling stage to align the plurality of chips in a line. It is configured by gluing it to the cooling stage.

産業上の利用分野 本発明は赤外線検知器の製造方法に関する。Industrial applications The present invention relates to a method of manufacturing an infrared detector.

赤外線センサ(検知器)は目標物体に接触することなく
物体の存在、形状、温度、組成等を知ることができるた
め、人工衛星による気象観測、防犯、防災、地質・資源
調査、赤外線サーモグラフィによる医療用等の多くの分
野で用いられている。
Infrared sensors (detectors) can detect the presence, shape, temperature, composition, etc. of a target object without coming into contact with it, so it can be used for weather observation using artificial satellites, crime prevention, disaster prevention, geological and resource surveys, and medical treatment using infrared thermography. It is used in many fields such as business.

このような赤外線センサには焦電素子、サーモパイル等
を用いた前型センサと半導体を利用した光電効果型(量
子型)センサがある。
Such infrared sensors include front type sensors using pyroelectric elements, thermopiles, etc., and photoelectric effect type (quantum type) sensors using semiconductors.

一般に前型センサでは感度の波長依存性はないが、感度
が低く応答速度も遅いので、リアルタイムの赤外線セン
サとしては不向きである。一方、光電効果型センサは感
度が高く、応答速度も速いが、感度を得るために素子の
概略液体窒素温度での冷却が必要である。光電効果型赤
外線センサは、光導電型、光起電力型、MIS型に分類
される。
In general, previous-type sensors have no wavelength dependence in sensitivity, but they have low sensitivity and slow response speed, making them unsuitable as real-time infrared sensors. On the other hand, photoelectric effect sensors have high sensitivity and fast response speed, but require cooling of the element to approximately liquid nitrogen temperature in order to obtain sensitivity. Photoelectric effect type infrared sensors are classified into photoconductive type, photovoltaic type, and MIS type.

このうち光導電型センサは、光照射時の抵抗変化を利用
するもので、例えば、HgCdTe等の化合物半導体結
晶からなる赤外線検知素子チップを用いたものが知られ
ている。
Among these, the photoconductive type sensor utilizes a change in resistance upon irradiation with light, and for example, one using an infrared sensing element chip made of a compound semiconductor crystal such as HgCdTe is known.

このような光導電型の赤外線検知素子は、感度を得るた
めに上述したように概略液体窒素温度に冷却して使用さ
れる。従って、赤外線検知素子は、通常断熱容器の冷却
ステージ上に接着されている。
Such a photoconductive type infrared sensing element is used after being cooled to approximately the temperature of liquid nitrogen, as described above, in order to obtain sensitivity. Therefore, the infrared sensing element is usually glued onto a cooling stage of an insulated container.

ところで、人工衛星からのリモートセンシングにおいて
、色々な波長帯域をとりたい場合には、検知素子を2分
割或いは多数個に分割して製作し、それぞれの素子チッ
プの受光部を正確に整列させて冷却ステージ上に搭載す
る必要がある。
By the way, in remote sensing from an artificial satellite, if you want to use various wavelength bands, you need to fabricate the sensing element by dividing it into two parts or into multiple pieces, align the light-receiving part of each element chip accurately, and then cool it. Must be mounted on stage.

従来の技術 第4図及び第5図を参照して、従来の赤外線検知器の製
造方法及び構造について説明する。冷却ステージ2上に
2個のチップ4a、4bが光学顕微鏡により位置合わせ
をしてから、接着剤で搭載固定されている。各チップ4
a、4bにはエツチングにより横歯状の複数の検知素子
部分6が形成されており、各検知素子部分6には受光部
8が設けられている。光学顕微鏡を使用した位置合わせ
は、各チップ4a、4bの受光部8の中心線10a、l
Qbを一直線状に整列させるようにして行われ、位置合
わせ後に各チップ4a、4bを接着剤で冷却ステージ2
に固定している。チップ4a。
BACKGROUND OF THE INVENTION A manufacturing method and structure of a conventional infrared detector will be described with reference to FIGS. 4 and 5. Two chips 4a and 4b are aligned on the cooling stage 2 using an optical microscope, and then mounted and fixed with adhesive. 4 chips each
A, 4b are etched to form a plurality of horizontal tooth-shaped sensing element portions 6, and each sensing element portion 6 is provided with a light receiving portion 8. Alignment using an optical microscope is performed using center lines 10a and l of the light receiving portions 8 of each chip 4a and 4b.
Qb is aligned in a straight line, and after alignment, each chip 4a, 4b is attached to the cooling stage 2 with adhesive.
It is fixed at Chip 4a.

4bは例えばHgCdTe等から形成されており、その
組成を変えることにより異なる波長帯域に感度を有する
ように構成されている。
4b is made of, for example, HgCdTe, and is configured to have sensitivity in different wavelength bands by changing its composition.

発明が解決しようとする課題 従来はこのように光学顕微鏡を使用した目視により各チ
ップ4a、4bの受光部の位置合わせを行っていたため
、lOμm程度の位置ずれが生じ、画像にした場合像に
歪みが生じるという問題があった。
Problems to be Solved by the Invention Conventionally, the positioning of the light-receiving parts of each chip 4a and 4b was performed visually using an optical microscope, resulting in a positional deviation of about 10 μm, which caused distortion in the image. There was a problem that this occurred.

本発明はこのような点に鑑みてなされたものであり、そ
の目的とするところは、特性の異なる赤外線検知素子チ
ップを正確に整列させて冷却ステージ上に搭載すること
のできる赤外線検知器の製造方法を提供することである
The present invention has been made in view of these points, and its purpose is to manufacture an infrared detector in which infrared detecting element chips with different characteristics can be accurately aligned and mounted on a cooling stage. The purpose is to provide a method.

課題を解決するための手段 複数の赤外線検知素子チップを冷却ステージ上に搭載し
て構成される赤外線検知器の製造方法において、赤外線
検知素子チップの裏面側にV溝を設け、このV溝に合わ
せてチップ表面に複数の赤外線受光部を形成する。そし
て、冷却ステージに設けられた細長い突起に複数のチッ
プのV溝を同一方向から当接させて複数のチップを一列
に整列させ、これら複数のチップを冷却ステージ上に接
着する。
Means for Solving the Problem In a method for manufacturing an infrared detector consisting of a plurality of infrared detecting element chips mounted on a cooling stage, a V-groove is provided on the back side of the infrared detecting element chip, and a V-groove is aligned with the V-groove. A plurality of infrared light receiving sections are formed on the chip surface. Then, the V-grooves of the plurality of chips are brought into contact with the elongated projections provided on the cooling stage from the same direction to align the plurality of chips in a line, and the plurality of chips are bonded onto the cooling stage.

作   用 チップ裏面側に設けたV溝に合わせて各チップに複数の
赤外線受光部を形成するため、これらの赤外線受光部は
全てのチップについてV溝に合わせて正確に形成するこ
とができる。このたt1各チップのV溝を冷却ステージ
上の突起に同一方向から当接させることにより、各チッ
プの受光部を正確に整列させることができる。
Function: Since a plurality of infrared light receiving sections are formed on each chip in accordance with the V groove provided on the back side of the chip, these infrared light receiving sections can be formed accurately in accordance with the V groove for all chips. In addition, by bringing the V grooves of each chip t1 into contact with the protrusions on the cooling stage from the same direction, the light receiving portions of each chip can be accurately aligned.

実  施  例 以下、本発明の実施例を図面を参照して詳細に説明する
Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は本発明実施例の斜視図、第2図はその要部拡大
図を示している。HgCdTeから形成された赤外線検
知素子チップ14a、14bの裏面にはV溝16が形成
されており、そのV溝16に合わせて各チップ14a、
14bに複数の赤外線受光部18を形成する。冷却ステ
ージ12上にはV溝16の深さよりも高さの低い細長い
突起20が固定されており、この突起20にチップ14
a、14bのV溝16を、第2図に示すように同一方向
から当接させることにより、各チップ14a、14bの
赤外線受光部18が一直線状に正確に整列される。この
ように位置合わせをした状態で、接着剤により各チップ
14a、14bを冷却ステージ12に接着する。
FIG. 1 is a perspective view of an embodiment of the present invention, and FIG. 2 is an enlarged view of the main parts thereof. A V-groove 16 is formed on the back surface of the infrared sensing element chips 14a and 14b formed from HgCdTe, and each chip 14a,
A plurality of infrared light receiving sections 18 are formed in 14b. An elongated protrusion 20 whose height is lower than the depth of the V-groove 16 is fixed on the cooling stage 12, and the chip 14 is attached to this protrusion 20.
By bringing the V grooves 16 of the chips 14a and 14b into contact with each other from the same direction as shown in FIG. 2, the infrared receiving portions 18 of the chips 14a and 14b are accurately aligned in a straight line. In this aligned state, each chip 14a, 14b is bonded to the cooling stage 12 with an adhesive.

各チップ14a、14bは組成を代えて感度を有する波
長帯域がそれぞれ異なるように形成されており、本発明
方法により製造された赤外線検知器を人工衛星に搭載し
て、異なる波長帯域でリモートセンシングを行うことが
できる。
Each chip 14a, 14b is formed with a different composition and is sensitive to different wavelength bands, and an infrared detector manufactured by the method of the present invention is mounted on an artificial satellite to perform remote sensing in different wavelength bands. It can be carried out.

次に第3図を参照して、赤外線検知素子の製造方法の一
例について説明する。第3図において、(al)〜(a
4ンは平面図、(bl)〜(b4ンは各々の平面図に対
応する右側面図である。
Next, with reference to FIG. 3, an example of a method for manufacturing an infrared sensing element will be described. In FIG. 3, (al) to (a
4 is a plan view, and (bl) to (b4) are right side views corresponding to each plan view.

まず、第3図(al)及び(bl)に示すように、サフ
ァイア基板22にダイヤモンドツール或いはカッター等
でV溝24を形成する。■溝24を形成したサファイア
基板22の反対側に、(a2)及び(b2)に示すよう
に、HgCdTe結晶26を接着する。次いで、(a3
)及び(b3)に示すように、エツチングによりHgC
dTe結晶26上に櫛歯状の複数の素子部分28を形成
する。そして、(a4)及び(b4)に示すように、サ
ファイア基板22のV溝24を基準にしてフォトリング
ラフィにより各々の素子部分28に赤外線受光部30を
形成する。
First, as shown in FIGS. 3(al) and (bl), a V-groove 24 is formed in the sapphire substrate 22 using a diamond tool, cutter, or the like. (2) As shown in (a2) and (b2), an HgCdTe crystal 26 is adhered to the opposite side of the sapphire substrate 22 in which the groove 24 has been formed. Then, (a3
) and (b3), HgC is removed by etching.
A plurality of comb-shaped element portions 28 are formed on the dTe crystal 26 . Then, as shown in (a4) and (b4), infrared light receiving portions 30 are formed in each element portion 28 by photolithography using the V-groove 24 of the sapphire substrate 22 as a reference.

この場合サファイア基板22及びHgCd7e結晶26
が透明であるため、上方よりV溝24を容易に観察する
ことができ、赤外線受光部30をこのV溝24に整列さ
せて形成することができる。
In this case, the sapphire substrate 22 and the HgCd7e crystal 26
Since the V-groove 24 is transparent, the V-groove 24 can be easily observed from above, and the infrared light receiving section 30 can be formed in alignment with the V-groove 24.

代案としては、両面アライナ−を使用して、この両面ア
ライナ−によりサファイア基板22の裏面に形成された
V溝24を確認しながら、このV溝24を基準にして赤
外線受光部30を形成するようにしてもよい。
As an alternative, a double-sided aligner may be used, and while checking the V-groove 24 formed on the back surface of the sapphire substrate 22 by the double-sided aligner, the infrared receiving portion 30 may be formed using this V-groove 24 as a reference. You may also do so.

このように製造された赤外線検知素子を、第1図及び第
2図に示すように、冷却ステージ12に形成された突起
20に各々のV溝24を同一方向から当接させて位置合
わせをし、冷却ステージ12上に各サファイア基板を接
着する。
The thus manufactured infrared sensing elements are aligned by bringing their respective V grooves 24 into contact with the protrusions 20 formed on the cooling stage 12 from the same direction, as shown in FIGS. 1 and 2. , each sapphire substrate is bonded onto the cooling stage 12.

サファイア基板にV溝を形成せずに、31基板に異方性
エツチングを利用してV溝を形成し、この81基板をサ
ファイア基板裏面に接着し、その後第3図(a2)、 
 (b2)以降のステップを実行するようにしても良い
。この方法では、異方性エツチングを利用するため、■
溝が正確に形成され、より精度良く各チップの赤外線受
光部を整列させることができる。
Instead of forming a V-groove on the sapphire substrate, a V-groove is formed on the 31 substrate using anisotropic etching, and this 81 substrate is adhered to the back surface of the sapphire substrate, and then FIG. 3 (a2),
(b2) The following steps may be executed. This method uses anisotropic etching, so ■
The grooves are formed accurately, and the infrared light receiving portions of each chip can be aligned with higher precision.

上述した各実施例ではV溝を形成しているが、この溝は
V溝に限定されるものではなく、例えばU溝を形成する
ようにしても良い。
In each of the embodiments described above, a V-groove is formed, but the groove is not limited to a V-groove, and for example, a U-groove may be formed.

発明の効果 本発明は以上詳述したように構成したので、特性の異な
る赤外線検知素子チップをその受光部を正確に整列させ
て冷却ステージ上に搭載できるという効果を奏する。
Effects of the Invention Since the present invention is configured as described in detail above, it has the effect that infrared sensing element chips having different characteristics can be mounted on a cooling stage with their light receiving parts aligned accurately.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の斜視図、 第2図は実施例の要部拡大図、 第3図は赤外線検知素子チップの製造プロセスを示す図
、 第4図は従来例平面図、 第5図は従来例正面図である。 2・・・冷却ステージ、 4a、14b・・・検知素子チップ、 6.24・・・V溝、 8.30・・・赤外線受光部、 0・・・突起、 2・・・サファイア基板、 6−Hg Cd T e結晶。
Fig. 1 is a perspective view of an embodiment of the present invention, Fig. 2 is an enlarged view of main parts of the embodiment, Fig. 3 is a diagram showing the manufacturing process of an infrared sensing element chip, Fig. 4 is a plan view of a conventional example, and Fig. 5 The figure is a front view of a conventional example. 2...Cooling stage, 4a, 14b...Detecting element chip, 6.24...V groove, 8.30...Infrared receiving section, 0...Protrusion, 2...Sapphire substrate, 6 -Hg Cd Te crystal.

Claims (1)

【特許請求の範囲】 1、複数の赤外線検知素子チップ(14a、14b)を
冷却ステージ(12)上に搭載して構成される赤外線検
知器の製造方法において、 赤外線検知素子チップ(14a、14b)裏面側にV溝
(16)を設け、 該V溝(16)に合わせて該チップ(14a、14b)
表面に複数の赤外線受光部(18)を形成し、 冷却ステージ(12)に設けられた細長い突起(20)
に複数の前記チップ(14a、14b)のV溝(16)
を同一方向から当接させて該複数のチップを一列に整列
させ、 該複数のチップ(14a、14b)を前記冷却ステージ
(12)に接着することを特徴とする赤外線検知器の製
造方法。 2、サファイア基板(22)裏面にV溝(24)を形成
し、該サファイア基板(22)表面に赤外線検知素子チ
ップ(26)を接着することを特徴とする請求項1記載
の赤外線検知器の製造方法。 3、Si基板裏面に異方性エッチングによりV溝を形成
し、該Si基板表面にサファイア基板を接着するととも
に、該サファイア基板上に赤外線検知素子チップを接着
することを特徴とるす請求項1記載の赤外線検知器の製
造方法。 4、前記V溝(16、24)に代えてU溝を形成するこ
とを特徴とする請求項1〜3のいずれかに記載の赤外線
検知器の製造方法。
[Claims] 1. A method for manufacturing an infrared detector configured by mounting a plurality of infrared sensing element chips (14a, 14b) on a cooling stage (12), comprising: A V groove (16) is provided on the back side, and the chips (14a, 14b) are aligned with the V groove (16).
A long slender projection (20) formed on the surface of which a plurality of infrared receiving portions (18) are formed and provided on the cooling stage (12).
V grooves (16) of the plurality of chips (14a, 14b)
A method for manufacturing an infrared detector, characterized in that the plurality of chips (14a, 14b) are bonded to the cooling stage (12) by aligning the plurality of chips in a line by bringing them into contact with each other from the same direction. 2. The infrared detector according to claim 1, characterized in that a V-groove (24) is formed on the back surface of the sapphire substrate (22), and an infrared sensing element chip (26) is bonded to the surface of the sapphire substrate (22). Production method. 3. A V-groove is formed on the back surface of the Si substrate by anisotropic etching, a sapphire substrate is bonded to the surface of the Si substrate, and an infrared sensing element chip is bonded onto the sapphire substrate. A method for manufacturing an infrared detector. 4. The method for manufacturing an infrared detector according to any one of claims 1 to 3, characterized in that a U-groove is formed in place of the V-groove (16, 24).
JP27630990A 1990-10-17 1990-10-17 Manufacture of infrared ray sensor Pending JPH04152225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27630990A JPH04152225A (en) 1990-10-17 1990-10-17 Manufacture of infrared ray sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27630990A JPH04152225A (en) 1990-10-17 1990-10-17 Manufacture of infrared ray sensor

Publications (1)

Publication Number Publication Date
JPH04152225A true JPH04152225A (en) 1992-05-26

Family

ID=17567662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27630990A Pending JPH04152225A (en) 1990-10-17 1990-10-17 Manufacture of infrared ray sensor

Country Status (1)

Country Link
JP (1) JPH04152225A (en)

Similar Documents

Publication Publication Date Title
CN1987486B (en) Integrated optic grating interference micro mechanical acceleration sensor and its producing method
CN107636445A (en) The spectroscopic system and its method of middle infrared high spectrum
CN104764531B (en) Integrated infrared heat sensor and its manufacture method and imaging system and imaging method
US3932753A (en) Pyroelectric device with coplanar electrodes
US10317624B1 (en) Monolithic collimator array
TW200916743A (en) Spectroscopy device, spectroscopy apparatus and spectroscopy method
RU2634805C2 (en) Dual-spectrum matrix infrared radiation array detector for optoelectronic sensors
US4629892A (en) Optically immersed detector assembly
JPH04152225A (en) Manufacture of infrared ray sensor
US3381133A (en) Scanning device for tracker using concentric photosensitive surfaces cooperating with oscillated image
JP7299980B2 (en) Multispectral image sensor with means for limiting crosstalk
JP2578774B2 (en) Method for manufacturing module with lens
US7084649B2 (en) Method and apparatus for measuring three-dimensional distribution of electric field
JP2007085917A (en) Infrared array sensor
US6404031B1 (en) Transparent semiconductor light-receiving element and manufacturing method thereof
JPH0989655A (en) Infrared detection apparatus
US5438200A (en) Composite photodetector substrate and method of forming the same
JP3136649B2 (en) Combined infrared detector
JPH05312642A (en) Infrared ray detector
JPH0518816A (en) Pyroelectric array sensor
Feldblum et al. Performance and measurements of refractive microlens arrays
JPH06120569A (en) Infrared detector
SU785659A1 (en) Multielement pyroelectric radiation receiver
JPH0750428A (en) Semiconductor radiation detector
JPH04284678A (en) Manufacture of multielement type infrared sensor